
HRAID6ML: A Hybrid RAID6 Storage
Architecture with Mirrored Logging

Lingfang Zeng †, Dan Feng † �, Janxi Chen †

Qingsong Wei §, Bharadwaj Veeravalli #, Wenguo Liu †

†School of Computer, Huazhong University of Science and Technology
†Wuhan National Laboratory for Optoelectronics

§Data Storage Institute, A*STAR, Singapore
#National University of Singapore

�Corresponding author: dfeng@hust.edu.cn, {lfzeng,chenjx}@hust.edu.cn
wei_qingsong@dsi.a-star.edu.sg, elebv@nus.edu.sg, liuwenguo1985@gmail.com

Abstract—The RAID6 provides high reliability using double-
parity-update at cost of high write penalty. In this paper, we
propose HRAID6ML, a new logging architecture for RAID6 sys-
tems for enhanced energy efficiency, performance and reliability.
HRAID6ML explores a group of Solid State Drives (SSDs) and
Hard Disk Drives (HDDs): Two HDDs (parity disks) and several
SSDs form RAID6. The free space of the two parity disks is
used as mirrored log region of the whole system to absorb
writes. The mirrored logging policy helps to recover system
from parity disk failure. Mirrored logging operation does not
introduce noticeable performance overhead to the whole system.
HRAID6ML eliminates the additional hardware and energy costs,
potential single point of failure and performance bottleneck.
Furthermore, HRAID6ML prolongs the lifecycle of the SSDs and
improves the systems energy efficiency by reducing the SSDs
write frequency. We have implemented proposed HRAID6ML.
Extensive trace-driven evaluations demonstrate the advantages of
the HRAID6ML system over both traditional SSD-based RAID6
system and HDD-based RAID6 system.

I. INTRODUCTION

RAID (Redundant Array of Independent Disks) [18] tech-
nology is efficient in improving overall I/O throughput and
reliability of storage system by employing parallel I/O and
data redundancy mechanisms. However, it suffers high latency
of random accesses due to slow mechanical positioning nature
of Hard Disk Drives (HDDs). NAND flash based Solid State
Drives (SSDs) provide much higher random read performance
and lower power consumption than HDD. The steady bit cost
reduction of NAND flash memory now makes it economically
viable to implement SSD using NAND flash memory [23].
RAID of SSDs is more cost-efficient than PCIe SSD in terms
of capacity per dollar and bandwidth per dollar [12].

However, despite SSD’s high energy efficiency and high
random-read performance, there are many unusual limitations
of SSDs that must be addressed. First, the current generation
of SSDs suffers from the poor performance of small random
writes. The reason is that in the flash storage, each block of
size 64-128KB must be erased in advance before any part
of it can be rewritten, a characteristic feature of SSD known
as “erase-before-write” [17], [5], [10]. Due to the sheer size
of a block, an erase operation typically takes milliseconds

to complete, one or two order of magnitude higher than
a read operation. Second, the flash wear-out after repeated
write-erase cycles impacts the reliability of SSDs. Above
limitations of SSDs must be taken into consideration when
designing SSD-based storage systems, especially SSD-based
arrays. Moreover, the poor performance of small writes to SSD
will aggravate the write performance for the parity-based disk
arrays. Thus, the the overall I/O performance and reliability
of the SSD-based RAID will be affected [14].

This paper presents a new RAID architecture that exploits
the advancement of SSD and HDD. The new RAID architec-
ture is referred to as HRAID6ML: A Hybrid RAID6 with
Mirrored Logging. Several SSDs and part of two HDDs form
RAID6 where the data disks are SSDs and the parity disks
are HDDs. The free space of the parity disks is mirrored
as log region of whole system to absorb writes and extend
lifetime for SSD. Leveraging hybrid management of SSDs
and HDDs, proposed HRAID6ML efficiently improves perfor-
mance, availability and reliability with low power consumption
because most read requests are served by SSD and writes are
conducted in sequential way by HDDs. In addition, random
writes in SSDs are minimized giving rise to longer life time
of SSDs. We have implemented a prototype HRAID6ML
architecture using software at block device level and carried
out extensive performance measurements using file system
benchmarks. Our experiments demonstrated that HRAID6ML
significantly outperforms either HDD-based or SSD-based
RAID6.

The rest of this paper is organized as follows. We review
the related work in Section II. We describe the architecture
and design of HRAID6ML in Section III. The performance
evaluations are presented in Section IV. And we conclude this
paper in Section V.

