Deduplication in SSDs: Model and Quantitative
Analysis

Jonghwa Kim
Dankook University, Korea

Choonghyun Lee
Massachusetts Institute of Technology, USA

Sangyup Lee
Dankook University, Korea

zcbm432 1 @dankook.ac.kr chl@csail.mit.edu xiphy@dankook.ac.kr
Ikjoon Son Jongmoo Choi Sungroh Yoon Hu-ung Lee
Dankook University, Korea Dankook University, Korea Korea University, Korea Hanyang University, Korea

ikjoon@dankook.ac.kr choijm@dankook.ac.kr sryoon@korea.ac.kr oihtoto@hanyang.ac.kr
Sooyong Kang Youjip Won Jaehyuk Cha
Hanyang University, Korea Hanyang University, Korea Hanyang University, Korea
sykang @ hanyang.ac.kr yjwon @ hanyang.ac.kr chajh@hanyang.ac.kr

Abstract—In NAND Flash-based SSDs, deduplication can pro-
vide an effective resolution of three critical issues: cell lifetime,
write performance, and garbage collection overhead. However,
deduplication at SSD device level distinguishes itself from the
one at enterprise storage systems in many aspects, whose success
lies in proper exploitation of underlying very limited hardware
resources and workload characteristics of SSDs. In this paper, we
develop a novel deduplication framework elaborately tailored for
SSDs. We first mathematically develop an analytical model that
enables us to calculate the minimum required duplication rate in
order to achieve performance gain given deduplication overhead.
Then, we explore a number of design choices for implementing
deduplication components by hardware or software. As a result,
we propose two acceleration techniques: sampling-based filtering
and recency-based fingerprint management. The former selectively
applies deduplication based upon sampling and the latter effec-
tively exploits limited controller memory while maximizing the
deduplication ratio. We prototype the proposed deduplication
framework in three physical hardware platforms and investigate
deduplication efficiency according to various CPU capabilities
and hardware/software alternatives. Experimental results have
shown that we achieve the duplication rate ranging from 4% to
51%, with an average of 17 %, for the nine workloads considered
in this work. The response time of a write request can be
improved by up to 48% with an average of 15%, while the
lifespan of SSDs is expected to increase up to 4.1 times with an
average of 2.4 times.

I. INTRODUCTION

SSDs are rapidly being integrated into modern computer
systems, getting spotlight as potentially next generation stor-
age media due to a high performance, low power, small size
and shock resistance. However, SSDs are failing to provide
uncompromising reliability of data due to a short lifespan and
increased error rate with aging, which is the major roadblock
to be accepted as reliable storage systems in data centric
computing environments despite of many superb properties
[11]. In this paper, we argue that deduplication is a viable
solution to enhancing the reliability of SSDs with carefully
devised acceleration techniques.

Data deduplication is being widely adopted in various
archival storages and data centers due to its contribution to

978-1-4673-1747-4/12/$31.00 © 2013 IEEE

storage space utilization and IO performance by reducing
write traffic [21], [30], [37], [35], [34]. Recently, a number
of researches from industry [7] as well as from academia
[16], [23] have proposed to employ deduplication techniques
in SSDs.

In addition to the reduction of write traffic, deduplication
in SSDs provides other appealing advantages. First, while
conventional storage systems require an additional mapping
mechanism to identify the location of duplicate data for
deduplication, SSDs already have a mapping table managed
by a software layer, called FTL (Flash Translation Layer) [22],
and give a chance to implement deduplication without paying
any extra mapping management overhead. Second, the space
saved by deduplication can be utilized as the over-provisioning
area, leading to mitigating the garbage collection overhead of
SSDs. It is reported that when garbage collection becomes
active, the entire system freezes till it finishes (for a few
seconds at least) [4]. This phenomenon is one of the most
serious technical problems which modern SSD technology
needs to address. Third, the reduction of write traffic and
the mitigation of the garbage collection overhead eventually
lowers the number of erasures in Flash memory, resulting in
the extended cell lifetime. The major driving force in Flash
industry is cost per byte. Flash vendors focus their efforts
on putting more bits in a cell, known as MLC (Multi Level
Cell), and on using finer production process such as 20 nm
process. However, this trend deteriorates the write/erase cycle
of Flash memory, which decreased from 100,000 to 5,000 or
less [23]. Also, the bit error rate of Flash increases sharply
with the number of erasures [14], [20]. In these situations,
deduplication can be an effective and practical solution to
improving the lifespan and reliability of SSDs.

Despite all these benefits, there exist two important technical
challenges which need to be addressed properly for dedu-
plication in SSDs. The first one is about the deduplication
overhead, especially under the condition of limited resources.
In general, commercial SSDs contain low-end CPUs such
as ARM7 or ARM9 with small main memory to cut down



production costs. This environment quite differs from that of
servers and archival storages, demanding distinct approaches
and techniques in SSDs. The second challenge is about the
deduplication ratio. Are there enough duplicate data in SSD
workloads?

To investigate these issues, we design a deduplication frame-
work for SSDs. It consists of three components each of which
forms an axis of modern deduplication techniques: fingerprint
generator, fingerprint manager, and mapping manager. Also,
we suggest an analytical model that can estimate the minimum
duplication rate for achieving marginal gain in I/O response
time. Finally, we propose several acceleration techniques,
namely, SHAI hardware logic, sampling-based filtering and
recency-based fingerprint management.

Our proposed SHA-1 hardware logic and sampling based
filtering are devised to address the fingerprint generator over-
head. One of the important decisions to be made in designing
SSDs is to choose between hardware and software implemen-
tations of each building block. We explore two approaches,
one is a hardware based implementation, that is the SHA-
1 hardware logic, and the other is a software based one,
that is the sampling based filtering. Then, we analyze the
tradeoffs between the two approaches in terms of performance,
reliability and cost.

The recency-based fingerprint management scheme is in-
tended to reduce the fingerprint manager overhead under the
limited main memory of SSDs. We examine several SSD
workloads with various attributes such as recency, frequency
and IRG (Inter-Reference Gap) and find out that duplicate
data in SSDs show strong temporal locality. This observation
triggers us to design the scheme that maintains the recently
generated fingerprints only with simple hash-based fingerprint
lookup data structures.

We also discuss how to make an efficient integration of
page sharing scheme of deduplication with existing FTLs.
The introduction of deduplication in SSDs changes the map-
ping relation of FTL, from 1-to-1 into n-to-1. This change
makes the mapping management complicated, especially for
garbage collection to reclaim invalidated pages. Based on
the characteristics of SSD workloads, we investigate various
implementation choices for n-to-1 mapping managements,
including a hardware-assisted management.

The proposed deduplication framework has been imple-
mented on an ARM7-based commercial OpenSSD board [28].
Also, to evaluate the deduplication effects more quantita-
tively with diverse hardware and software combinations, we
make use of two supplementary boards, a Xilinx Virtex6
XC6VLX240T FPGA board [10] and an ARM9-based EZ-
X5 embedded board [3]. The Xilinx board is used for im-
plementing the SHA-1 hardware logic and for assessing its
performance while the EZ-X5 board is utilized for analyzing
the efficiency of the sampling-based filtering on various CPUs.

