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Abstract—Data deduplication is an important component of
enterprise storage environments. The throughput and capacity
limitations of single node solutions have led to the development
of clustered deduplication systems. Most implemented clustered
inline solutions are trading deduplication ratio versus perfor-
mance and are willing to miss opportunities to detect redundant
data, which a single node system would detect.

We present an inline deduplication cluster with a joint dis-
tributed chunk index, which is able to detect as much redundancy
as a single node solution. The use of locality and load balancing
paradigms enables the nodes to minimize information exchange.
Therefore, we are able to show that, despite different claims in
previous papers, it is possible to combine exact deduplication,
small chunk sizes, and scalability within one environment using
only a commodity GBit Ethernet interconnect. Additionally, we
investigate the throughput and scalability limitations with a
special focus on the intra-node communication.

I. INTRODUCTION

Tape systems have been the first choice to build backup
environments for a long time, as the costs per capacity have
been and still are lower than the same costs for magnetic
disks. This price difference has been sufficient to outweigh the
drawback of slow access and rebuild times, as the capacity of
a backup system is typically much bigger than the capacity of
the corresponding online storage, making cost efficiency the
primary objective.

Data deduplication have turned the cost advantage from
tape storage to magnetic disks. Deduplication exploits the
inherent redundancy in backup environments as typically only
a very small percentage of information is changed between
two successive backup runs [1]. Deduplication environments
are able to detect identical [2], [3] or very similar [4] blocks
on a fine-granular level, so that redundant information has to
be stored only once.

Deduplication technology is restricted to random-access
media and cannot be efficiently used based on tape technology,
as a backup is no longer a sequential data stream on the target
medium. Its cost effectiveness combined with the enormous
data growth and higher demands on backup window lengths
and recovery times lets deduplication on magnetic disks be-
come an important component of enterprise storage systems.

The success of data deduplication appliances can be com-
pared with the success of network file servers some years ago.
In the beginning, users experience simplified and more cost
efficient backups. Afterwards, they need more than a single
deduplication appliance and have to build up an infrastructure
of single-node appliances. This infrastructure is difficult to

manage and efficiency decreases, especially as the index is
not shared among the different single-node appliances.

A promising approach is to build deduplication systems
out of cooperating nodes [5]–[7]. However, most investigated
solutions trade the deduplication ratio for throughput. The
approaches are willing to miss opportunities to deduplicate
data chunks, which a single node deduplication system would
detect. Other approaches have only been evaluated in a simu-
lation environment, with big chunk sizes, or with a very small
cluster sizes.

We use the term “exact deduplication” for deduplica-
tion systems that detect all duplicate chunks. The definition
helps to differentiate from similarity-based or delta-encoding-
based deduplication approaches (e.g., [4]), but also from
fingerprinting-based environments, which trade deduplication
ratio for other properties like throughput, which are also called
“approximate deduplication” systems [7].

The chunk size of an exact deduplication system is usually
between 4 KB and 16 KB. These chunk sizes are set as a base
line by the Venti backup system [8] or the Data Domain solu-
tion presented by Zhu et al. [2]. Very small chunk sizes (512
bytes or even smaller) mean a (slightly) higher deduplication
ratio, but the overhead is unreasonably high.

It is the aim of this paper to investigate limitations and
opportunities for exact deduplication systems with small chunk
sizes. Deduplication systems with larger chunk sizes are not
considered within this paper, because many opportunities to
detect redundancy are lost.

We propose an exact inline deduplication cluster with a
joint distributed index. The design avoids to send the actual
deduplicated data over the network in nearly every situation.
Typically, only fingerprints are exchanged between the nodes,
so that we minimize information exchanged over the internal
interconnect. We show that even with a commodity GBit
Ethernet interconnect, the bandwidth and latency impact of
the communication between the cluster nodes is very small
and that the system scales at least up to 24 cluster nodes.