II. RELATED WORK

Replacing HDD with SSD is the single most effective way
to improve application launch performance [9]. However, sim-
ply applying RAID algorithms to SSDs can be nontrivial, as
discussed in the previous section. Also, in datacenters, storage



subsystems are a major contributor to the power consumption.
For a typical datacenter, the HDD-based storage subsystem
can consume 27% of the total energy and this fraction tends to
increase rapidly as storage requirements rise by 60% annually
[25]. In addition, the bursty and clustering characteristics of
the I/O workload make people to reconsider the designing of
the storage systems [24]. Idle time slots has been exploited
to improve performance, reliability, or energy efficiency of
storage systems [16], these resources remain to be effectively
and fully tapped to optimize the performance and energy
efficiency of storage systems with a logging architecture.

The RAID6 architecture is playing an increasingly impor-
tant role in modern storage systems due to allowing the loss
of any two drives. However, its high write penalty, because of
the double-parity-update overheads upon each write operation,
has been a persistent performance bottleneck of the RAID6
systems. Also, synchronous small writes play a critical role in
the reliability and availability of file systems and applications
that use them to safely log recent state modifications and
quickly recover from failures [6]. For the performance penalty
on each write operation because of the overhead associated
with double-parity calculations, Jin et al. [8] proposed a log-
assisted RAID6 architecture, called RAID6L, to boost the
write performance of the RAID6 systems. RAID6L integrates
a log disk into the traditional RAID6 architecture, and alle-
viates its write penalty by simplifying the processing steps to
service a write request. Different from RAID6L, HRAID6ML
is not required a dedicated disk used as log region, moreover,
HRAID6ML provides a mirrored log region to avoid log-data
loss.

Gokul Soundararajan et al. [19] proposed a hybrid storage
device that uses a HDD as a write cache for an SSD. By
maintaining a log-structured HDD cache and migrating cached
data periodically, the hybrid design reduces writes to the SSD
while retaining its excellent performance. Our HRAID6ML is
also a hybrid SSD/HDD storage systems but targets at disk
array not a single disk. HybridStore [11] provided capacity
planning technique and improved performance/lifetime dur-
ing episodes of deviations from expected workloads through
two mechanisms: write-regulation and fragmentation busting.
Hystor [3] manages both SSDs and HDDs and achieves a
performance improvement by monitoring I/O access patterns
at runtime. HybridStor and Hystor are orthogonal and com-
plementary to our work and can be easily embedded in it to
further improve the reliability and performance of enterprise-
level storage systems.

Using the logging technique to optimize RAID performance
has been well studied. Parity Logging [20] logs the parity
updates to overcome the small-write problem of RAID5.
Menon [15] proposed exploiting this notion improve RAID5
performance for write requests by turning logically random
write requests to physically sequential ones. Logging RAID
[4] bundles small writes into large RAID5 stripes using a
small non-volatile memory buffer, thus solving the small-write
problem of RAID5. Parity Logging and Logging RAID are
based on the RAID5 architecture. GRAID [13] and RoLo

(rotated logging) [24] combines RAID10 and the logging
technique to spin down about half of the disks in the normal
mode to improve energy efficiency.

Our work is closely related to HPDA [14] which combines
a group of SSDs and two HDDs to improve the performance
and reliability of SSD-based storage systems. The difference
between them is that HPDA is based on RAID4 architecture
and required a dedicated log disk (part of the log disk space
is wasted), however, HRAID6ML exploits the parity disks to
form a mirrored logging. The mirrored logging in HRAID6ML
is similar to the cache disk in DCD (disk cache disk) [7], but
the read requests in HRAID6ML can be served effectively by
SSDs. HRAID6ML also utilizes the system idle periods to
optimize the system performance.

III. ARCHITECTURE AND DESIGN

A. HRAID6ML architecture

SSD

RAID6 (SSDs+HDDs)
Mirrored

log region

Data

Monitor Data Reclaimer

Data Distributer

I/O Workload

Administration

Interface

Data Restore

SSD

Data

SSD

Data

HDD

Parity

HDD

Parity

LogLog

SSD

Data

 

Fig. 1. HRAID6ML architecture.