Experimental results have shown that our proposal can
identify 4~51% of duplicate data with an average of 17%, for
the nine workloads which are carefully chosen from Linux and
Windows environments. The overhead of the SHA-1 hardware

Controller \

o FTL ——H 1
£ R s )

2 | Deduplication layer L H
| SEEE e S L+
<C

wv)

__________________________

B

Fingerprint Mapping
manager manager

__________________________

b) Deduplication layer

Fingerprint
generator

Fig. 1. Deduplication framework in SSDs

logic is around 80us, leading to improving the latency of write
requests up to 48% with an average of 15%, compared with the
original non-deduplication SSDs. We also have observed that,
in SSDs equipped with ARMO9 or higher capability CPUs, the
sampling-based filtering can provide comparable performance
without any extra hardware resources for deduplication. In
terms of reliability, deduplication in SSDs can expand the
lifespan of SSDs up to 4.1 times with an average of 2.4 times.

The rest of this paper is organized as follows. In the next
section, we describe the deduplication framework for SSDs.
The analytical model is presented in Section 3. In Section
4, we discuss the design choices of the fingerprint generator
and propose the SHA-1 hardware logic and sampling based
filtering. The recency-based fingerprint manager and mapping
management for deduplication are elaborated in Section 5 and
6, respectively. Performance evaluation results are given in
Section 7. Previous studies related to this work are examined
in Section 8, and finally, a summary and the conclusion are
presented in Section 9.

II. DEDUPLICATION FRAMEWORK

Figure 1 shows the internal structure of SSDs and the dedu-
plication framework designed in this paper. The main compo-
nents of SSDs are an SATA host interface, an SSD controller,
and an array of Flash chips. The SSD controller consists of
embedded processors, DRAM (and/or internal SRAM), flash
controllers (one for each channel) and ECC/CRC unit.

The basic element of a Flash chip is a cell which can contain
one bit (Single-Level Cell) or two or more bits (Multi-Level
Cell). A page consists of a fixed number of cells, e.g, 4096
bytes for data and 128 bytes for OOB (Out-of-Band) area [23].
A fixed number of pages form a block, e.g, 128 pages. There
are three fundamental operations in NAND Flash memory,
namely read, write, and the erase operations. Read and write
operations are performed by a unit of page, whereas the erase
operation is performed by a unit of block.

Flash memory has several unique characteristics such as
the erase-before-write and a limited number of program/erase
cycles. To handle these characteristics tactfully, SSDs employ
a software layer, called FTL (Flash Translation Layer), which
provides the out-of-place update and wear-leveling mecha-



nism. For the out-of-place update, FTL supports an address
translation mechanism to map the logical block address (LBA)
with physical block address (PBA) and a garbage collection
mechanism to reclaim the invalid (freed) space. For the wear-
leveling, FTL utilizes various static/dynamic algorithms, trying
to distribute the wear out of blocks as evenly as possible.

We design a deduplication layer on FTL. It consists of
three components, namely, fingerprint generator, fingerprint
manager, and mapping manager as shown in Figure 1 (b). The
fingerprint generator creates a hash value, called fingerprint,
which summarizes the content of written data. The fingerprint
manager manipulates generated fingerprints and conducts fin-
gerprint lookups for detecting deduplication. Finally, the map-
ping manager deals with the physical locations of duplicate
data.

A. Fingerprint Generator

One of the design issues for the fingerprint generator is the
size of chunk, that is, the unit for deduplication. There are two
approaches to this issue: fixed-sized chunking and variable-
sized chunking. The variable-sized chunking can provide an
improved deduplication ratio by detecting duplicate data at
different offsets [31]. However, the size of write requests
observed in SSDs are integral multiples of 512 bytes (usu-
ally 4KB) and the requests are re-ordered by various disk
scheduling policies, diluting the advantages of the variable-
sized chunking. Hence, we use the fixed-sized chunking in this
study. We configure 4KB as the default chunk size and analyze
the effects of different chunk sizes on the deduplication ratio.

Another design issue is about which cryptographic hash
function to be used for deduplication. The SHA-1 and MD-
5 are used popularly in existing deduplication systems since
they have collision-resistant properties [23]. In this study, we
choose the SHA-1 hash function that generates a 160-bit hash
value from 4KB data [15]. How to implement the SHA-1
affects greatly the deduplication overhead and we explore two
approaches, hardware-based and software-based approaches,
which are discussed in Section 4 in details.

B. Fingerprint Manager

The design issue related to the fingerprint manager is
how many fingerprints need to be maintained. The traditional
archival storages and servers keep all fingerprints for dedu-
plication (a.k.a. full chunk index [30]). However, SSDs have
a limited main memory (for instance, the OpenSSD system
used in this study has 64MB DRAM). Furthermore, most of
this space is already occupied by various data structures such
as a mapping table, write buffers, and FTL metadata.

To reflect the limited main memory constraint, we decide to
maintain only part of fingerprints that have higher duplication
possibility. Now the question is which fingerprints have such
possibility. Our analysis of SSD workloads shows that the
recency is a good indicator to estimate the possibility, leading
us to design a scheme that maintains recently generated
fingerprints only. This choice also enables the scheme to
be implemented with simple and efficient data structures

. 10 [ 100 1001 A
[A” &35-100] 3; [—53
[B" o103 | 15 [0 | 103 B

[10,A][11,B] [12,A]

Fingerprint
generator

Fingerprint

manager Mapping table Flash memory

Write request
Fig. 2. Deduplication example

for fingerprint lookups. More details of the scheme will be
elaborated in Section 5.

C. Mapping Manager

To deal with the physical location of duplicate data, the
mapping manager makes use of the mapping table supported
by FTL. According to the mapping granularity, the mapping
table can be classified into three groups: page-level mapping,
block-level mapping and hybrid mapping [29]. Since dedupli-
cation requires the mapping capability with the unit of chunk,
we design a page-level mapping based FTL with the page size
of 4KB.

Figure 2 displays a deduplication example and the inter-
actions among the fingerprint generator, fingerprint manager,
and mapping manager. Assume that three write requests,
represented as [10, A], [11, B] and [12, A], are arrived
in sequence ([x, y] denotes a write request with a logical
block address x and content y). Then, the fingerprint generator
creates fingerprints, which are passed into the fingerprint
manager to find out whether they are duplicates or not (the
fingerprints of A and B are denoted as A and B, respectively
in Figure 2).

In this example, we do not detect any duplicate for the first
two write requests. Hence, we actually program the requests
into Flash memory (assume that they are programmed in pages
100 and 103, respectively). After that, the physical block
addresses are inserted into both the mapping table and the
fingerprint manager. For the third write request, that is [12,
Al, duplication is detected in the fingerprint manager and only
the mapping table is updated without programming.

This example demonstrates that the mapping table used for
FTL can be exploited effectively for deduplication. However,
when garbage collection is involved, the scenario gets com-
plicated. This issue will be discussed further in Section 6.

