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Abstract — Journaling file systems are widely used in modern 
computer systems as it provides high reliability with reasonable 
performance. However, existing journaling file systems are not 
efficient for emerging PCM (Phase Change Memory) storage. 
Specifically, a large amount of write operations performed by 
journaling incur serious performance degradation of PCM 
storage as it has long write latency. In this paper, we present a 
new journaling file system for PCM, called Shortcut-JFS, that 
reduces write amount of journaling by more than a half 
exploiting the byte-accessibility of PCM. Specifically, Shortcut-
JFS performs two novel schemes, 1) differential logging that 
performs journaling only for modified bytes and 2) in-place 
checkpointing that removes unnecessary block copy overhead. 
We implemented Shortcut-JFS on Linux 2.6, and measured the 
performance of Shortcut-JFS and legacy journaling schemes 
used in ext3. The results show that the performance improvement 
of Shortcut-JFS against ext3 is 40% on average.  
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I. INTRODUCTION 
Reliability is one of the most important issues to be taken into 
account in the design of modern file systems. Specifically, as 
mobile devices such as smartphones and tablets are 
proliferating, sudden power failures occur more frequently and 
prompt recovery after a system crash is becoming increasingly 
important. To bring a file system to a consistent state, 
journaling schemes have been studied extensively in modern 
reliable file systems such as ext3 and ReiserFS [1]. This paper 
presents a new journaling file system efficiently designed for 
emerging PCM (phase change memory) devices. 

PCM is a high-speed nonvolatile storage media that emerges 
recently, and there is a bright prospect that PCM will be used 
as secondary storage of computer systems like flash 
memory or hard disk [2, 27, 28]. This may be possible due to 
the rapid enhancement of micro-fabrication processes and 
multi-level cell (MLC) technologies [3, 4, 5]. It is expected 
that the cost of PCM will be no more than 3-5x of hard disk 
drive (HDD), and its power consumption will also be 10x 
lower than HDD.  

However, there are several challenging issues in using current 
journaling file systems directly to PCM as physical 
characteristics of PCM are very different from those of hard 
disk or flash memory. To understand this, let us first see how 

journaling works. When a write request arrives, journaling file 
systems write data in the journal area first, which we call 
write-ahead logging, and then apply it to the original data 
location periodically, called checkpointing. This mechanism 
protects data from being corrupted in a sudden system crash 
because it always maintains consistent data either in the 
journal area or in the original location. Note that consistency 
may not be assured if we write data directly to the original 
location because the data may remain partially written when 
power failure occurs [7, 8].  

Though journaling incurs more writes, it is efficient in hard 
disks as it reduces large seek overhead by writing sequentially 
to the journal area, changing write accesses to a sequential 
pattern. However, existing journaling designs may not perform 
well in PCM because PCM has no seek time but has relatively 
long write latency [6]. This implies that a large amount of 
writes incurred by journaling may result in serious 
performance degradations without achieving any advantages 
from sequential logging in case of PCM. Thus, journaling file 
systems need to provide an efficient handling of write 
operations rather than unnecessarily reduce seek overhead in 
PCM. 

Motivated by this, we design a novel journaling file system 
called Shortcut-JFS that reduces write amounts by more than a 
half of existing journaling file systems considering the PCM 
characteristics, while providing high reliability. 

To do this, we adopt two novel schemes in Shortcut-JFS. The 
first scheme is applied in the logging step. Shortcut-JFS writes 
only for changed bytes in the journal area, while legacy 
journaling schemes write an entire block even though only a 
few bytes are changed. This is possible because a write 
operation of PCM can be performed by the unit of a cell, 
which is different from HDD or flash memory that only allows 
writes for an entire block or page [9]. We call this scheme 
differential logging, which can reduce the write amount of 
logging significantly compared to existing journaling schemes.  