HRAID6ML is composed of a traditional RAID6 region and
a mirrored log region. Fig.1 provides an architectural overview
of the HRAID6ML system. Several SSDs and part of two
HDDs form RAID6 where the data disks are SSDs and the
parity disks are HDDs. Since the capacity of HDD is usually
much larger than SSD, the free space of the parity disks is used
as a mirrored log region of whole system to absorb writes. The
another purpose of using mirrored logging is to recover system
from parity disk failure.

Generally, HRAID6ML may operate using any of the fol-
lowing three methods: (i) HRAID6ML delays SSDs writes and
parity updates to accelerate the write speed, (ii) HRAID6ML
re-synchronizes the data between the data disks and the parity
disks, (iii) the data and parity are reclaimed to the RAID6
region. Note that writing to the mirrored log region is fast
because data is written to the mirrored logging in sequential
way. Rewrite or update is also logged sequentially instead
of overwriting the old data. Since serving read requests does



not involve the parity disks, the contention of the disk head
between the parity blocks and log blocks in the parity disks
is avoided.

HRAID6ML has five key functional modules: Adminis-
tration Interface, Monitor, Data Reclaimer, Data Restore,
and Data Distributor. The Administration Interface module
provides an interface for system administrators to configure the
HRAID6ML parameters. The Monitor module is responsible
for monitoring the I/O accesses of applications, identifying
the random write accesses and computing the I/O intensity.
The Data Distributor module schedules the I/O request ac-
cordingly to either RAID6 region, mirrored log region. The
Data reclaimer is in charge of reclaiming the written data
from log region to the RAID6 region. The Data Restore
module supports a typical recovery process upon an outage
that results in data loss (no more than two disks failure).
We will illustrate the process flow of write/read request of
HRAID6ML in details in the following sections.

B. Implementation issues

We have implemented an HRAID6ML prototype in the
Linux software RAID framework as an independent module.
We mainly modify the handle stripe6 function in original
RAID6 module and add the hash list structure.

1) Data structure: The main data structure in HRAID6ML
is the block-log list (blk log list) that contains a number of
entries. Each entry corresponds to a write that temporarily
buffered in the mirrored log region. The main variables in the
entry are explained as follows:

• LBA indicates the offset of a data block in RAID6 region.
• buf log LBA represents the offset of a data block in the

mirrored log region.
• reclaim flg represents a flag. The value of this variable

is set after the reclaiming operation is completed.
• length indicates the length of a data block.
• hash pre and hash next are two pointers used to link the

sorted list.
Because of its critical importance in processing the reclaim-

ing operation and the recovering operation (from disk failure),
the blk log list must be kept in an NVRAM to avoid data loss
in case of power failure. HRAID6ML only needs to maintain
one hash entry per request rather than per disk sector. The
entry size of blk log list is n× Slog

Sreq
, where n is the number of

bytes per hash entry, Slog is the block-log size, and Sreq is the
request size. Since HRAID6ML tries to improve the RAID6
write/read efficiency, it keeps part of the entries of blk log list
in RAM for the mirrored log region storage. Other entries are
kept in disk. For example, with a 2GB mirrored log region
size and 4KB average request size, the total blk log list size
is only around 10MB. Moreover, the extra memory space can
be further reduced by periodically reclaiming the write data
from the mirrored log region back to RAID6 region during
system idle periods.

2) Metadata refresh and consistency check: We update
the HRAID6ML metadata (including the blk log list) using
asynchronous method: the strategy is to periodically refresh

or to refresh when the system is idle. For example, if there is
no new I/O requests in 5s, the metadata is refreshed, or the
system force to refresh the metadata every 30s. We use a timer
to judge the system state (idle or not). The timer is reset while
the system calls the I/O function. When the time of timer is
timeout (e.g. 5s), then the asynchronous refreshing thread is
waken up.

We use a checksum algorithm to guarantee a very low fail-
ure rate for aforementioned HRAID6ML metadata. Checksum
calculation is as follows: Σ(Ãi+1), where Ai is the i-th block-
log, if the sum of check code is 0, then it is right, and vice
versa, indicating an error. For example, we consider the case of
1 bit first, if there are happen to have an even number of data
errors, the sum of the check code and data of the block-log is
0, then the parity bit is failure. We assume the probability of
error of each data is p. P(m) denotes the probability of error, m
is the number of data, then, for 2 data, there are P(2) =C2

m p2.
In HRAID6ML, each checksum block is 4 bytes (32 bits), if
the checksum indicates a failure of the metadata, there must
have an even number of data and each bit of 32-bit is wrong.
Assume there are two data consistent with the above condition,
the failure probability P(2) is (C2

m p2)32. If there are 100 data,
then P(2) is 2.89E-31. Similarly, P(4), P(6) etc. also can be
calculated, but all are under the orders 10−31 of magnitude.