III. MODEL AND IMPLICATION

In this section, we present an analytical model for estimating
the deduplication effect on performance. Also, we discuss the
implication of the model, especially in terms of the duplication
rate and deduplication overhead.

In the original non-deduplication SSDs, a write request is
processed in two steps, namely programming the requested
data into Flash memory and updating its mapping information.
Therefore, we can formulate the write latency as follows:

Writelatency = FMprogram + MAPmanuge (D

where FMpogram is the programming time on Flash memory
and MAP,anage 1s the updating time of the mapping table.



On the other hand, when we apply deduplication in SSDs,
the write latency can be expressed as follows:

Writejaency = (FP, eenerator + F Panage + MAP, manage)
XDupyare + (F Pgenerator + F Pranage
+MAP,anage + F Mprogram)

X (1 — Duprae) 2)

where FPyeneraor 1s the fingerprint creation time, FPuunage

is the lookup time in the fingerprint manager, and Dup,. is
the ratio between the duplicate data and total written data.
The equation 2 means that, when a write request is detected
as duplicate, it pays the FPenerarors FPunanage and MAPyuanage
overheads. Otherwise, it pays the additional FMp,ogram over-
head.

From the two equations, we can estimate the expected
performance gain of deduplication in SSDs. Specifically, dedu-
plication can yield the performance gain on the condition that
equation 2 is smaller than equation 1. The condition can be
formulated as follows:

FP, generator +FP, manage
F Mprogram

Dupyare > 3
Equation 3 indicates that, when the duplication rate is larger
than the ratio of the deduplication overhead (both the fin-
gerprint generation and fingerprint management overheads) to
the Flash memory programming overhead, we can enhance
the write latency in SSDs. In other words, it suggests the
required minimum duplication rate for obtaining the marginal
performance gain.

Note that, in SSDs, the write latency actually contains one
additional processing time, that is the garbage collection time.
During the handling of write requests, FTL triggers garbage
collection when the available space goes below a certain
threshold value [22]. The garbage collection mechanism con-
sists of three steps: 1) selecting a victim block, 2) copying
valid pages of the selected block and updating mapping, 3)
erasing the block and making it as a new available block.
Hence, the garbage collection time is directly proportional to
the average number of valid pages of blocks, which, in turn,
has a positive correlation to the storage space utilization [25].
Since deduplication can reduce the utilization, the garbage
collection time in equation 2 is smaller than that in equation
1. Therefore, equation 3 also holds if we take into account the
garbage collection overhead together.

To grasp the implication of equation 3 more intuitively, we
plot Figure 3, presenting the minimum duplication rate under
the various deduplication overheads. In the figure, we select
four values, 200, 800, 1300, and 2500 us, as the representative
program times of Flash memory, reported in previous papers
and vendor specifications [22], [28].

From Figure 3, we can observe that the minimum duplica-
tion rate decreases as the deduplication overhead decreases
or as the program time becomes longer. For instance, in
the case when the program time is 1300 us (which is the
OpenSSD case used in our experiments), we require more

100% o0 I
o | —— usec
9[]:{3 ===C--= 800 usec ," o
g 80% | - _x - 1300 usec P4 F
B 70% | — > — 2500 usec g4/
£ 60% 7
ﬁ 50%
L 40%
2 30%
0 0%
10%
0%
Deduplication overhead(us)
Fig. 3. Minimum duplication rate for achieving performance gain
8000
BSHA-1 Overhead
7000 A 6212 77
6000
5000
o
& 4000 -
3
3000
2000
1000 H 813
m -
D A
MiaoBlaze ARM7 ARM9 Hardware
logic
Fig. 4. SHA-1 processing time on various CPUs

than 16% of duplication rate for obtaining the performance
gain when the deduplication overhead is 256 us. If we reduce
the deduplication overhead from 256 us to 128 us, the required
minimum duplication rate becomes 8%. Now the question
is how to reduce the fingerprint generation and management
overhead.

IV. SHA-1 HARDWARE LOGIC AND SAMPLING BASED
FILTERING

In this section, we first measure the fingerprint generation
overhead on various embedded CPUs, widely equipped in
commercial SSDs. Then, we design two acceleration tech-
niques which are respectively hardware-based and software-
based techniques.

A. SHA-1 Processing Overhead

To quantify the SHA-1 overhead, we measured the SHA-
1 processing time on three embedded CPUs, 150MHz Mi-
croBlaze [10], 175MHz ARM7 [28] and 400MHz ARM9
[3], as shown in Figure 4 (actually, it also contains the
SHA-1 processing time on a hardware logic, which will be
discussed in the Section 4.2). The results reveal that the
SHA-1 processing time is nontrivial, much bigger than our
initial expectation. From the analytical model presented in
Figure 3, we can find out that applying deduplication on SSDs
equipped with ARM 7 or MicroBlaze CPU always degrades
the write latency since the required minimum duplication rate
for obtaining the marginal gain is higher than 100%.



This observation drives us to look for other acceleration
techniques. There is a broad spectrum of feasible techniques,
ranging from hardware-based to software-based approaches. In
this study, we explore two techniques, SHA-1 hardware logic
and sampling-based filtering.

B. Hardware-based Acceleration: SHA-1 Hardware Logic

As hardware-based acceleration, we design a SHA-1 hard-
ware logic on Xilinx Virtex6 XC6VLX240T FPGA [10], as
depicted in Figure 5. It consists of five modules: main control
unit that governs the logic on the whole, Data I/O Control
unit for interfacing the logic with CPU, Dual Port BRAM
for storing 4KB data temporary, SHA-1 Core for generating
fingerprints using the standard SHA-1 algorithm [15], and hash
comparator that examines two fingerprints and returns whether
they are the same or not. We use Verilog HDL 2001 for RTL
coding [8].

The SHA-1 processing time on the hardware logic is mea-
sured as 80 us on average, as presented in Figure 4. With
this value, we can have more room for the performance gain
by using deduplication as observed in Figure 3. For instance,
assuming that the Flash memory program time is 1300 us, the
improvement of write latency is expected when the duplication
rate is larger than 5%. Note that the hardware logic gives
another optimizing chance by conducting the fingerprint gener-
ation and other FTL operations such as mapping management
and Flash programming in a pipelined style.

C. Software-based Acceleration: Sampling-based Filtering

Although utilizing the SHA-1 hardware logic gives an op-
portunity to enhance performance, it needs additional hardware
resources that increase production costs. Also, from the Figure
3 and 4, we can infer that ARM 9 or higher capability CPUs
have a potential to yield performance improvements based
only on software approaches. To investigate this potential, we
design the sampling-based filtering technique that selectively
applies deduplication for write requests according to their
duplicate possibilities.

