
Shortcut-JFS: A Write Efficient Journaling File
System for Phase Change Memory

Eunji Lee, Seunghoon Yoo, Jee-Eun Jang Hyokyung Bahn*

Dept. of Computer Engineering
Seoul National University

Seoul, Korea
{alicia0729, wing0cst, rofinsyer}@gmail.com

Dept. of Computer Engineering
Ewha University

Seoul, Korea
bahn@ewha.ac.kr

Abstract — Journaling file systems are widely used in modern
computer systems as it provides high reliability with reasonable
performance. However, existing journaling file systems are not
efficient for emerging PCM (Phase Change Memory) storage.
Specifically, a large amount of write operations performed by
journaling incur serious performance degradation of PCM
storage as it has long write latency. In this paper, we present a
new journaling file system for PCM, called Shortcut-JFS, that
reduces write amount of journaling by more than a half
exploiting the byte-accessibility of PCM. Specifically, Shortcut-
JFS performs two novel schemes, 1) differential logging that
performs journaling only for modified bytes and 2) in-place
checkpointing that removes unnecessary block copy overhead.
We implemented Shortcut-JFS on Linux 2.6, and measured the
performance of Shortcut-JFS and legacy journaling schemes
used in ext3. The results show that the performance improvement
of Shortcut-JFS against ext3 is 40% on average.

Keywords — Phase Change Memory; Journaling; File Systems

I. INTRODUCTION
Reliability is one of the most important issues to be taken into
account in the design of modern file systems. Specifically, as
mobile devices such as smartphones and tablets are
proliferating, sudden power failures occur more frequently and
prompt recovery after a system crash is becoming increasingly
important. To bring a file system to a consistent state,
journaling schemes have been studied extensively in modern
reliable file systems such as ext3 and ReiserFS [1]. This paper
presents a new journaling file system efficiently designed for
emerging PCM (phase change memory) devices.

PCM is a high-speed nonvolatile storage media that emerges
recently, and there is a bright prospect that PCM will be used
as secondary storage of computer systems like flash
memory or hard disk [2, 27, 28]. This may be possible due to
the rapid enhancement of micro-fabrication processes and
multi-level cell (MLC) technologies [3, 4, 5]. It is expected
that the cost of PCM will be no more than 3-5x of hard disk
drive (HDD), and its power consumption will also be 10x
lower than HDD.

However, there are several challenging issues in using current
journaling file systems directly to PCM as physical
characteristics of PCM are very different from those of hard
disk or flash memory. To understand this, let us first see how

journaling works. When a write request arrives, journaling file
systems write data in the journal area first, which we call
write-ahead logging, and then apply it to the original data
location periodically, called checkpointing. This mechanism
protects data from being corrupted in a sudden system crash
because it always maintains consistent data either in the
journal area or in the original location. Note that consistency
may not be assured if we write data directly to the original
location because the data may remain partially written when
power failure occurs [7, 8].

Though journaling incurs more writes, it is efficient in hard
disks as it reduces large seek overhead by writing sequentially
to the journal area, changing write accesses to a sequential
pattern. However, existing journaling designs may not perform
well in PCM because PCM has no seek time but has relatively
long write latency [6]. This implies that a large amount of
writes incurred by journaling may result in serious
performance degradations without achieving any advantages
from sequential logging in case of PCM. Thus, journaling file
systems need to provide an efficient handling of write
operations rather than unnecessarily reduce seek overhead in
PCM.

Motivated by this, we design a novel journaling file system
called Shortcut-JFS that reduces write amounts by more than a
half of existing journaling file systems considering the PCM
characteristics, while providing high reliability.

To do this, we adopt two novel schemes in Shortcut-JFS. The
first scheme is applied in the logging step. Shortcut-JFS writes
only for changed bytes in the journal area, while legacy
journaling schemes write an entire block even though only a
few bytes are changed. This is possible because a write
operation of PCM can be performed by the unit of a cell,
which is different from HDD or flash memory that only allows
writes for an entire block or page [9]. We call this scheme
differential logging, which can reduce the write amount of
logging significantly compared to existing journaling schemes.