The main contribution of this paper is to show that it
is possible, despite different claims in previous papers (e.g.
[5]), to combine exact deduplication with small chunk sizes
and scalability within one environment. This solution has
not only been simulated, but all presented scalability results
have been measured with a real implementation. Besides this
evaluation, we present the architecture and required fault
tolerance mechanisms. In addition, we provide a simulation
to investigate the upper bound of the achievable throughput.978-1-4673-1747-4/12/$31.00 c© 2013 IEEE
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Fig. 1. Single deduplication node. Incoming SCSI requests are chunked
and fingerprinted, and then chunk lookup requests are sent to the responsible
nodes of the cluster.

The paper starts with an overview of the system design
before describing the storage organization (Section III), the
communication protocols (Section IV), and the fault tolerance
mechanisms (Section V). The evaluation in Section VI investi-
gates the throughput and scaling properties of the system. The
paper concludes, after an overview of related work (Section
VII), with a discussion of the results and future work (Section
VIII).

II. SYSTEM DESIGN OVERVIEW

Most clustered deduplication solutions trade performance
for deduplication ratio. These solutions do not detect the
same amount of redundant data as a single-node solution
could, which is applying the same chunking and fingerprinting
algorithms. The solution presented in this paper is using a
different architectural approach, which is based on two design
objectives: We are not willing to lose part of the deduplication
ratio and the deduplication appliance has to offer the standard
interfaces iSCSI and FibreChannel (FC), so that clients do not
have to install new drivers (this is, e.g., different from the
solution presented in [6]).

The deduplication cluster is based on the “dedupv1”, a
single node deduplication system, which builds the founda-
tion for a commercially available single-node deduplication
appliance [9]. The dedupv1 system can be classified as an
inline, fingerprinting-based deduplication system using Flash-
based SSDs to overcome the disk bottleneck. The dedupv1
daemon process presents itself as iSCSI target, which can be
used as a block device on most operating system. All incoming
write requests are split up and are aligned to “blocks” of
256 KB. The chunking is based on content-defined chunking
with Rabin’s fingerprinting method [10], [11]. Each fingerprint
is identified based on a 20 byte SHA-1 hash value.

An SSD-based chunk index is used to store all previously
stored chunk fingerprints. The dedupv1 daemon queries this
index to check whether a given chunk is new. A write-ahead
log and an in-memory write-back cache are used to avoid

random write operations in the critical path. This design allows
us to delay persistent index updates for a very long time and
also enables various optimizations to aggregate write I/Os.

The information necessary to restore the block data from
the chunks is stored in the block index, which is organized
as a persistent B-tree also using a write-ahead log and in-
memory write-back caches. All non-redundant chunks are
collected in 4 MB containers (see also [2], [3], [8], [9] for the
container concept) and are stored on a disk backend. A garbage
collection process counts how often a chunk is referenced and
removes unused chunks from the chunk index and the backend.

The cluster version investigated in this paper inherits most
of these properties. However, all storage components are
split and distributed to all nodes. The design consists of the
following components:

Deduplication Nodes: Deduplication nodes are extensions
of the single-node variant. They export volumes over iSCSI
and FC, accept incoming requests, perform chunking and
fingerprinting, reply to chunk mapping requests of other nodes,
and write new chunks to the container storage. Figure 1
shows the internal components of a deduplication node. All
deduplication nodes are responsible for a part of the chunk
index, the block index, and the container storage.

Shared Storage: Deduplication nodes have access to disks
and SSDs via a storage area network (SAN). The available
storage is split into many partitions. Each partition contains
its own separate (standard) file system and is only accessed
by a single deduplication node at a time. However, in cases
of node crashes, a surviving node takes over the responsibility
for a partition and can restart operating with that partition. A
similar approach is used for load balancing, where the system
moves the responsibility of a partition to a different node. In
both cases, there is no need to move any data. The design
enables us to avoid the complexity of parallel file systems.

We rely on the shared storage backend to provide a reliable
access to the stored data, e.g., by using RAID-6 on HDD as
well as SSD storage. As we will explain later, there is no need
that a deduplication node can access the complete storage.
It is sufficient if every node can only access its subset of
partitions. The only requirement is that all storage partitions
are accessible by enough deduplication nodes to tolerate node
failures and to enable load balancing.