Logged data in journal area are reflected to the original 
location of file systems by checkpointing where Shortcut-JFS 
uses another novel scheme to reduce writes. When applying 
the logged data to file systems, Shortcut-JFS does not copy the 
log to the original location. Instead, the log block itself 



becomes a new location of the data block just by modifying a 
pointer to indicate it. Then, the physical location of journal 
area will be scattered as time goes on. This increases the seek 
time of storage seriously in case of HDD, but it does not 
influence the performance of PCM storage significantly. We 
call this scheme in-place checkpointing, which reduces the 
write amount of PCM significantly.  

However, in-place checkpointing cannot be used when logged 
data is smaller than a block. The reason is that the logged data 
itself should be changed into the data block of file systems to 
perform in-place checkpointing. Thus, we use the differential 
logging scheme adaptively. To be specific, when an updated 
data size is larger than a half of a block, our scheme logs an 
entire block instead of using differential logging, which we 
call block logging. The reason we use block logging in this 
case is that block logging and in-place checkpointing totally 
needs one block write, while differential logging and out-place 
checkpointing requires more than one block writes.  

Figure 1 compares the legacy journaling scheme and our 
Shortcut-JFS. When a write request of one and a third blocks 
arrives, the legacy journaling scheme writes totally four blocks, 
two blocks for logging and two blocks for checkpointing, 
while our Shortcut-JFS writes only one and two third blocks, 
one and a third blocks for logging and a third block for 
checkpointing, followed by a pointer update.  

For performance evaluations, we implement Shortcut-JFS on 
Linux 2.6. Measurement results show that Shortcut-JFS 
improves the performance by 40% on average compared to 
ext3.  

The remainder of this paper is organized as follows. Section II 
summarizes previous works on software techniques for PCM 
and Section III presents a new journaling file system for PCM 
storage, called Shortcut-JFS. Then, Section IV presents 
experimental results obtained from the implementation of 
Shortcut-JFS on Linux to assess the effectiveness of the 
proposed journaling file system. Finally, we conclude this 
paper in Section V.  

II. RELATED WORKS  
Considerable research has been performed on the efficient 
management of PCM when it is deployed in various storage 
hierarchy of computer systems.  

Some research communities have studied on systems 
exploiting PCM as main memory [14-17, 24-26]. Mogul et al. 
suggested an efficient memory management policy for the 
hybrid memory system consisting of both DRAM and PCM. 
They proposed a page-attribute aware memory allocation 
policy that tries to place read-only pages like code segments in 
PCM, while load writable pages into DRAM, thereby reducing 
the amount of PCM writes [14]. In line with the research of 
Mogul et al., Querishi et al. proposed a memory architecture 
that uses a small amount of DRAM as a write buffer of PCM 
memory in order to prolong the lifetime of PCM and hide the 
long write latency of PCM [15]. Lee et al. also suggested a 
PCM memory architecture and attempted to improve the write 
performance between last level cache and PCM memory. They 
proposed two policies; buffer reorganization and partial writes, 
which track data modifications and write only modified cache 
lines or words to the PCM array [6, 16]. Lee et al. proposed 
the CLOCK-DWF algorithm for the hybrid memory 
architecture consisting of both DRAM and PCM [24]. They 
allocate read-intensive pages to PCM and write-intensive 
pages to DRAM, based on the characterization study of 
memory references. Zhou et al. suggested two wear-leveling 
techniques for PCM memory, that is row shifting and segment 
swapping, in order to prolong the lifetime of PCM [17]. Ipek 
et al. proposed dynamically replicated memory for PCM that 
maps two faulty physical pages into a single logical page, 
thereby reusing PCM pages that contain hard faults [8].   

Another category of research focuses on the file system design 
for non-volatile RAMs including PCM. As the capacity of 
these non-volatile RAMs was small in early days, only a 
limited part of total file system image is located on the non-
volatile RAM partitions. For example, Pramfs is designed to 
store frequently accessed or important data in non-volatile 
RAM, to support fast rebooting and resist crashes [18]. 
MRAMFS [19] and NEB file system [20] have been suggested 
to improve the space efficiency of non-volatile RAM based 
storage. MRAMFS saves space by compressing metadata, 
while NEB file system does this by extent-based file 
management.  