Logged data in journal area are reflected to the original
location of file systems by checkpointing where Shortcut-JFS
uses another novel scheme to reduce writes. When applying
the logged data to file systems, Shortcut-JFS does not copy the
log to the original location. Instead, the log block itself

becomes a new location of the data block just by modifying a
pointer to indicate it. Then, the physical location of journal
area will be scattered as time goes on. This increases the seek
time of storage seriously in case of HDD, but it does not
influence the performance of PCM storage significantly. We
call this scheme in-place checkpointing, which reduces the
write amount of PCM significantly.

However, in-place checkpointing cannot be used when logged
data is smaller than a block. The reason is that the logged data
itself should be changed into the data block of file systems to
perform in-place checkpointing. Thus, we use the differential
logging scheme adaptively. To be specific, when an updated
data size is larger than a half of a block, our scheme logs an
entire block instead of using differential logging, which we
call block logging. The reason we use block logging in this
case is that block logging and in-place checkpointing totally
needs one block write, while differential logging and out-place
checkpointing requires more than one block writes.

Figure 1 compares the legacy journaling scheme and our
Shortcut-JFS. When a write request of one and a third blocks
arrives, the legacy journaling scheme writes totally four blocks,
two blocks for logging and two blocks for checkpointing,
while our Shortcut-JFS writes only one and two third blocks,
one and a third blocks for logging and a third block for
checkpointing, followed by a pointer update.

For performance evaluations, we implement Shortcut-JFS on
Linux 2.6. Measurement results show that Shortcut-JFS
improves the performance by 40% on average compared to
ext3.

The remainder of this paper is organized as follows. Section II
summarizes previous works on software techniques for PCM
and Section III presents a new journaling file system for PCM
storage, called Shortcut-JFS. Then, Section IV presents
experimental results obtained from the implementation of
Shortcut-JFS on Linux to assess the effectiveness of the
proposed journaling file system. Finally, we conclude this
paper in Section V.

II. RELATED WORKS
Considerable research has been performed on the efficient
management of PCM when it is deployed in various storage
hierarchy of computer systems.

Some research communities have studied on systems
exploiting PCM as main memory [14-17, 24-26]. Mogul et al.
suggested an efficient memory management policy for the
hybrid memory system consisting of both DRAM and PCM.
They proposed a page-attribute aware memory allocation
policy that tries to place read-only pages like code segments in
PCM, while load writable pages into DRAM, thereby reducing
the amount of PCM writes [14]. In line with the research of
Mogul et al., Querishi et al. proposed a memory architecture
that uses a small amount of DRAM as a write buffer of PCM
memory in order to prolong the lifetime of PCM and hide the
long write latency of PCM [15]. Lee et al. also suggested a
PCM memory architecture and attempted to improve the write
performance between last level cache and PCM memory. They
proposed two policies; buffer reorganization and partial writes,
which track data modifications and write only modified cache
lines or words to the PCM array [6, 16]. Lee et al. proposed
the CLOCK-DWF algorithm for the hybrid memory
architecture consisting of both DRAM and PCM [24]. They
allocate read-intensive pages to PCM and write-intensive
pages to DRAM, based on the characterization study of
memory references. Zhou et al. suggested two wear-leveling
techniques for PCM memory, that is row shifting and segment
swapping, in order to prolong the lifetime of PCM [17]. Ipek
et al. proposed dynamically replicated memory for PCM that
maps two faulty physical pages into a single logical page,
thereby reusing PCM pages that contain hard faults [8].

Another category of research focuses on the file system design
for non-volatile RAMs including PCM. As the capacity of
these non-volatile RAMs was small in early days, only a
limited part of total file system image is located on the non-
volatile RAM partitions. For example, Pramfs is designed to
store frequently accessed or important data in non-volatile
RAM, to support fast rebooting and resist crashes [18].
MRAMFS [19] and NEB file system [20] have been suggested
to improve the space efficiency of non-volatile RAM based
storage. MRAMFS saves space by compressing metadata,
while NEB file system does this by extent-based file
management.