C. Process flow of write/read request

Upon receiving a write request, the Monitor first determines
whether the request is sequential with its prior requests. If yes,
the Monitor merges the request with its prior requests and the
Data Distributor directs the write data to the mirrored log
region of the parity disks. At the same time, a new block-log
entry of the request should be added into the block-log list. If
the request is random, the data will be written to the mirrored
log region. And a new block-log entry of the request will be
created according to the request and inserted into the block-log
list.

When receiving a read request, the Monitor first checks
whether there is an entry corresponding to the request in the
block-log list (blk log list). If yes, the data is read from the
mirrored log region. Otherwise, the request will be processed
by the RAID6 region and served exclusively by the SSDs.

An additional operation in HRAID6ML is the reclaiming
operation that reclaims the write data from the mirrored log
region back to the data disks and re-synchronizes the parity
data in the parity disks. The reclaiming operation is usually
executed during system idle periods determined by the Monitor
based on the I/O intensity. On the other hand, when the
mirrored log region is full, the log region can not continue
to absorb the write requests and the write data must also be
reclaimed.

D. Recovery

Disk failures can occur either in the SDDs or in the HDDs.
(i) If one parity disk fail, the Data Reclaimer is triggered to

reclaim the write data from the mirrored logging (in the normal
log region) to the RAID6 region according to the block-log



list. At the same time, the parity part can be recovered through
the RAID6 recovery algorithm. After the reclaim processing
completes, the free space of newly added parity HDD and part
of another parity HDD are combined again to act as a mirrored
log region.

(ii) If a SSD (data disk) and a parity disk (HDD) fail, each
parity stripe loses one data block and one parity block. If the
failed data block has a entry in the block-log list, it can be
directly recovered from the mirrored log region; otherwise,
it can be recovered through the RAID6 recovery algorithm.
After the failed data blocks are recovered, HRAID6ML starts
the parity re-synchronization operations, and the HRAID6ML
returns to the consistent state.

(iii) If two SSDs (data disks) fail, in this case, each parity
stripe in the RAID6 region loses two data blocks. For each
failed data block, if it has a entry in the block-log list, its
current value can be directly copied from the mirrored log
region. On the other hand, if the failed data block does not have
a entry in the block-log list, it must not have been updated. For
each of the surviving data block in the parity stripe, its original
value can be read out from the RAID6 region. Since the parity
stripe is originally in the consistent state, the original value of
the failed data block can be re-computed by the original value
of all the surviving data blocks and the parity blocks through
the RAID6 parity algorithm.

E. Scalability

The unique features of the HRAID6ML architecture have
the following beneficial impacts on system scalability.

Alleviated performance bottleneck: Since the peak band-
width of parity disks can be interleaved with the I/O workloads
by exploiting short idle time slots and sequentially writing the
mirrored log region, the performance bottleneck imposed by
random write can be significantly alleviated.

Elimination of single point of failure: Since the log data are
stored in the mirrored log region, for any log, there are two
copies in HRAID6ML, the single point of failure is eliminated.

F. Reliability

For the SSD-based RAID6 region, due to the flash wear-out
problem of the parity update operation, the value of failure rate
is doubled with respect to the basic reliability value of SSD
(with frequently parity update operation). For the write penalty
in SSD-based RAID6, the 2×penalty is estimated on average.
Basically, 80% accesses are small size and the small write
requests to SSDs have the “write amplification” phenomenon
which can cause much larger penalty. The proposed strategy of
logging write data and combining write request (in the parity
HDDs) reduces the writes for SSDs. And the mechanism of
mirrored logging avoids the data loss of block-log due to parity
disk failure.

IV. PERFORMANCE EVALUATIONS

This section proposes the evaluation methodology that we
use to quantitatively study the performance of HRAID6ML as
compared to SSD- or HDD-based RAID6.

A. Experimental setup and methodology

TABLE I
EXPERIMENTAL SETUP & TRACE CHARACTERISTICS.