The technique is motivated by our observation about the
characteristics of SSD workloads, represented in Figure 6.
We choose nine applications as representative SSD workloads,
which will be explained in details in Section 7. In the figure, x-
axis is the IRG (Inter-Reference Gap) of duplicate writes while

4KB SHA—1 Hash Calculator

with 160bit Hash Comparator

Main Control Unit ‘

Initial Hash
ROM =

K Adar &

Dual Port
(A32 : B512)
BRAM |
MSG 4KB

MicroBlaze
Core

Hash

Data I/O Control Unit

Fig. 5. SHA-1 hardware logic

=
]

-

oS
o

o
o

Cumulative fraction of write requests

04 +==Windows install = = Linux install
—— Kernel compile =—0=—Xen compile
0.2 = * = Office work === HTTrack
—#— SWVN *— QOutlook
0 == Wayback
0 1000 2500 4000 5500 7000 8500 10000

IRG of duplicate writes

Fig. 6. Characteristics of SSD workloads: Inter-Reference Gap of duplicate
writes

Write
Buffer

SATA
Interface
il
{

Deduplication FTL
= =

|r:||

Sl

Sample

NI

OUogooodd

- )
hd

Buckets

Fig. 7. Details of the sampling based filtering technique

y-axis is the cumulative fraction of the number of writes that
have the related IRG. The IRG is defined as the time difference
between successive duplicate writes, where time is a virtual
time that ticks at each write request [33].

From the figure, we can categorize the applications into
two groups. The first group includes windows install, linux
install, outlook, HTTrack and wayback. In this group, most of
the IRGs of duplicate writes are less than 500 while others are
distributed uniformly from 500 to infinite. For instance, almost
95% of the wayback workload and around 80% of outlook and
HTTrack workloads are less than 500. In the second group,
including kernel compile, xen compile, office and SVN, the
fraction of writes increases incrementally as IRG increases.
Note that even in this group, more than 60% of IRGs are less
than 4,000 and, after that point, the slope becomes almost flat
except the SVN workload. This observation drives us to design
the sampling-based filtering technique.

Figure 7 demonstrates how the sampling-based filtering
technique works. It makes use of a write buffer in SSDs
that lies between the SATA interface and FTL. SSDs utilizes
a portion of DRAM space as a write buffer for exploiting
caching effects to reduce the number of Flash programming
operations [26]. In our experimental OpenSSD, the size of



90.0%

—e— Windows install —8— Linux install
80.0% | —a— Kernel compile —¢— Xen compile
—x— Office work —oe—HTTrack
70.0% A —+—SVN —-=— Outlook
% 60.0% - —=- Wayback
§ 50.0% -
E 40.0%
a
8 300% |
200% -
100% -
0.0% -
LRU stack size
Fig. 8. Characteristics of SSD workloads: Recency and duplication rate

a write buffer is 32MB, maintaining 8,000 numbers of 4KB
pending write requests at maximum.

When a new write request is arrived in the write buffer, the
technique first samples p-byte data from a randomly selected
offset of ¢. In the current study, we set p and g to 20 and
512 bytes, respectively. Other settings have shown that the
results of this technique are insensitive to the values of p
and ¢ on the condition that p is larger than 20. Then, it
classifies write requests into buckets using p bytes as a hash
index, as shown in Figure 7. Hence, the writes that have
the same p-byte data go into the same bucket. Finally, when
a write request leaves from the write buffer, the technique
does not apply deduplication for the writes that are classified
into the bucket holding only one request. This decision is
based on the observation in Figure 6 that the duplicate writes
occur again during the short time intervals. We expect that
the technique can reduce the fingerprint generation overhead
greatly by filtering out non-duplicate writes while supporting
a comparable duplication rate.

V. RECENCY-BASED FINGERPRINT MANAGEMENT

In the previous section, we have discussed two acceleration
techniques, one is hardware-based approach and the other is
software-based one, for reducing the fingerprint generation
overhead. The next question is how to reduce the fingerprint
management overhead.

To devise an efficient fingerprint management scheme, we
examine the characteristics of SSD workloads with a viewpoint
of the LRU stack model [17]. In this model, all written pages
are ordered by the last accessed time in the LRU stack and
each position of the stack has a stationary and independent
access probability. The LRU stack model assumes that the
probability of the higher position of the stack is larger than
that of the lower position. In other words, a page accessed
more recently has a higher probability to be accessed again in
the future.

Figure 8 shows the duplication rate under different LRU
stack sizes for the nine SSD workloads. In the figure, x-axis is
the LRU stack size, which is the number of recently generated
fingerprints maintained in the fingerprint manager, and y-axis

is the measured duplication rate under the corresponding LRU
stack size. It shows that SSD workloads have a strong temporal
locality. Especially, for the Linux install, kernel compile,
outlook and wayback workload, we can detect most of all
duplicate data using the LRU stack size of 64 (in other words,
we keep 64 recently generated fingerprints only). For most
of the workloads, when the stack size is larger than 2048, we
can obtain a duplication rate comparable to the full fingerprints
management case.

The observation in Figure 8 guides us to design the recency-
based fingerprint management scheme. It maintains recently
generated fingerprints only, rather than managing all generated
fingerprints. In this study, we configure the number as 2048.
Also, considering the CPU/memory constraints of SSDs, we
employ efficient data structures for the partial fingerprints
managements: a doubly linked list for maintaining LRU orders
and two hashes, one using a fingerprint value as a hash key
and the other using a physical block address as a hash key. The
total DRAM space required for these data structures becomes
2048 entries * 40 bytes per entry (20 bytes for a fingerprint
value, 4 bytes for a physical block address, 8 bytes for the
LRU list, 8 bytes for two hash lists). Finally, we decide to
keep fingerprints on DRAM only, not storing/loading into/from
Flash memory during power-off/on sequences.

VI. EFFECTS OF DEDUPLICATION ON FTL

The conventional FTLs maintain a mapping table for trans-
lating logical block addresses (LBAs) into physical block
addresses (PBAs) as shown in Figure 2. Besides, to lookup
LBAs from PBAs during garbage collection, FTLs keep an-
other inverted mapping information for translation between
PBAs to LBAs. This information can be managed either by a
centralized inverted mapping table or by a distributed manner
using the OOB (Out-of-Band) area of each physical page.

Integrating deduplication on FTL raises a new challenge
since it changes the mapping relation between LBAs and
PBAs, from 1-to-1 to n-to-1. For instance, from Figure 2, we
can see that two LBAs (10 and 12) are mapped with one
PBA (100). The n-to-1 mapping does not incur any problem
during the normal read and write requests handling. However,
when garbage collection is involved, the situation becomes
complicated. For instance, again from Figure 2, assume that
the data A is copied into page 200 during garbage collection.
Then, the two entries (10 and 12) related to the copied page
need to be identified in the mapping table and their values
should be modified as 200. In other words, we need to update
all entries associated to copied pages.

To alleviate the complication, Chen et al. proposed a two-
level indirect mapping structure and metadata pages [16].
Their method makes use of two mapping tables, primary
and secondary mapping tables. For the non-duplicate page, it
locates the PBA for a LBA through the primary mapping table,
as the conventional FTLs do. However, for the duplicate page,
a LBA is mapped into a VBA (Virtual Block Address) through
the primary mapping table, which, in turn, is mapped into a
PBA through the secondary mapping table. This separation



=
]

-

wi

W

i)

E]

o

z

z

£ 08

2

k]

c 06

2 . . . .