As density of non-volatile RAM improves rapidly, recent
studies focus on the design of a file system that keeps entire
file system image on non-volatile RAMs. Baek et al.
implemented a software layer to support both file objects and
memory objects together in the unified memory system in
which PCM serves as both main memory and storage [22].
Condit et al. redesigned the copy-on-write file system called
BPFS for byte-addressable storage [7]. BPFS performs in-
place write, when the updated data size is smaller than an
atomic operation unit. This can reduce the outplace-update
overhead of copy-on-write significantly. Wu et al. suggested a
file system for storage class memory [23]. Assuming that
storage class memory resides on the memory bus and can be

Copy to file
system

Write (11/3 blk)

Block logging

Copy to file
system

Journal area

Commit

Differential
Logging

Checkpoint

Journal area

Commit

Checkpoint

Block logging

Total writes: 4 blocks Total writes: 1 2/3 blocks
(a) Legacy journaling (b) Proposed journaling

Figure 1. Comparison of journaling file systems

accessed directly from CPU, they proposed the file system that
accesses files through the same address space of virtual
memory systems.

Though extensive studies have been performed on PCM
storage, we could not find researches on the journaling file
system for PCM. To the best of our knowledge, our Shortcut-
JFS is the first journaling file system that uses PCM as storage
devices.

III. THE SHORTCUT-JOURNALING FILE SYSTEM

A. Journaling Algorithm
Figure 2 describes each step of write request handling
processes in Shortcut-JFS with an example. For ease of
explanation, we set the block size to 1KB and the inode size to
256B. In this example, a write request size is 800B spanning
two different blocks; the fore 600B falls to the first block and
the remaining 200B drops to the second block. This single
write request is decomposed into a set of low-level writes that
are two data block updates and one inode update for the
metadata update such as last modified time. Shortcut-JFS
handles a series of low-level write operations atomically and
guarantees the file system consistency as follows.

First, it begins transactional writes for the given write request
by creating a new transaction handler. To provide atomicity,
we first set the transaction into the PENDING status. Then, we
write the updated data into the journal area. At this point, we
decide the journaling mode between differential logging and
block logging according to the size to be updated. In this
example, the first part is logged according to the block logging
scheme because 600B is larger than a half of a block, while
the second part is logged following the differential logging
scheme as 200B is smaller than a half block. After logging
data updates, inode updates need to be logged. In case of inode,
Shortcut-JFS logs by the unit of an object for an easy
management of uniform small objects.

As a result, three log chunks are logged in the journal area.
Every chunk has its header and the headers are linked in the
transaction list. Note that this example does not show details
for brevity. After all updates for one transaction have been

logged successfully, we change the transaction into the
COMMIT state. Committed transactions are guaranteed to
remain durable even after a system failure, and thus they can
be reflected finally to the file system in any case. Figure 2(a)
shows the layout of the journal area after committing the
transaction.

The logged data in the journal area are finally reflected to the
file system during checkpointing. Note that the checkpointing
is performed periodically or activated when free space in the
journal area is smaller than a certain threshold. Figure 2(b)
shows the checkpointing process of Shortcut-JFS. We first
scan all transactions committed after the last checkpoint, and
flush their logged data to each location in the file system. In
this process, Shortcut-JFS performs either in-place
checkpointing or out-place checkpointing depending on the
logged data size. As the first data chunk has the size of a block,
Shortcut-JFS performs in-place checkpointing by modifying
the pointer to indicate the log block. Then, the log block
becomes a new location of the data block. In contrast, the
second data chunk is smaller than a block, and thus Shortcut-
JFS rewrites it to the original location in the file system.
Finally, the inode object is written to the original location as it
is also smaller than a block. After all logged chunks are
checkpointed, the transaction status changes from COMMIT
to CHECKPOINT. Journal area occupied by the checkpointed
transactions are then reclaimed and become free.

Before concluding this section, let us now compare the total
write amount of Shortcut-JFS with that of legacy journaling
schemes used in ext3. Shortcut-JFS just writes 1.2KB (one
block and 200B) while ext3 writes 4KB (two blocks for
logging and two blocks for checkpointing).