The system distinguishes between different types of parti-
tions, some using HDDs, some SSD-based storage. The types
of partitions and the role in the system are described in Section
III.

Interconnect between deduplication nodes: The design
always tries to avoid sending chunk data over the network.
However, around 120,000 chunk index lookups per GB/s
throughput are required in case of an average chunk size of
8 KB. We will later show that even a GBit Ethernet connection
is fast enough to provide a high-throughput. We assume that
the network is dedicated for internal communication. The SCSI
traffic uses a separate network.

Clients: Every system that supports standard block-level
protocols like iSCSI and FC can be a client and our approach



does not require any special modifications on the client.
Distributed Coordination: The open source software

ZooKeeper is used for configuration as well as the master
election and the assignment of nodes to storage partitions
[12]. A ZooKeeper daemon runs on all or on a subset of the
deduplication nodes. All deduplication nodes connect to the
ZooKeeper instance for distributed coordination.

III. STORAGE ORGANIZATION

A central design decision of the storage organization is to
rely on shared storage for all data. This includes deduplicated
data stored on an HDD-based storage backend as well as the
performance critical index stored on SSDs. The shared storage
is the foundation for our fault tolerance that relies on the
ability to redistribute the tasks of a crashed node. Therefore,
we move the responsibility for the system reliability from the
deduplication system to the storage backend.

The design decision to use shared storage might seem
counter-intuitive, because many of today’s scalable storage
systems apply the “Shared Nothing” approach [13]. Tra-
ditionally shared disk system use complex communication
schemes so that multiple nodes can access the same storage
concurrently. The distributed dedupv1 architecture avoids this
and allows only a single node to access a partition. Besides few
cases, the shared storage is used as if it were local. This avoids
the complexity and inefficiencies of typical shared storage
approaches.

Each storage partition is identical with a typical storage
partition formatted with a local file system like ext4. Each
partition is assigned to a node and the responsibility for a
partition is moved between nodes either for load balancing,
node maintenance, or crash recovery.

All persistent data structures of dedupv1, especially chunk
index, block index, and the container storage are split into
several parts, where each part is stored on a partition. We
therefore differentiate between chunk index partitions, block
index partitions, container partitions, and container metadata
partitions. The partition types differ obviously by the data
structures stored on them, by the type of storage system (SSD
or HDD), and by the operations on the partition for fault
tolerance and load balancing, which are explained in Section
V.

Each chunk index partition contains a part of the overall
chunk index. As the chunk index is a very performance-
sensitive data structure, all chunk index partitions are stored on
SSD storage. Chunks are assigned to partitions by hashing the
chunk fingerprint. Load balancing can be performed by simply
reassigning partitions to different nodes and there is no need
for advanced randomized data distribution and load-balancing
schemes [14] [15], [16]. A fixed number of partitions, usually
much higher than the expected number of nodes, is created
during initialization and the system has to ensure that all
partitions must be assigned at all times. Figure 2 illustrates
the shared chunk index with several chunk index partitions.

Each block index partition contains a part of the block
index data. Each exported volume is assigned completely to
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Fig. 2. Shared chunk index. The system hashes chunk fingerprints to the
[0,1) interval, which is divided into equal sized partitions. When a chunk is
mapped, the deduplication node that mounts the corresponding responsible
partition becomes the responsible node for the chunk and adds an entry in
the partition’s chunk index.

one index partition. This means that only the node currently
responsible for that index partition can export the volume. It
is planned to implement SCSI Referral support for more fine-
grained manageability [17]. A block index partition is only
assigned to a node if a volume is assigned to it.

A container partition contains a part of the container
storage. In contrast to other partitions, this partition is stored
on a disk-based RAID storage. If a node runs out of space in
its assigned containers, new container partitions are mounted.
If a node observes a significantly higher than average load on
one of its container partitions, load balancing is performed by
moving the responsibility of partitions to other nodes.