- | SEEEEELCEETE Windows install ~ ------- Linux install
O e Kernel compile — — = Xen compile
2 — - — Office work HTTrack
302 SVN Outloak

E - - - - Wayback

5

[v]

[=]

0 10 20 30 40 50 60 70 80 90

Duplicate writes

Fig. 9. Characteristics of SSD workloads: Frequency of duplicate writes

enables to update only one entry in the secondary mapping
table during garbage collection without searching all entries
in the primary mapping table. The metadata pages play a role
as the inverted mapping table.

On the other hand, Gupta et al. took a different approach
[23]. It uses a single-level mapping structure, called LPT
(Logical Physical Table), like the conventional FTLs. Also,
it employs an inverted mapping table, called iLPT (inverted
LPT), that stores translation between a PBA to the list of
LBAs that can keep more than one LBA if the PBA contains
duplicate data. Using the iLPT, it can identify and update all
entries of the LPT that are mapped into the copied page during
garbage collection.

There are several tradeoffs between two approaches. The
Chen’s approach pays one extra lookup operation in the sec-
ondary table for duplicate pages during the normal read/write
requests handling. On the contrary, the Gupta’s approach may
perform several mapping updates for a copied page during the
garbage collection processing while conducting always one
update in the Chen’s approach. The worst count of updates
is the maximum number of writes on duplicate data. In term
of memory footprints, the two approaches require additional
DRAM space, one for the secondary mapping table and the
other for maintaining two or more LBAs in iLPT, whose size
depends on the duplicate rate and the frequency of writes on
duplicate data.

To estimate the tradeoffs more quantitatively, we measure
the frequency of duplicate writes for the nine SSD workloads,
as depicted in Figure 9. In the figure, x-axis represents a PBA
that contains duplicate data and y-axis is the frequency, that
is the number of writes, on the corresponding duplicate data.
The results show that most of writes on duplicate data is less
than or equal to 3, meaning that, in most cases, the number of
LBAs updated per a PBA during garbage collection is at most
3. This observation leads us to adopt the Gupta’s approach
in this study, although the Chen’s approach also goes well
with our proposed deduplication framework. We design our
deduplication framework carefully so that it can be integrated
with any existing page-level FTLs.

One concern about the page-level FTL is that the sizes
of the mapping and inverted mapping tables are too large
to fit the limited DRAM space of SSDs. To overcome this
obstacle, we can apply the demand-based caching, proposed
in [22]. However, caching causes another problem, which is a
sudden power-failure recovery. In this case, we can employ a
well-known approach such as using a hardware superCap [2]
or battery-backed RAM [23]. The caching and power-failure
recovery issues are orthogonal to the deduplication issues.

Our framework currently adopts a simple and commonly
used algorithm for garbage collection. It triggers garbage
collection when available space goes below a certain thresh-
old (GC_threshold). In this experiment, the default value of
GC_threshold is set to 80%. When triggered, our algorithm
first selects a victim block based on the cost-benefit analysis
proposed in [25]. Then, the algorithm copies valid pages
of the selected block into other clean pages and updates
mapping information. Finally, the algorithm erases the block
and converts it as available space.

Here, we would like to discuss that deduplication gives
an opportunity to improve the garbage collection efficiency.
One method for improving the efficiency is reducing the
number of copies of valid pages during garbage collection.
To achieve this, valid and invalid pages need to be distributed
into different blocks so that garbage collection can select a
victim block whose pages are mostly invalid [12]. For this
purpose, FTL tries to detect hot and cold data and manages
them into different blocks. Data modified frequently is defined
as hot data while others as cold data. Hence, most of pages in
the block for hot data become invalidated while the block for
cold data contains valid pages in most case. Note that duplicate
data has a feature that is not invalidated frequently. Hence, the
separation of duplicate data from unique data can enhance the
garbage collection performance.

In addition, deduplication can be exploited usefully for
wear-leveling. Since a Flash memory has a limited number
of erase counts, it is important to evenly distribute the wear-
out of each block. One of the popularly used wear-leveling
algorithms is swapping data in the most erased block with
those in the least erased one [14]. The rationale behind this
algorithm is that the data in the least erased block is cold data,
which prevent the block to be selected as a victim block during
garbage collection. When we locate duplicate data, identified
by deduplication, on the most erased block, we can improve
the wear-leveling efficiency.

Finally, we investigate the feasibility of hardware/software
co-design for mapping managements. Deduplication in SSDs
requires two different tables, one is the mapping table for LBA
to PBA translation and the other is the inverted mapping table
for PBA to LBAs translation. Our implementation study has
uncovered that maintaining the consistency between the two
tables makes the deduplication framework quite complicated
for applying locking mechanisms and for considering various
exceptional cases for power-failure recovery.

This troublesome drives us to explore an alternative. It is a
kind of hardware/software co-design that makes a mapping



table, managed by software, as simple as possible while
searching LBAs related to PBA during garbage collection
is carried out by hardware such as a memory-searching co-
processor. Some commercial SSDs have already equipped
such a hardware facility. For instance, OpenSSD provides a
hardware accelerator, called as memory utility, that is used for
improving common memory operations such as initializing a
memory region with a given value or searching a specific value
from a memory region [28]. However, the current version of
memory utility can cover at most 32KB memory region at a
time, which is too small to manage the mapping table. We are
currently extending the memory utility that can search several
memory regions in parallel and exploit a Bloom filter to skip
over uninterested memory regions quickly [13]. We believe
that this approach can improve not only memory footprints
but also software dependability.

VII. PERFORMANCE EVALUATION

In this section, we first describe the experimental setup and
workloads. Then, we present the performance and reliability
evaluation results including the duplication rate, write latency,
garbage collection overhead and expected lifespan of SSDs.

A. Experimental Environments

We evaluated our proposed deduplication framework on
a commercial SSD board, called OpenSSD [28]. It consists
of 175MHz ARM7 CPU, 64MB DRAM, SATA 2.0 host
interface, and Samsung K9LCGOS8UIM 8GB MLC NAND
Flash packages [6]. The package is composed of multiple
chips and each chip is divided into multiple planes. A plane
is further divided into blocks which, in turn, divided in pages.
The typical read and program times for a page are reported
as 400 us and 1300 us, respectively, while the erase time for
a block is reported as 2.0 ms [6].

Unfortunately, the OpenSSD does not have FPGA logic.
So, we utilize a supplementary board, that is a Xilinx Virtex6
XC6VLX240T FPGA board [10]. It consists of 150MHz Xil-
inx MicroBlaze softcore, 256MB DRAM and FPGA logic with
around 250,000 cells. This board is used for implementing
the SHA-1 hardware logic and for measuring its overhead.
Then, we project the SHA-1 hardware logic overhead on the
OpenSSD board similar to that measured on the FPGA board.
Hence, all the results reported in this paper are measured on
the OpenSSD board while emulating the SHA-1 hardware
logic overhead in a time-accurate manner. Currently, we
are developing a new in-house SSD platform by integrating
NAND Flash packages and SATA 3.0 host interface into the
FPGA board.