B. System Recovery
Shortcut-JFS ensures the file system consistency and data
safety against possible system failures. Here we discuss two
cases of system failures to be considered primarily. First, a
system crash can occur during logging. In this case, the file
system remains as the last checkpoint state. In order to recover
operations that have been committed in journal area after the
last checkpoint, Shortcut-JFS performs redo operations by
scanning the journal area from the last checkpoint position. In
doing this recovery, we discard partially written transactions
with PENDING status to prevent corrupted data from being

……

Journal Area

T

600B > ½ block
“Block logging”

200B < ½ block
“Differential logging”

inode log

……

Journal Area

T

“Out-place checkpointing”
change pointer

to indicate log block

“In-place checkpointing”
Copy log data
to file system

Write request spanning
two blocks: 600B and
200B

Inode

Data
blocks

Indirect
block

(a) Logging (b) Checkpointing

Figure 2. Logging and checkpointing processes of Shortcut-JFS

Storage (PCM)

Main memory
(DRAM)

CPU

Byte-addressable

Figure 3. System architecture of PCM based storage

reflected to the file system. Second, it is possible that a system
crash occurs during checkpointing. In this case, the file system
itself can be corrupted as transactions that should be atomic
might be partially reflected to the file system. However, as
partially checkpointed transactions still remain in journal area,
we can restore the file system into a consistent state. To do
this, we scan the journal area from the last checkpointed
position, and redo the checkpointing of committed
transactions to the file system. In this way, Shortcut-JFS can
recover corrupted file systems in a short time as it needs to
scan only journal area, while file systems without journaling
should scan all file system data blocks like fsck, incurring a
long time of system recovery.

C. System Architecture
To reduce write amounts in PCM storage, we need an
interface supporting byte accesses between main memory and
storage devices. Though PCM is not commercialized as yet,
most researches assume PCM to be placed in standard DIMM
slots. This is a reasonable assumption as we need to utilize the
byte-accessibility of PCM. However, this architecture has a
weakness in that it makes the storage capacity limited by the
number of DIMM slots. PCI express is another feasible option
to place PCM to computer systems. A new standard interface
that supports better access to PCM storage is also expected to
appear soon [10]. We do not consider detailed architectures
further as all interfaces aforementioned support byte-
accessible property of PCM that is needed to implement

Shortcut-JFS. Figure 3 shows a possible architecture of using
PCM as storage medium in our study.

IV. PERFORMANGE EVALUATION
To assess the effectiveness of the proposed Shortcut-JFS, we
have implemented Shortcut-JFS on Linux 2.6.32.24. To
support byte-addressability of PCM, Shortcut-JFS is
implemented by integrating journaling algorithms into ramfs
[11], which is an in-memory file system using a part of in-
memory buffer cache as storage. Since hardware platforms
employing PCM storage do not exist yet, we alternatively use
ram-disks backed by DRAM. To compare with our Shortcut-
JFS, we also measure the performance of ext3 mounted on a
ram-disk as ext3 is a representative journaling file system. In
the experiments, we perform logging for data and metadata
both. We use two well-known benchmarks, namely iozone
[12] and postmark [13]. Iozone is a famous micro benchmark
program to measure the file I/O performance, and postmark is
one of the macro benchmarks that emulates an email server
and web applications. We set the block size to 4KB, which is a
common value in most operating systems and we commit
updates to journal area in every 5 seconds according to the
default configuration of ext3.

Figure 4 shows the throughput of ext3 and Shortcut-JFS for
various configurations of iozone and postmark. For iozone, we
perform experiments with four write scenarios that are initial
write, random write, sequential write, and pwrite. Note that