A container metadata partition stores performance-
sensitive metadata about a container partition on SSDs. This
includes, e.g., the current on-disk location of a container
partition. There is always a one-to-one mapping between
container partitions and their metadata partition.

Multiple partitions of each type can be assigned to each
node. The assignment is stored in ZooKeeper and is managed
by the elected master. If the master fails, a leadership election
process in ZooKeeper is used to elect a new one.

It is critical to understand why we have chosen a shared
storage model instead of the more common shared nothing
model. One central reason is to reduce network load, as the
shared nothing model requires to replicate data to multiple
nodes. If data would only be stored locally on one node
and this node goes down, the data would be unavailable
until the node becomes online again (e.g., after a hardware
replacement) or after disks are physically moved to a different
node. However, replication of written data also means that the
chunk data has to be copied over the internal communication
network. As we will see in Section VI, we are able to scale
up to 24 nodes and probably even far beyond that, while
transporting data over the backend network would prohibit
this. The fact that only in extreme cases (all assigned storage
is full and even the load balancer is not able to provide any
non-full storage) chunk data is transported over the network
is an important property of our design.
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Fig. 3. Communication pattern. In this example, only node 2 has a non
existing chunk index entry and thus receives an additional acknowledgement
at the end.

A storage partition has not to be accessible from all dedu-
plication nodes, as long as every partition is accessible from
enough nodes to tolerate node failures and to ensure an even
load distribution. This is similar to the “views” described in
consistent hashing [14], which makes it easier and also more
cost efficient to extend the backend HDD and SSD storage.

IV. INTER-NODE COMMUNICATION

Our main approach to optimize the amount of messages and
exchanged information is to never sent new chunk data over
the internal network. In detail, a write request is processed as
follows:

A client sends a write request with a block of data to
a deduplication node. Internally the data is processed in
blocks of 256 KB, which is usually also the largest size of
write requests over iSCSI. All SCSI requests are processed
concurrently facilitating current multi-core CPUs.

After chunking and fingerprinting, it is checked for each
chunk if it is already known or not (chunk lookup). For
this, the node first hashes the fingerprint of each chunk to
a chunk index partition. Next, the node determines the nodes
that currently responsible for the chunk index partitions. The
partition-to-node mapping is stored in a distributed coordina-
tion service ZooKeeper. Since this information only changes
rarely, it is easily cachable. Therefore the partition-to-node
resolution usually doesn’t need any communication.

After resolving the nodes that are responsible for the current
chunks, chunk lookup request messages are sent to the nodes.
Each message consists of all fingerprints requests on that node
as well as a request id for reference.

When receiving the chunk lookup request, the requested
node performs a chunk index lookup for all fingerprints in the
request and answers in a single message. If there is an entry
for a chunk, the node answers with the id of the partition and
the id of the container in that partition that holds the chunk
data. Since this is only a read operation and other requests
can not modify it, there is no need for a locking mechanism.
If the chunk is not found in the chunk index, the chunk has

appeared for the first time and the requested node answers with
an is-new flag. In addition, it locks the index entry, delays any
further request for that chunk, and waits for an answer of the
requesting node.

When the requesting node receives an answer, it stores new
chunks and sends an acknowledgement message back, which is
filled with the ids of the partition and container now holding
the chunk data. The requested node then updates the chunk
index and answers all delayed requests based on the new
information. If no acknowledgement message arrives within
a given time bound, the requested node unlocks the entry
and takes no further actions. Otherwise, if there are delayed
requests, the requested node answers the first delayed lookup
request as if it were the first and proceeds as described.

After all chunk lookup requests are answered and possible
acknowledgement messages are sent, the node updates its
block index. Note that a future read operation does not need
a chunk index lookup as the block index in combination with
the partition mapping holds all information about the chunk
location. Figure 3 illustrates the communication pattern.