Machine Intel Xeon 3.0GHz, 2GB RAM
OS Linux 2.6.21.1

Windows XP Professional SP2
iSCSI UNH iSCSI Initiator/Target 1.7 [22]

Microsoft iSCSI Initiator 2.08
Disk driver OCZ Core Series V2 120GB SSD

WD2500YD SATA 250GB HDD
Benchmark IOmeter Version 2006.07.27 [1]
Traces OLTP Application I/O [2]

Financial1.spc:
Read Ratio = 32.8%
Average Request Size = 6.2KB

Trace Average IOPS = 69
Characteristics Financial2.spc:

Read Ratio = 82.4%
Average Request Size = 2.2KB
Average IOPS = 125

Trace replay RAIDmeter [21]

The performance evaluation is conducted on a platform of
server-class hardware with an Intel Xeon 3.0GHz processor
and 1GB DDR memory. In the system, a Marvel SATA
controller card is used to carry 7 SATA disks (SSDs or HDDs).
The SSD module is the OCZ Core Serise V2 120GB SSD
and the HDD module is the WD2500YD 250GB SATA disk.
A separate IDE disk is used to house the operating system
(Linux kernel 2.6.21.1) and other software (MD, mdadm and
RAIDmeter [21]). The experimental setup are shown in Table
I. The traces used in our experiments are obtained from the
Storage Performance Council [2]. The two financial traces
were collected from OLTP (online transaction processing)
applications running at a large financial institution, as shown
in Table I. Performance evaluation uses the RAIDmeter [21]
that is a block-level trace replay software capable of replaying
traces and evaluating the I/O response time of the storage
device.

B. Data transfer rate

Firstly, we conducted an experiment on HRAID6ML, SSD-
and HDD- based RAID6 architectures using IOmeter [1] in
different workloads. Different array architectures adopt the
same RAID6 volume capacity with a stripe unit size of 64KB.
There are four sets of points corresponding to the four different
request sizes. Each set contains three points corresponding
to the transfer rate of request data for HDD-based RAID6
(referred to as “RAID6-H”), SSD-based RAID6 (referred to
as “RAID6-S”) and HRAID6ML respectively. From Fig.2(a),
we can see that HRAID6ML performs the best for the random
write requests. HRAID6ML is better than RAID6-H and
RAID6-S by 107.43% and 32.03% on average, respectively.
The performance of RAID6-S is worse due to the read-modify-
write operations. Since the random writes are sequential order
in the mirrored log region, the performance of the random
writes of HRAID6ML is much higher than the other two
strategies.



 

(a) Random write requests

 

(b) Sequential write requests

 

(c) Random read requests

 

(d) Sequential read requests

Fig. 2. IOmeter performance (data transfer rate) results with respect to different requests.

For the sequential write requests, as shown in Fig.2(b),
HRAID6ML outperforms RAID6-S by 656.25% on average,
but is inferior to RAID6-H by 89.85% on average. The
reason is the sequential performance of HDD is comparable
or outperforms that of SSD. Thus there is the little superiority
of SSD-based arrays over HDD-based arrays under sequential
access patterns.

For random read requests, as shown in Fig.2(c), both
RAID6-S and HRAID6ML outperform RAID6-H. The reason
is the random read performance of SSD is significantly better
than that of HDD. For sequential read requests, the perfor-
mance of the three disk array schemes are comparable, as
illustrated in Fig.2(d).

C. Average response time

We conduct the second experiment on HRAID6ML,
RAID6-H and RAID6-S with the same capacity and stripe
unit size (64KB) driven by the two financial traces. Fig.3(a)
shows the performance results in the normal mode. We can
see that HRAID6ML performs the best. In terms of average
response time, HRAID6ML outperforms RAID6-H by a factor
of up to 15.29 and 14.84 respectively under the two traces,
and outperforms RAID6-S by a factor of up to 4.38 and
15.73 respectively under the two traces. The reason is that
for the OLTP workloads, the I/O requests are usually random
and small. SSDs are more effective in serving these types
of requests than HDDs. For RAID6-S, the access latency
for random small write requests is very long, as shown in
Fig.3(a). In particular, since most requests of Financial2.spc
are smaller than the size of a flash page, these write requests
incur substantial “erase-before-write” operations for SSDs,
thus adversely impacting performance.