In addition, we make use of another supplementary board,
an ARM9 based EZ-X5 embedded board [3]. It consists of a
400MHz ARMY CPU, 64MB DRAM, 64 MB NAND Flash
memory, 0.5 MB NOR Flash memory, and embedded devices
such as LCD, UART and JTAG. This board is used for
evaluating the practicality of the sampling-based filtering on
ARM 9 and for analyzing tradeoffs of deduplication in terms

52.5%
47.5%

21.0%

15.9%
13.0% 13.1%

11.4%
5.6%

Duplicationrate
32

8.0%

Windows Limux  Kemel  Xen
insta instel  comple comple  work
(1.6G8) (2.5GB) (BOSME) (S34ME) (132ME)

Office HTTrack  SWN Outlook Wayback
(124MB) (2.8GB)} (3.3GB) (148ME)

Fig. 10. Duplication rate of SSD workloads

100.0%

—o— Windows install —8— Linux install

—a&— Kernel compile —¢— Xen compile

—— Office work —e— HTTrack
T~ +—SVN Qutlook

80.0%

60.0% |

40.0%

Duplication rate

20.0%

0.0%

1024 2048 8192

Chunk size

256 512 4096

16384

Fig. 11. Effects of Chunk size on Duplication rate

of performance, reliability, and costs on a various spectrum of
CPUs.
The following nine workloads are used for the experiments.

o Windows install: We install the Microsoft Windows XP
Professional Edition. The total size of write requests
triggered by this workload is around 1.6GB.

« Linux install: This workload installs Ubuntu 10.10, an op-
erating system based on Debian GNU/Linux distribution,
generating roughly 2.9GB writes.

« Kernel compile: We build a new kernel image by compil-
ing the Linux kernel version 2.6.32. The total write size
is 805MB.

« Xen compile: The Xen hypervisor is built using the Xen
version 4.1.1, issuing 634MB writes.

o Office: We run the Microsoft Excel application while
modifying data randomly whose size is roughly 20MB.
We also enable the auto save option with the default
setting, triggering 132MB writes during the one hour
execution.

o Outlook sync: In this workload, we synchronize Gmail
accounts used by our research members, randomly se-
lected, with the Microsoft Outlook application. The total
write size is 3.9GB.

o HTTrack: It is a backup utility, allowing to download
contents from a given WWW site to our local storage
[5]. In this workload, we download the contents of our
university web site by using HT Track, generating 121MB
writes.

o SVN: The Apache subversion (often abbreviated SVN) is
a software version and revision control system [1]. Using



ENo deduplication

ODeduplication with SHA-1 hardware logic

2000

1460 1441 1404 1346 1498 449 1498

1500
1000
500
0

usec

1314 1334 1337
1069
11

1457 1498

1220

Windows install Linux install Kernel compile Xen compile

Office work

HTTrack Qutlook Wayback

(a) When garbage collection is not invoked during the workloads execution

B No deduplication

O Deduplication with SHA-1 hardware logic

30000
25000
20000
15000
10000

256/0

12624 13249 13248 12308 13248 oo

usec

5000

13239

13249 13226

7864

13241

8850

13244 17136

Windows install Linux install Kernel compile Xen compile

{1 °H 'N N N 'H [N

Office work

HTTrack Outlook Wayback

(b) When garbage collection is invoked during the workloads execution

Fig. 12. Write latency with/without deduplication

the VirtualBox sources, we make a version (contains all
sources) and several revisions (contains only the updated
sources), which triggers writes with the size of 2.8GB.

« Wayback machine: It is a digital time capsule for archiv-
ing versions of web pages across time [9]. We browse the
archived pages that are composed of the first page of the
Yahoo! web site during the period 1996-2008. The total
write size is 148MB.

B. Duplication Rate

Figure 10 shows the duplication rate of the nine workloads,
ranging from 4% to 51% with an average of 17%. Among
the nine workloads, we can achieve the same duplication rate
for each run from the windows install, Linux install, kernel
compile and Xen compile workloads, since duplicate data are
intrinsic in these workloads. On the contrary, the duplication
rate of the office workload varies according to user behaviors.
We also tested the case where, after modifying a couple of
bytes, we save data with a different filename. Unlike our
expectation, the duplication rate is insignificant in this case
mainly due to the compression scheme used by the recent
Microsoft Office programs. However, we have observed that
the auto save function supported by various word processor
and spreadsheet programs yields a large amount of duplicate
data.

The duplication rate of the HTTrack and outlook workloads
depends on the contents of a WWW site and mail server. By
testing other sites and servers, we noticed that there exist
sizeable duplicate data in general. The wayback machine
shows the best duplication rate since it writes not only the
modified data but also the unchanged data altogether for
archiving. On the other hand, SVN saves modified data only
in each revision, resulting in a relatively low duplication rate.

In our proposed deduplication framework, two parameters
can affect the duplication rate. One is the number of finger-
prints, as already discussed in Figure 8. The other is the
chunk size, as presented in Figure 11. In this experiment,
we configure the chunk size as 4096. Note that, as the size
decreases, we can obtain a higher duplication rate, especially
for the office, HTTrack and SVN workloads. It implies that
we can expect the enhancement of the deduplication efficiency
by using the smaller logical page size, such as fragment, in
FTLs.

C. Write Latency

Figure 12(a) shows the improvement of average write la-
tency per each request when deduplication is applied. Dedupli-
cation was processed using hardware implementation of SHA-
1. Write operation diminishes as much as the duplication rate
of Figure 10. Write latency decreases up to 48% with the
average of 15% due to the elimination of duplicated data
writing. The deduplication performance gain is significant
because the overhead of SHA-1 hardware logic is only 80us,
which is quite smaller than that of program time. Our proposed
analytical model in Figure 3 predicts that the duplication rate
should be more than 5% when the overhead is 80us in order
to achieve performance gain. This prediction well corresponds
with the experimental results.

Figure 12(b) shows the improvement of write latency when
garbage collection is considered. In Figure 12(a), write opera-
tions were performed on a clear SSD which has all free blocks.
In steady state, since there already exist a lot of data in SSDs,
garbage collection should be included for reflecting the real
world situation. We set 90% of SSD space as occupied by valid
data while the rest space as free in this experiment. When we
apply deduplication, we can decrease not only the data volume
to write but also the number of copied pages during garbage



collection. Also, the reduced space due to deduplication can be
exploited usefully as the over-provisioning area, which further
decreases the invocation number of garbage collection. For
these reasons, the improvement of the average write time by
deduplication is even more effective when garbage collection
is included during the execution of workloads.