After all chunk lookup requests and possible acknowledge-
ment messages are answered, the node updates its block index.
Note that a future read operation does not need a chunk index
lookup as the block index in combination with the partition
mapping holds all information about the chunk location.

The deduplication nodes apply further optimizations: All
nodes have a cache containing least recently used chunk
fingerprints it has send chunk lookup requests for. Also, all
nodes use a page cache before the chunk index to avoid going
to the SSD storage if the index page has been requested
recently. Furthermore, the zero-chunk (a chunk of maximal
length containing only zeros) is known to occur often in
realistic workloads [7], [18]. This chunk is always treated
locally as a special case. In addition, storing new chunks
locally creates a data locality that is used to optimize the read
performance. The data of all chunks that have been written to
that volume first are locally available and does not have to be
fetched from other nodes.

The system may query another node for each chunk that is
written to the system. With our default average chunk size of
8 KB, this means 120,000 chunk lookup requests per second
are necessary to reach a system throughput of 1 GB/s. We
are interested in the number of messages these lookups and
the rest of the communication scheme results in. For this, we
compute the expected number of messages m exchanges for
a write request originated on node i. It is the sum of lookup
messages (phase 1), response messages (phase 2), and address
notification messages exchanged about new chunks (phase 3).
The cluster size is n and the expected number of chunks per
write is c =

request size
average chunk size . The probability of a chunk

to be new is pn. The set of chunks C of size c is assigned
to nodes using a randomly selected hash function. The subset
of new chunks is Cn. The expected size of Cn is pn · c. The
set of chunks assigned to a node j is denoted with H(C, j).
P [i→p j] denotes the probability that node i sends a message



to node j in phase p.

m =
∑
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(
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n
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)

(1)

We do not model the chunk caches and node failures.
Messages sizes are not relevant here as all messages fit into a
single TCP/IP segment.

Figure 4 illustrates the equation (1) for different average
chunk sizes and cluster sizes for a 256 KB write request
and probability of 2% of new chunks, which is a realistic
probability for backup runs. In general, the number of neces-
sary messages increases faster than linear when the cluster is
smaller than the number of chunks c. We call this region “small
cluster region”. If the cluster is larger, the number of messages
per node stays largely constant regardless of the cluster size.

In a single-node deduplication system doubling the chunk
size usually increases the throughput by a factor of two when
the chunk index are the bottleneck. It should also be noted
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that doubling the chunk size is not reducing the number
of messages exchanged when the cluster size is still in the
small cluster region. If the communication instead of the
actual chunk index lookup is the bottleneck, this implies that
increasing the chunk size is not increasing the throughput as
it does in a chunk lookup bottlenecked system.

From this discussion follows that the cluster needs a well-
designed inter-node communication system that optimally
minimizes the amount of information exchanges and is op-
timized for very high messages per second rates. Other prop-
erties like latency and data throughput are only of secondary
importance in our setting.

All messages are received and sent through a highly paral-
lelized central communication system (Figure 5) within each
node, which keeps TCP/IP connections to all other cluster
nodes open. All incoming messages are first delegated to
a series of converter threads that convert the raw messages
to higher-level objects. The converter also check additional
message checksums. The objects are then delegated to a thread
pool using a concurrent queue. Also, outgoing messages are
placed in a queue, where the messages are popped from a
series of sender threads that serialize the message and send
them over the outgoing sockets.

In Section VI we not only present an evaluation of the
deduplication prototype, and also investigate the limits on the
message rates the communication system is able to process.
This limits which determines the achievable throughput and
scalability.

V. FAULT TOLERANCE AND LOAD BALANCING

Fault tolerance is the most important property of storage
systems. For backup storage systems, it is critical to be able
to continue operations within a short timeframe after a failure
because of the limited size of backup windows.

Fault tolerance can be implemented on different levels. We
assume that the backend storage (HDD/SSD) is an enterprise-
class storage system uses appropriate RAID schemes, disk
scrubbing, or even intra-disk redundancy [19]–[21]. In the
following we assume that do not have to deal with the
reliability of the shared storage system.