To see how effectively HRAID6ML handles disk failure
recovery, we also conducted experiments on the recovery
process of different disk arrays. Fig.3(b) shows the average
response time during recovery for the three disk array strate-
gies driven by the two financial traces. Similar to the normal
mode, HRAID6ML significantly performs the best in terms of
average response time. As shown in Fig.3(b), HRAID6ML is
shorter than RAID6-H and RAID6-S by: (96.71%, 98.61%),
(73.45%, 93.67%). The first parenthesized pair is the im-
provement achieved by HRAID6ML over RAID6-H under
the two traces respectively. The second parenthesized pair
is the improvement achieved by HRAID6ML over RAID6-
S under the two traces respectively. The reason is that the
reconstruction I/Os and user I/Os compete for disk resources,
thus increasing the user response time. In HRAID6ML, the log
region absorbs all write requests, thus significantly alleviating
the contentions between the user I/Os and reconstruction I/Os,
thus reducing user response time.

V. CONCLUSION

With the fast technical improvement, SSD is becoming an
important part of the RAID to significantly improve perfor-
mance and energy efficiency. However, due to its relatively
high price and low capacity, a major system research issue to
address is on how to make SSD play its most effective role
in a high-performance RAID. This paper makes the following
main contributions:

• We proposed a new RAID architecture, HRAID6ML,
which makes full use of respective advantages of SSDs
and HDDs. HRAID6ML effectively exploits the high
sequential-write performance and no finite number of



 

(a) Normal mode

 

(b) Degraded mode

Fig. 3. Comparison of average response time driven by the two OLTP Financial traces.

writes of HDDs, and random-read performance and en-
ergy efficiency of SSDs.

• We implemented HRAID6ML in the Linux software
RAID system. We conducted comprehensive experi-
ments on our prototype implementation to evaluate
the HRAID6ML performance. The results show that
HRAID6ML improves the energy efficiency, reliability
and performance significantly.

ACKNOWLEDGMENTS

This research is sponsored in part by the National 973
Program of China under Grant No. 2011CB302301, China Na-
tional Funds for Distinguished Young Scientists under Grant
No. 61025008, and A-STAR, Singapore under Grant No. 112
172 0010. The authors are grateful to the anonymous reviewers
for their valuable comments that helped in improving the
paper.

REFERENCES

[1] IOmeter. [Online]. Available: http://sourceforge.net/projects/iometer
[2] OLTP Application I/O, UMass Trace Repository. [Online]. Available:

http://traces.cs.umass.edu/index.php/Storage/Storage
[3] F. Chen, D. Koufaty, and X. Zhang, “Hystor: Making the best use of solid

state drives in high performance storage systems,” in Proc. of the 25th
International Conference on Supercomputing (ICS), Tucson, Arizona,
May 2011.

[4] Y. Chen, W. Hsu, and H. Young, “Logging RAID – an approach to
fast, reliable, and low-cost disk arrays,” in Proc. of the 6th International
Euro-Par Conference on Parallel Processing (Euro-Par), Aug. 2000, pp.
pp.1302–1311.

[5] K. M. Greenan, D. D. E, L. Ethan, L. Miller, T. J. E. Schwarz, and
S. J. A. Wildani, “Building flexible, fault-tolerant flash-based storage
systems,” in Proc. of 5th Workshop on Hot Topics in System Depend-
ability (HotDep), Jun. 2009.

[6] A. Hatzieleftheriou and S. V. Anastasiadis, “Okeanos: Wasteless jour-
naling for fast and reliable multistream storage,” in Proc. of the USENIX
Annual Technical Conference (ATC), Portland, OR, June 2011.

[7] Y. Hu and Q. Yang, “DCD – disk caching disk: A new approach for
boosting I/O performance,” in Proc. of the 23rd Annual International
Symposium on Computer Architecture (ISCA), May 1996, pp. pp.169–
178.

[8] C. Jin, D. Feng, H. Jiang, and L. Tian, “RAID6L: A log-assisted storage
architecture with improved write performance,” in Proc. of the 27th IEEE
International Symposium on Massive Storage Systems and Technologies
(MSST), Denver, CO, May 2011.

[9] Y. Joo, J. Ryu, S. Park, and K. G. Shin, “FAST: Quick application launch
on solid-state drives,” in Proc. of the 9th USENIX Conference on File
and Storage Technologies (FAST), San Jose, CA, USA, February 2011,
pp. 259–272.

[10] A. Kadav, M. Balakrishnan, V. Prabhakaran, and D.Malkhi, “Differential
RAID: Rethinking RAID for SSD reliability,” in Proc. of Workshop on
Hot Topics in Storage and File Systems (HotStorage),, Oct. 2009, pp.
pp.15–26.