0

200

400

600

800

1000

1200

1K 2K 3K 4K

Th
ro
ug
hp

ut
 (M

B/
s)

ext3
Shortcut

0

200

400

600

800

1000

1200

1400

1K 2K 3K 4K

Th
ro
ug
hp

ut
 (M

B/
s)

ext3
Shortcut

0

200

400

600

800

1000

1200

1400

1K 2K 3K 4K

Th
ro
ug
hp

ut
 (M

B
/s
)
ext3
Shortcut

(a) iozone initial write (b) iozone sequential write (c) iozone random write

0

200

400

600

800

1000

1200

1K 2K 3K 4K

Th
ro
ug
hp

ut
 (M

B/
s)

ext3
Shortcut

0

50

100

150

200

250

1K 2K 3k 4K

Th
ro
ug
hp

ut
 (M

B/
s)

ext3
Shortcut

0

50

100

150

200

250

1K 2K 3k 4K

Th
ro
ug
hp

ut
 (M

B/
s)

ext3
Shortcut

 (d) iozone pwrite (e) postmark fileset1 (f) postmark fileset2

Figure 4. Performance comparison of Shortcut-JFS and ext3

pwrite is a write scenario that supports pwrite system call. As
postmark has its own write scenarios, we perform experiments
for postmark by varying the fileset configurations. Fileset1
performs 1000 transactions on 1000 files of 1MB size and
fileset2 does 10 transactions on 10 files of 50MB. Note that
the total write amount of fileset1 and fileset2 reaches 500MB
and 300MB, respectively.

To investigate the effectiveness of Shortcut-JFS under
different write sizes, we measure the performance of file
systems varying the write size from 1KB to 4KB. As shown in
Figure 4, our Shortcut-JFS improves I/O performance by 2.1x
and 1.8x on average for iozone and postmark, respectively.
For all ranges of write sizes, Shortcut-JFS outperforms ext3.
This result shows that Shortcut-JFS adaptively handles a
various size of write operations efficiently. When a write size
is less than a half of a block, Shortcut-JFS reduces write
amounts by differential logging, while it enhances
performance with the combination of block logging and in-
place checkpointing when the write size is larger than a half
block.

The performance improvement of Shortcut-JFS is larger in
iozone than postmark. The reason is that postmark opens and
closes a file for every single write operation, while iozone
opens a file and makes a series of write operations in a batch
way. Thus, the performance effect of reducing write amounts
becomes larger in iozone than postmark.

To investigate the effectiveness of Shortcut-JFS precisely, we
implemented four versions of journaling file systems based on
Linux, which are block logging (BLK), differential logging
(DIFF), block logging with in-place checkpointing (BLK-S),
and adaptive logging with in-place checkpointing (ADP-S).
The algorithms of these schemes are summarized in Table I.
BLK uses the journaling scheme identical to that of ext3 and
ReiserFS, and then our idea is incrementally added to DIFF,
BLK-S, and ADP-S. Note that ADP-S represents our Shortcut-
JFS. We compare the performance of these four configurations

with the original ext3. In the experiments, we measure the
performance with different write sizes varying from 1KB to
4KB.

Figure 5 shows the throughput of each configuration with
iozone benchmark. In the case of 1KB write size, DIFF and
ADP-S performs well because they write differences only
instead of an entire block. When the write size becomes a half
block, that is 2KB, BLK-S and DIFF offers as good
performance as ADP-S because these three schemes incur
same amount of writes. Nevertheless, DIFF performs better
than BLK-S. The reason we conjecture is that in-place
checkpointing may incur scattering of data blocks, which
generates more random writes. Though semiconductor
memories are theoretically known to offer uniform
performance, they are observed to have slightly slower
random accesses than sequential accesses. When a write size
is in the range of 3KB and 4KB, BLK-S and ADP-S show
better performance than DIFF. That is because DIFF should
perform write-twice for all updates while BLK-S and ADP-S
writes at most one block. In summary, the performance of
BLK, DIFF, and BLK-S varies depending on write sizes, but
ADP-S provides consistently the best performance among the
four versions of journaling regardless of write sizes.

One interesting result in the experiments is that, though
current ext3 uses the same journaling scheme as BLK, BLK
performs better than ext3 by a large margin. This performance
gap comes from the software layers of ext3. Though both ext3
and BLK use ram-disk as a storage device, ext3 should pass
through the block-device layer to access the file system in
storage, while BLK maintains a persistent file system tree in
the in-memory buffer cache layer. This result implies that
software overhead also affects the I/O performance as much as
the physical characteristics of storage devices, and our
Shortcut-JFS achieves large performance enhancement with
an efficient design of software techniques.