18.0
160 | B No deduplication 15.8
149 || 9 Deduplication
12.0 |
# 10.0
34
] 3.8
4.0 A 2.9 17 2.2
0.0 -
75% 85% 95%
Utilization
(a) Write Amplification Factor
10.0
0.0 mNo deduplication
8.0 mDeduplication
7.0 6.0
5 6.0 5.3
o 5.0
> 40 3.5 3.4
3.0 21
2.0 0.8
1.0
0.0
75% 85% 95%
Utilization
(b) Expected lifespan
Fig. 13. Expected lifespan with/without deduplication

D. Reliability

The WAF (Write Amplification Factor) is a ratio of the
amount of data actually written in Flash memory to the
amount of data requested by the host [24]. In SSDs, the
WAF is generally larger than 1, due to the additional writes
caused by the garbage collection, wear-leveling, and metadata
writing. Deduplication can give a chance to reduce the WAF
by reducing not only write traffic but also the copied pages
during the garbage collection. Figure 13 (a) shows the effects
of deduplication on WAF under the three different utilizations,
75, 85 and 95%. It shows that deduplication can reduce WAF
significantly, especially under the high utilization.

The reduction of WAF diminishes the number of erase
operations, which eventually affects the lifespan of SSDs.
Several equations have been proposed to express the relation
between the lifespan and WAF [32], [19], [36]. In this paper,
using the equation of [32], we estimate the expected lifespan of
SSDs with/without deduplication, as shown in Figure 13 (b).
The figure shows that deduplication can expand the lifespan
up to 4.1 times with an average of 2.4 times, compared with
the no deduplication results.

Note that, even though NAND Flash based SSDs provide
several advantages including high performance and low energy

consumption, a lot of data centers and server vendors hesitate
to adopt SSDs as storage systems due to the concerns of
reliability and lifetime. Our study demonstrates quantitatively
that deduplication is indeed a good solution to overcome the
concerns.

E. Effects of Sampling based Filtering

From Figure 12, we notice that deduplication with the SHA-
1 hardware logic can improve the write latency. However,
it requires additional hardware resources, which is a viable
approach for high-performance oriented SSDs. On the con-
trary, some SSDs may have a different goal, that is cost-
effectiveness to reduce the manufacturing cost. Those SSDs
want to employ deduplication to achieve the enhancement
of reliability, observed in Figure 13, without additional hard-
ware resources while supporting performance comparable to
the non-deduplication scheme. The sampling based filtering
technique is proposed for those SSDs.

Figure 14 (a) shows the duplication rate under the two
conditions: the one is generating fingerprints for all write
requests and the other is generating selectively using the
sampling-based filtering technique. The former provides a
better duplication rate than the latter since the former tries to
detect duplication for all writes. However, the results show that
the latter still detects roughly 64% of duplicate data, compared
with the duplication rate of the former.

The merit of the sampling-based filtering is that it can
reduce the fingerprint generation overhead by not applying
deduplication into write requests that have low duplicate
possibility. This is more evident in Figure 14 (b) that de-
scribes the write latency under three testing environments, no
deduplication, deduplication with the sampling-based filtering
and deduplication with the full fingerprint generation. The
results show that the sampling-based filtering performs much
better than the original full fingerprint generation technique.
It shows comparable performance to the non-deduplication
scheme even though it creates the SHA-1 hash value in
software without hardware resources. Note that, in terms of
reliability, it equivalently supports the enhancement of lifespan
of Figure 13.

Also note that the results presented in Figure 14 are
measured based on ARM 9 CPU. We also conducted the
same experiments on ARM 7 CPU. However, on ARM 7,
since the overhead of SHA-1 software implementation is too
heavy to obtain the performance gain, as already discussed in
Figure 4. We find out that, with ARM 7 CPU, deduplication
can only enhance the reliability of SSDs. To obtain the
performance improvement together, the SHA-1 hardware logic
is indispensible. On the other hand, with ARM 9 or higher
capability CPUs, deduplication based on SHA-1 software
implementation can give both performance and reliability
enhancements. The SHA-1 hardware logic can further improve
the performance.



g Fingerprint generation: Sampling based Filtering

mFingerprint generation: Full

60.0%

o 2£.0770
o 50.0% 47.5% 45.6%
F-]
B 40.0% 34.1%
o
-
g 00% 1500, 19.4%21.0%
B 20.0% -9% o 9
g \ . .20, 11.4% 5.0% . 9.2% 13.0% 13.1%
10.0% 5.1% 5.6% ’_L. 1.4% -07/0 3.6%
0.0% i ~
Windows install Linux install Kernel compile Xen compile Office work HTTrack SVN Outlook Wayback
(a) Duplication rate with Sampling based Filtering
ONo deduplication @ Deduplication, Fingerprint generation: Sampling based Filtering @ Deduplication, Fingerprint generation: Full
3500 2545
3000 2601 2477 2577 2446 2967255 2456
22312181 2215 2186
2300 1001 1900 1940163 19062037 1912031 2125 19341968 1855 2003
9 2000 1641
3 1500 1272
1000
500
0
Windows install Linux install Kernel compile Xen compile Office work HTTrack SVN Outlook Wayback

(b) Write latency with Sampling based Filtering

Fig. 14. Performance evaluation of Sampling based Filtering

VIII. RELATED WORK

Chen et al. proposed CAFTL [16] and Gupta et al. sug-
gested CA-SSD [23], and those are closely related to our work.
CAFTL makes use of the two-level indirect mapping and sev-
eral acceleration techniques while CA-SSD employs content-
addressable mechanisms based on the value locality. Indeed,
their work is excellent, inspiring a lot on our work. However,
our work differs from their approaches in the following four
aspects. First, our work is based on real implementations, using
various CPUs, and raising some empirical design and imple-
mentation issues. Second, we propose an analytical model that
relates the performance gain with the duplication rate and
deduplication overhead. Third, we examine the characteristics
of SSD workloads with the view of recency, IRG, and fre-
quency, and evaluate their effects on deduplication. Finally, we
suggest several acceleration techniques and discuss tradeoffs
on various hardware/software combinations. There are other
prominent researches for improving the deduplication effi-
ciency and performance. Quinlan and Dorward built a network
storage system, called Venti, which identifies duplicate data
using SHA-1 and coalesces them to reduce the consumption of
storage [34]. Koller and Rangaswami suggested content-based
caching, dynamic replica retrieval, and selective duplication
that utilize content similarity to improve I/O performance [27].
Zhu et al. developed the data domain deduplication file system
with the techniques of the summary vector, stream-informed
segment layout and locality preserved caching [37].

Lillibridge et al. proposed the sparse indexing that avoids
the need for a full chunk indexing by using sampling and
locality [30]. Guo and Efstathopoulos developed the pro-
gressive sampled indexing and grouped markand-sweep for
high-performance and scalable deduplication [21]. Debnath et

al. designed Chunkstash, which manages chunk metadata on
Flash memory to speed up the deduplication performance [18].

IX. CONCLUSIONS

In this paper, we have designed and implemented a novel
deduplication framework on SSDs. We have proposed an
analytical model and examined the characteristics of SSD
workloads in various viewpoints. We have investigated sev-
eral acceleration techniques including the SHA-1 hardware
logic, sampling-based filtering and recency-based fingerprint
management, and have explored their tradeoffs in terms of
performance, reliability, and costs. Our observations have
shown that deduplication is an effective solution to improving
the write latency and lifespan of SSDs.

We are considering three research directions as future work.
One direction is exploring a hardware/software co-design for
efficient mapping managements such as a parallel memory-
searching co-processor. The second direction is integrating
compression with deduplication, which can further reduce the
utilization of SSDs. The last one is evaluating the effects of
deduplication on multi-channels/ways of SSDs.