As density of non-volatile RAM improves rapidly, recent 
studies focus on the design of a file system that keeps entire 
file system image on non-volatile RAMs. Baek et al. 
implemented a software layer to support both file objects and 
memory objects together in the unified memory system in 
which PCM serves as both main memory and storage [22]. 
Condit et al. redesigned the copy-on-write file system called 
BPFS for byte-addressable storage [7]. BPFS performs in-
place write, when the updated data size is smaller than an 
atomic operation unit. This can reduce the outplace-update 
overhead of copy-on-write significantly. Wu et al. suggested a 
file system for storage class memory [23]. Assuming that 
storage class memory resides on the memory bus and can be 
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Figure 1. Comparison of journaling file systems  



accessed directly from CPU, they proposed the file system that 
accesses files through the same address space of virtual 
memory systems.  

Though extensive studies have been performed on PCM 
storage, we could not find researches on the journaling file 
system for PCM. To the best of our knowledge, our Shortcut-
JFS is the first journaling file system that uses PCM as storage 
devices.  

III. THE SHORTCUT-JOURNALING FILE SYSTEM 

A. Journaling Algorithm  
Figure 2 describes each step of write request handling 
processes in Shortcut-JFS with an example. For ease of 
explanation, we set the block size to 1KB and the inode size to 
256B. In this example, a write request size is 800B spanning 
two different blocks; the fore 600B falls to the first block and 
the remaining 200B drops to the second block. This single 
write request is decomposed into a set of low-level writes that 
are two data block updates and one inode update for the 
metadata update such as last modified time. Shortcut-JFS 
handles a series of low-level write operations atomically and 
guarantees the file system consistency as follows.  

First, it begins transactional writes for the given write request 
by creating a new transaction handler. To provide atomicity, 
we first set the transaction into the PENDING status. Then, we 
write the updated data into the journal area. At this point, we 
decide the journaling mode between differential logging and 
block logging according to the size to be updated. In this 
example, the first part is logged according to the block logging 
scheme because 600B is larger than a half of a block, while 
the second part is logged following the differential logging 
scheme as 200B is smaller than a half block. After logging 
data updates, inode updates need to be logged. In case of inode, 
Shortcut-JFS logs by the unit of an object for an easy 
management of uniform small objects.  

As a result, three log chunks are logged in the journal area. 
Every chunk has its header and the headers are linked in the 
transaction list. Note that this example does not show details 
for brevity. After all updates for one transaction have been 

logged successfully, we change the transaction into the 
COMMIT state. Committed transactions are guaranteed to 
remain durable even after a system failure, and thus they can 
be reflected finally to the file system in any case. Figure 2(a) 
shows the layout of the journal area after committing the 
transaction.  

The logged data in the journal area are finally reflected to the 
file system during checkpointing. Note that the checkpointing 
is performed periodically or activated when free space in the 
journal area is smaller than a certain threshold. Figure 2(b) 
shows the checkpointing process of Shortcut-JFS. We first 
scan all transactions committed after the last checkpoint, and 
flush their logged data to each location in the file system. In 
this process, Shortcut-JFS performs either in-place 
checkpointing or out-place checkpointing depending on the 
logged data size. As the first data chunk has the size of a block, 
Shortcut-JFS performs in-place checkpointing by modifying 
the pointer to indicate the log block. Then, the log block 
becomes a new location of the data block. In contrast, the 
second data chunk is smaller than a block, and thus Shortcut-
JFS rewrites it to the original location in the file system. 
Finally, the inode object is written to the original location as it 
is also smaller than a block. After all logged chunks are 
checkpointed, the transaction status changes from COMMIT 
to CHECKPOINT. Journal area occupied by the checkpointed 
transactions are then reclaimed and become free.  

Before concluding this section, let us now compare the total 
write amount of Shortcut-JFS with that of legacy journaling 
schemes used in ext3. Shortcut-JFS just writes 1.2KB (one 
block and 200B) while ext3 writes 4KB (two blocks for 
logging and two blocks for checkpointing).  