V. CONCLUSION
This paper presented a new journaling file system for PCM
based storage systems, called Shortcut-JFS. Shortcut-JFS
takes advantages of physical characteristics of PCM and
reduces additional writes of legacy journaling significantly.
Differential logging of Shortcut-JFS reduces write amounts
significantly by logging only changed bytes instead of an
entire block, and in-place checkpointing halves writes by
reusing log blocks as file system data blocks. Shortcut-JFS is
precisely designed considering overall system architectures
and future byte-accessible interface of PCM. We implemented

0

50

100

150

200

250

300

350

400

450

ext3 BLK DIFF BLK-S ADP-S

Th
ro
ug
hp

ut
 (M

B/
s)

0

100

200

300

400

500

600

700

800

ext3 BLK DIFF BLK-S ADP-S

Th
ro
ug
hp

ut
 (M

B/
s)

(a) 1KB (b) 2KB

0

200

400

600

800

1000

1200

1400

ext3 BLK DIFF BLK-S ADP-S

Th
ro
ug
hp

ut
 (
M
B/
s)

0

200

400

600

800

1000

1200

1400

ext3 BLK DIFF BLK-S ADP-S

Th
ro
ug
hp

ut
 (
M
B/
s)

 (c) 3KB (d) 4KB

Figure 5. Throughput of different journaling file systems varying write size

TABLE I. SUMMARY OF JOURNALING ALGORITHMS

BLK DIFF BLK-S ADP-S

data
logging blk diff blk diff/blk

checkpoint rewrite rewrite switch rewrite/
switch

metadata
logging inode inode inode inode

checkpoint rewrite rewrite rewrite rewrite

Shortcut-JFS on Linux 2.6 and showed by measurement
studies that it improves performance by 40% on average
compared to ext3.

For future work, we plan to redesign our scheme considering
wear-leveling and lifetime issues of PCM as PCM has limited
write endurance.

ACKNOWLEDGMENT
This work was supported by the National Research
Foundation of Korea (NRF) grant funded by the Korea
government (MEST) (No.2011-0028825) (No.2011-0025633)
and Ewha Global Top 5 Grant of Ewha Womans University.
Hyokyung Bahn is the corresponding author of this paper.

REFERENCES
[1] V. Prabhakaran, A. C. Arpaci-Dusseau and R. H. Arpaci-

Dusseau, “Analysis and evolution of journaling file systems,”
Proceedings of the USENIX Annual Technical Conference
(ATC), 2005.

[2] R. F. Freitas and W. W. Wilcke, “Storage-class memory: the
next storage system technology,” IBM Journal of Research and
Development, Vol. 52, No. 4, pp.439-447, 2008.

[3] C. D. Wright, M. M Aziz, M. Armand, S Senkader, and W Yu,
“Can We Reach Tbit/sq.in. Storage Densities with Phase-
Change Media?” Proceedings of the European Phase Change
and Ovonics Symposium (EPCOS), 2006.

[4] F. Bedeschi et al, “A multi-level-cell bipolar-selected phase-
change memory,” Proceedings of the International Solid-State
Circuits Conference, 2008.

[5] T. Nirschl et al. “Write strategies for 2 and 4-bit multi-level
phase-change memory,” Proceedings of the International
Electron Devices Meeting, 2008.

[6] B. C. Lee, E. Ipek, O. Mutlu, and D. Burger, “Architecting
Phase Change Memory as a Scalable DRAM Alternative,”
Proceedings of the 36th International Symposium Computer
Architecture (ISCA), 2009.

[7] J. Condit, E. B. Nightingale, C. Frost, E. Ipek, B. Lee, D. Burger
and D. Coetzee, “Better I/O through byte-addressable, persistent
memory,” Proceedings of the 22nd ACM Symposium on
Operating Systems Principles (SOSP), 2009.

[8] E. Ipek, J. Condit, E. B. Nightingale, D. Burger, and T.
Moscibroda, “Dynamically Replicated Memory: Building
Reliable systems from Nanoscale Resistive Memories,”
Proceedings of the Architectural Support for Programming
Languages and Operating Systems (ASPLOS), 2010.