[11] Y. Kim, A. Gupta, B. Urgaonkar, P. Berman, and A. Sivasubrama-
niam, “HybridStore: A cost-efficient, high-performance storage system
combining SSDs and HDDs,” in Proc. of the Annual Meeting of the
IEEE International Symposium on Modeling, Analysis, and Simulation
of Computer and Telecommunication Systems (MASCOTS), 2011.

[12] Y. Kim, S. Oral, G. M. Shipman, J. Lee, D. A. Dillow, and F. Wang,
“Harmonia: A globally coordinated garbage collector for arrays of solid-
state drives,” in Proc. of the 27th Symposium on Mass Storage Systems
and Technologies (MSST), May 2011.

[13] B. Mao, D. Feng, H. Jiang, S. Wu, J. Chen, and L. Zeng, “GRAID: A
green RAID storage architecture with improved energy efficiency and
reliability,” in Proc. of 16th Annual Meeting of the IEEE International
Symposium on Modeling, Analysis, and Simulation of Computer and
Telecommunication Systems (MASCOTS), Sep. 2008, pp. pp.113–120.

[14] B. Mao, H. Jiang, D. Feng, S. Wu, J. Chen, L. Zeng, and L. Tian,
“HPDA: A hybrid parity-based disk array for enhanced performance
and reliability,” in Proc. of International Symposium on Parallel &
Distributed Processing (IPDPS). Atlanta, GA, April 2010, pp. 1–12.

[15] J. Menon, “A performance comparison of RAID-5 and log-structured
arrays,” in Proc. of 4th International Symposium on High Performance
Distributed Computing (HPDC), Aug. 1995.

[16] N. Mi, A. Riska, Q. Zhang, E. Smirni, and E. Riedel, “Efficient
management of idleness in storage systems,” ACM Transactions on
Storage, vol. 5, no. 2, pp. pp.1–25, Jun. 2009.

[17] D. Narayanan, E. Thereska, A. Donnelly, S. Elnikety, and A. Rowstron.,
“Migrating server storage to SSDs: Analysis of tradeoffs,” in Proc. of
4th European Conference on Computer Systems (EuroSys), Mar. 2009.

[18] D. Patterson, G. Gibson, and R. Katz., “A case for redundant arrays of
inexpensive disks (RAID),” in Proc. of the ACM SIGMOD International
Conference on Management of Data, Jun. 1988.

[19] G. Soundararajan, V. Prabhakaran, M. Balakrishnan, and T. Wobber,
“Extending SSD lifetimes with disk-based write caches,” in Proc. of
8th USENIX Conference on File and Storage Technologies (FAST), Feb.
2010, pp. pp.101–114.

[20] D. Stodolsky, G. Gibson, and M. Holland, “Parity logging overcoming
the small write problem in redundant disk arrays,” in Proce. of 20th
Annual International Symposium on Computer Architecture (ISCA),
1993.

[21] L. Tian, D. Feng, H. Jiang, K. Zhou, L. Zeng, J. Chen, Z. Wang,
and Z. Song, “PRO: A popularity-based multi-threaded reconstruction
optimization for RAID structured storage systems,” in Proc. of 5th
USENIX Conference on File and Storage Technologies (FAST), 2007.

[22] (2006) iSCSI reference implementation. University of New Hampshire
(UNH). [Online]. Available: http://unh-iscsi.sourceforge.net

[23] B. Yoo, Y. Won, J. Choi, S. Yoon, S. Cho, and S. Kang, “SSD
characterization: from energy consumption’s perspective,” in Proc. of
the 3rd USENIX conference on Hot topics in storage and file systems
(HotStorage), 2011, pp. 3–3.

[24] Y. Yue, L. Tian, H. Jiang, F. Wang, D. Feng, Q. Zhang, and P. Zeng,
“RoLo: A rotated logging storage architecture for enterprise data
centers,” in Proc. of 30th International Conference on Distributed
Computing Systems (ICDCS), 2010, pp. 293–304.

[25] Q. Zhu, Z. Chen, L. Tan, Y. Zhou, K. Keeton, and J. Wilkes, “Hiber-
nator: Helping disk arrays sleep through the winter,” in Proc. of ACM
Symposium on Operating Systems Principles (SOSP), 2005, pp. 1–14.