X. ACKNOWLEDGMENT

This work was supported in part by the IT R&D program of
MKE/KEIT No. KI10035202, Development of Core Technolo-
gies for Next Generation Hyper MLC NAND Based SSD and
by the Korea Science and Engineering Foundation (KOSEF)
grant funded by the Korea government (MEST) (No. 2009-
0085883).

REFERENCES

[1] “Apache subversion,” http://subversion.apache.org.
[2] “Battery or supercap,” http://en.wikipedia.org/wiki/Solid-state-drive.
[3] “Ez-x5,” http://forum.falinux.com/zbxe/?mid=EZXS5.



[4]

[5]
[6]

[7]

[8]
[9]
(10]
(11]

[12]

(13]

[14]

[15]
[16]

[17]
(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

http://superuser.com/questions/25396 1/why-does-my-windows-7-pc-ssd-
drive-keep-freezing.
“Httrack,” http://www.httrack.com.

K9LCGOSUIM NAND Flash memory,
www.samsung.com/global/business/semiconductor.
Sandforce SSDs break TPC-C records,

http://semiaccurate.com/2010/05/03/sandforce-ssds-break-tpc-c-records.
“Verilog 2001,” http://www.asic-world.com/verilog/verilog2k.html.
“Wayback machine,” http://www.archive.org/web/web.php.

“Xlinix vertex-6 family overview,” http://www.xilinx.com.

D. G. Andersen and S. Swanson, “Rethinking flash in the data center,”
IEEE Micro, vol. 30, no. 4, pp. 52-54, Jul. 2010.

S. Baek, J. Choi, S. Ahn, D. Lee, and S. Noh, “Design and implemen-
tation of a uniformity-improving page allocation scheme for flash-based
storage systems,” Design Automation for Embedded Systems, vol. 13,
no. 1, pp. 5-25, 2009.

B. H. Bloom, “Space/time trade-offs in hash coding with allowable
errors,” Commun. ACM, vol. 13, no. 7, pp. 422-426, Jul. 1970.

S. Boboila and P. Desnoyers, “Write endurance in flash drives: measure-
ments and analysis,” in Proceedings of the 8th USENIX conference on
File and storage technologies, 2010.

J. Burrows, “Secure hash standard,” DTIC Document, Tech. Rep., 1995.
F. Chen, T. Luo, and X. Zhang, “Caftl: a content-aware flash translation
layer enhancing the lifespan of flash memory based solid state drives,”
in Proceedings of the 9th USENIX conference on File and stroage
technologies, 2011.

E. Coffman and P. Denning, “Operating systems theory,” 1973.

B. Debnath, S. Sengupta, and J. Li, “Chunkstash: speeding up inline
storage deduplication using flash memory,” in Proceedings of the 2010
USENIX conference on USENIX annual technical conference, 2010.
W. Digital, “Nand evolution and its effects on solid state drive (ssd)
useable life,” Western Digital, Tech. Rep., 2009.

L. M. Grupp, A. M. Caulfield, J. Coburn, S. Swanson, E. Yaakobi,
P. H. Siegel, and J. K. Wolf, “Characterizing flash memory: anomalies,
observations, and applications,” in Proceedings of the 42nd Annual
IEEE/ACM International Symposium on Microarchitecture, 2009, pp.
24-33.

F. Guo and P. Efstathopoulos, “Building a high-performance dedupli-
cation system,” in Proceedings of the 2011 USENIX conference on
USENIX annual technical conference, 2011.

A. Gupta, Y. Kim, and B. Urgaonkar, “Dftl: a flash translation layer
employing demand-based selective caching of page-level address map-
pings,” in Proceedings of the 14th international conference on Architec-
tural support for programming languages and operating systems, 2009,
pp. 229-240.

A. Gupta, R. Pisolkar, B. Urgaonkar, and A. Sivasubramaniam, ‘“Lever-
aging value locality in optimizing nand flash-based ssds,” in Proceedings
of the 9th USENIX conference on File and stroage technologies, 2011.
A. Jagmohan, M. Franceschini, and L. Lastras, “Write amplification
reduction in nand flash through multi-write coding,” in Proceedings
of the 2010 IEEE 26th Symposium on Mass Storage Systems and
Technologies (MSST), 2010, pp. 1-6.

A. Kawaguchi, S. Nishioka, and H. Motoda, “A flash-memory based
file system,” in Proceedings of the USENIX 1995 Technical Conference
Proceedings, 1995.

H. Kim and S. Ahn, “Bplru: a buffer management scheme for improving
random writes in flash storage,” in Proceedings of the 6th USENIX
Conference on File and Storage Technologies, 2008, pp. 16:1-16:14.
R. Koller and R. Rangaswami, “I/o deduplication: Utilizing content
similarity to improve i/o performance,” Trans. Storage, vol. 6, no. 3,
pp. 13:1-13:26, Sep. 2010.

S. Lee and J. Kim, Understanding SSDs with the OpenSSD Platform,
Flashmemory Summit, http://www.openssd-project.org/, 2011.

S.-W. Lee, D.-J. Park, T.-S. Chung, D.-H. Lee, S. Park, and H.-J. Song,
“A log buffer-based flash translation layer using fully-associative sector
translation,” ACM Trans. Embed. Comput. Syst., vol. 6, no. 3, Jul. 2007.
M. Lillibridge, K. Eshghi, D. Bhagwat, V. Deolalikar, G. Trezise, and
P. Camble, “Sparse indexing: large scale, inline deduplication using
sampling and locality,” in Proccedings of the 7th conference on File
and storage technologies, 2009, pp. 111-123.

A. Muthitacharoen, B. Chen, and D. Maziéres, “A low-bandwidth
network file system,” in Proceedings of the eighteenth ACM symposium
on Operating systems principles, 2001, pp. 174-187.

[32]

(33]

[34]

[35]

[36]

[37]

A. Olson and D. Langlois, “Solid state drives data reliability and
lifetime,” Tech. Rep., 2008.

V. Phalke and B. Gopinath, “An inter-reference gap model for temporal
locality in program behavior,” in Proceedings of the 1995 ACM SIG-
METRICS joint international conference on Measurement and modeling
of computer systems, 1995, pp. 291-300.

S. Quinlan and S. Dorward, “Venti: a new approach to archival storage,”
in Proceedings of the Ist USENIX conference on File and storage
technologies, 2002.

S. Rhea, R. Cox, and A. Pesterev, “Fast, inexpensive content-addressed
storage in foundation,” in USENIX 2008 Annual Technical Conference
on Annual Technical Conference, 2008, pp. 143—-156.

J. Standard, “Solid-state drive requirements and endurance test method
(jesd218),” JEDEC, Tech. Rep., 2010.

B. Zhu, K. Li, and H. Patterson, “Avoiding the disk bottleneck in the data
domain deduplication file system,” in Proceedings of the 6th USENIX
Conference on File and Storage Technologies, 2008, pp. 18:1-18:14.