[9] B.-D. Yang et al. “A Low Power Phase-Change Random Access
Memory using a Data-Comparison Write Scheme,” Proceedings
of the IEEE International Symposium Circuits and Systems
(ISCAS), 2007.

[10] S. Venkataraman et al, “Consistent and Durable Data Structures
for Non-Volatile Byte-Addressable Memory”, Proceedings of
the 9th USENIX Conference File and Storage Technologies
(FAST), 2011.

[11] Ramfs, http://www.kernel.org
[12] W. Norcutt, the IOzone Filesystem Benchmark.

http://www.iozone.org/.

[13] J. Katcher, “Postmark: a new file system benchmark,” Technical
report TR-3022, Network Appliances, 1997.

[14] J. C. Mogul, E. Argollo, M. Shah and P. Faraboschi, “Operating
system support for NVM+DRAM hybrid main memory,”
Proceedings of the 12th workshop on Hot Topics in Operating
Systems (HotOS), 2009.

[15] M. K. Qureshi, V. Srinivasan and J. A. Rivers, “Scalable high
performance main memory system using phase-change memory
technology,” Proceedings of the 36th International symposium
on Computer Architecture (ISCA), 2009.

[16] B. C. Lee, E. Ipek, O. Mutlu, and D. Burger, “Phase Change
Memory Architecture and the Quest for Scalability,”
Communications of the ACM, Vol. 53, No. 7, pp.99-106, 2010.

[17] P. Zhou, B. Zhao, J. Yang and Y. Zhang, “A durable and energy
efficient main memory using phase change memory
technology,” Proceedings of the 36th International symposium
on Computer Architecture (ISCA), 2009.

[18] PRAMFS: http://pramfs.sourceforge.net
[19] N. K. Edel, D. Tuteja, E. L. Miller, and S. A. Brandt,

“MRAMFS: A Compressing File System for Non-Volatile
RAM,” Proceedings of the 12th IEEE International Symposium
on Modeling, Analysis, and Simulation of Computer and
Telecommunications Systems (MASCOTS), 2004.

[20] S. Baek, C. Hyun, J. Choi, D. Lee and S. H. Noh, “Design and
Analysis of a Space Conscious Nonvolatile-RAM File System”
Proceedings of IEEE Region 10 Conference (TENCON), 2006.

[21] T. Nirschl et al. “Write strategies for 2 and 4-bit multi-level
phase-change memory,” International Electron Devices Meeting,
2008.

[22] S. Baek, K. Sun, J. Choi, E. Kim, D. Lee and S. H. Noh,
“Taking advantage of storage class memory technology through
system software support,” Proceedings of the workshop on the
Interaction between Operating Systems and Computer
Architecture (WIOSCA), 2009.

[23] X. Wu and A. L. N. Reddy. “SCMFS: A File System for
Storage Class Memory,” Proceedings of the International
Conference on Supercomputing (SC), 2011.

[24] S. Lee, H. Bahn, and S. H. Noh, “Characterizing Memory Write
References for Efficient Management of Hybrid PCM and
DRAM Memory,” Proceedings of the 19th IEEE/ACM
International symposium on Modeling, Analysis, and Simulation
of Computer and Telecomm. Systems (MASCOTS), Singapore,
pp.168-175, 2011.

[25] N.H. Seong, D.H. Woo, and H.S. Lee, “Security refresh: prevent
malicious wear-out and increase durability for phase-change
memory with dynamically randomized address
mapping,” Proceedings of the 37th International Symposium on
Computer Architecture (ISCA10), pp.383-394, 2010.

[26] G. Dhiman, R. Ayoub, and T. Rosing, “PDRAM: A hybrid
PRAM and DRAM main memory system,” Proceedings of the
46th ACM/IEEE Design Automation Conference (DAC),
pp.664-559, 2009.

[27] International Technology Roadmap for Semiconductors,
Emerging Research Devices, 2007.

[28] Phase Change Memory: A new memory technology to enable
new memory usage models, white paper, Micron Tech. Inc.,
http://www.numonyx.com/Documents/WhitePapers/Numonyx_
PhaseChangeMemory_WhitePaper.pdf