B. System Recovery  
Shortcut-JFS ensures the file system consistency and data 
safety against possible system failures. Here we discuss two 
cases of system failures to be considered primarily. First, a 
system crash can occur during logging. In this case, the file 
system remains as the last checkpoint state. In order to recover 
operations that have been committed in journal area after the 
last checkpoint, Shortcut-JFS performs redo operations by 
scanning the journal area from the last checkpoint position. In 
doing this recovery, we discard partially written transactions 
with PENDING status to prevent corrupted data from being 
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reflected to the file system. Second, it is possible that a system 
crash occurs during checkpointing. In this case, the file system 
itself can be corrupted as transactions that should be atomic 
might be partially reflected to the file system. However, as 
partially checkpointed transactions still remain in journal area, 
we can restore the file system into a consistent state. To do 
this, we scan the journal area from the last checkpointed 
position, and redo the checkpointing of committed 
transactions to the file system. In this way, Shortcut-JFS can 
recover corrupted file systems in a short time as it needs to 
scan only journal area, while file systems without journaling 
should scan all file system data blocks like fsck, incurring a 
long time of system recovery.   

C. System Architecture  
To reduce write amounts in PCM storage, we need an 
interface supporting byte accesses between main memory and 
storage devices. Though PCM is not commercialized as yet, 
most researches assume PCM to be placed in standard DIMM 
slots. This is a reasonable assumption as we need to utilize the 
byte-accessibility of PCM. However, this architecture has a 
weakness in that it makes the storage capacity limited by the 
number of DIMM slots. PCI express is another feasible option 
to place PCM to computer systems. A new standard interface 
that supports better access to PCM storage is also expected to 
appear soon [10]. We do not consider detailed architectures 
further as all interfaces aforementioned support byte-
accessible property of PCM that is needed to implement 

Shortcut-JFS. Figure 3 shows a possible architecture of using 
PCM as storage medium in our study.  

IV. PERFORMANGE EVALUATION  
To assess the effectiveness of the proposed Shortcut-JFS, we 
have implemented Shortcut-JFS on Linux 2.6.32.24. To 
support byte-addressability of PCM, Shortcut-JFS is 
implemented by integrating journaling algorithms into ramfs 
[11], which is an in-memory file system using a part of in-
memory buffer cache as storage. Since hardware platforms 
employing PCM storage do not exist yet, we alternatively use 
ram-disks backed by DRAM. To compare with our Shortcut-
JFS, we also measure the performance of ext3 mounted on a 
ram-disk as ext3 is a representative journaling file system. In 
the experiments, we perform logging for data and metadata 
both. We use two well-known benchmarks, namely iozone 
[12] and postmark [13]. Iozone is a famous micro benchmark 
program to measure the file I/O performance, and postmark is 
one of the macro benchmarks that emulates an email server 
and web applications. We set the block size to 4KB, which is a 
common value in most operating systems and we commit 
updates to journal area in every 5 seconds according to the 
default configuration of ext3.  

Figure 4 shows the throughput of ext3 and Shortcut-JFS for 
various configurations of iozone and postmark. For iozone, we 
perform experiments with four write scenarios that are initial 
write, random write, sequential write, and pwrite. Note that 
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Figure 4. Performance comparison of Shortcut-JFS and ext3  



pwrite is a write scenario that supports pwrite system call. As 
postmark has its own write scenarios, we perform experiments 
for postmark by varying the fileset configurations. Fileset1 
performs 1000 transactions on 1000 files of 1MB size and 
fileset2 does 10 transactions on 10 files of 50MB. Note that 
the total write amount of fileset1 and fileset2 reaches 500MB 
and 300MB, respectively.  

To investigate the effectiveness of Shortcut-JFS under 
different write sizes, we measure the performance of file 
systems varying the write size from 1KB to 4KB. As shown in 
Figure 4, our Shortcut-JFS improves I/O performance by 2.1x 
and 1.8x on average for iozone and postmark, respectively. 
For all ranges of write sizes, Shortcut-JFS outperforms ext3. 
This result shows that Shortcut-JFS adaptively handles a 
various size of write operations efficiently. When a write size 
is less than a half of a block, Shortcut-JFS reduces write 
amounts by differential logging, while it enhances 
performance with the combination of block logging and in-
place checkpointing when the write size is larger than a half 
block.  

The performance improvement of Shortcut-JFS is larger in 
iozone than postmark. The reason is that postmark opens and 
closes a file for every single write operation, while iozone 
opens a file and makes a series of write operations in a batch 
way. Thus, the performance effect of reducing write amounts 
becomes larger in iozone than postmark.  

To investigate the effectiveness of Shortcut-JFS precisely, we 
implemented four versions of journaling file systems based on 
Linux, which are block logging (BLK), differential logging 
(DIFF), block logging with in-place checkpointing (BLK-S), 
and adaptive logging with in-place checkpointing (ADP-S). 
The algorithms of these schemes are summarized in Table I. 
BLK uses the journaling scheme identical to that of ext3 and 
ReiserFS, and then our idea is incrementally added to DIFF, 
BLK-S, and ADP-S. Note that ADP-S represents our Shortcut-
JFS. We compare the performance of these four configurations 

with the original ext3. In the experiments, we measure the 
performance with different write sizes varying from 1KB to 
4KB.  

Figure 5 shows the throughput of each configuration with 
iozone benchmark. In the case of 1KB write size, DIFF and 
ADP-S performs well because they write differences only 
instead of an entire block. When the write size becomes a half 
block, that is 2KB, BLK-S and DIFF offers as good 
performance as ADP-S because these three schemes incur 
same amount of writes. Nevertheless, DIFF performs better 
than BLK-S. The reason we conjecture is that in-place 
checkpointing may incur scattering of data blocks, which 
generates more random writes. Though semiconductor 
memories are theoretically known to offer uniform 
performance, they are observed to have slightly slower 
random accesses than sequential accesses. When a write size 
is in the range of 3KB and 4KB, BLK-S and ADP-S show 
better performance than DIFF. That is because DIFF should 
perform write-twice for all updates while BLK-S and ADP-S 
writes at most one block. In summary, the performance of 
BLK, DIFF, and BLK-S varies depending on write sizes, but 
ADP-S provides consistently the best performance among the 
four versions of journaling regardless of write sizes.  

One interesting result in the experiments is that, though 
current ext3 uses the same journaling scheme as BLK, BLK 
performs better than ext3 by a large margin. This performance 
gap comes from the software layers of ext3. Though both ext3 
and BLK use ram-disk as a storage device, ext3 should pass 
through the block-device layer to access the file system in 
storage, while BLK maintains a persistent file system tree in 
the in-memory buffer cache layer. This result implies that 
software overhead also affects the I/O performance as much as 
the physical characteristics of storage devices, and our 
Shortcut-JFS achieves large performance enhancement with 
an efficient design of software techniques.  

V. CONCLUSION 
This paper presented a new journaling file system for PCM 
based storage systems, called Shortcut-JFS. Shortcut-JFS 
takes advantages of physical characteristics of PCM and 
reduces additional writes of legacy journaling significantly. 
Differential logging of Shortcut-JFS reduces write amounts 
significantly by logging only changed bytes instead of an 
entire block, and in-place checkpointing halves writes by 
reusing log blocks as file system data blocks. Shortcut-JFS is 
precisely designed considering overall system architectures 
and future byte-accessible interface of PCM. We implemented 
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Figure 5. Throughput of different journaling file systems varying write size 

TABLE I. SUMMARY OF JOURNALING ALGORITHMS 

BLK DIFF BLK-S ADP-S

data 
logging blk diff blk diff/blk

checkpoint rewrite rewrite switch rewrite/
switch

metadata
logging inode inode inode inode 

checkpoint rewrite rewrite rewrite rewrite



Shortcut-JFS on Linux 2.6 and showed by measurement 
studies that it improves performance by 40% on average 
compared to ext3.  

For future work, we plan to redesign our scheme considering 
wear-leveling and lifetime issues of PCM as PCM has limited 
write endurance.  
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