However, we have to deal with any kind of node crashes.
As explained before we are using the shared storage for fault
tolerance instead of explicit replication. When the current
master node is informed about a node crash, the master node
reassigns all partitions to other nodes that also see the storage
of the partitions. After all partitions are mounted on the new
assignees and the necessary recovery operations are complete,
the operations can continue. When the current master node
fails, a new master node is elected and the same operations
are performed. The recovery operations for the partition types
differ:

The chunk index partition is especially important because
the complete system halts if it is not available. Therefore
the operations must resume after a few seconds. A new
node immediately mounts the partition and starts processing
messages. However, we use write-back caches for the chunk
index and while all operations are logged in the write-ahead
log, our design avoids replaying the complete write-ahead log
because this might take too long. The system can not wait
until the log is replayed. Therefore, we do not recover the
exact state. This leads to a situation where chunks are stored
in containers, but the chunk index has not entry for these
chunks. Chunks that have been stored previously in the write-
back cache, but whose entires have not yet been persisted to
disk are classified as new chunks. They are false negatives as
these chunks have actually already been stored. This leads to
unwanted duplicates. However, when the write-ahead log is
replayed in the background these false negatives are detected
and removed. As these false negatives only happening after
crashes, the overhead is negligible.

As the system is used for backups, a downtime of up to a
minute is acceptable for the block index partition. However,
delivering out-dated results is not. Therefore, another node
takes over the block partition, reads all un-replayed log entries
and rebuilds the exact state of the block index. All operations
on other volumes can continue while the partition is being
rebuild. As the usually store only small amounts of blocks in
the write-back cache of the block index, a rebuilding process
completes very fast.

The recovery of a container partition is even easier. It
consists only of mounting the partition and the corresponding
management partition at another node and recovering the last
containers that have not been closed and finally written to disk.
We write all uncommitted container data to a temporary stor-
age location. We recover these containers from this temporary
location and commit them to the container storage.

Placing partitions on that shared storage allows a fast
recovery from node failures while avoiding explicit replication
in the communication protocol. Therefore, we optimize for
the common case and can free network for e.g. chunk lookup
requests.

A related topic is load balancing. Again, the load balancing
differs between the partition types:

The system always tries to distribute the chunk index
partitions uniformly among the nodes. Given a fixed amount
of nodes, rebalancing is not necessary because the direct

hashing ensures a uniform distribution of chunks (and thus
chunk lookups) to the equal-sized chunk index partitions. This
follows basic theorem of balls-into-bins games stating with a
high probability that if m items are distributed randomly to n
nodes with m > n · logn, no nodes stores more than

m

n
+ Θ

(√
m ln(n)

n

)
items [22]. Here our static scheme with equal-sized parti-
tions ensures that the data distribution is not introducing a
imbalance. A more dynamic scheme would require methods
like consistent hashing, in which the partitions with a high
probability differ by a factor of O(logn) in size. In the basic
form, this would introduce a imbalance [14].

Rebalancing a block index partition becomes necessary
if a deduplication nodes exports SCSI volumes which are
heavily used. This step involves a reconfiguration of the client
because otherwise the node would have to redirect every SCSI
to the overtaking node and thus flood the network and reduce
overall performance. The system first evicts all dirty pages
from the block index write back cache, so that a new node
can immediately provide the SCSI volumes after the remount.

The container partition are the easiest to balance. The load
is measured in terms of the fill ratio and the write and read
operations. The load balancing ensures that all nodes have a
container partition mounted with enough free space if this is
possible.

All rebalancing invalidates the partition-to-node caches
mentioned in Section IV. If a node receives a request that
requires a partition it no longer mounts, it answers with an
error code. The requesting node then updates its cache and
resends the request to the correct node.

It should be noted that the prototype evaluated in Section VI
writes all write-ahead logs necessary for the recovery process
here, but the recovery and the load balancing are currently not
fully implemented.

VI. EVALUATION

We have evaluated the throughput and scalability of our
exact deduplication cluster by building a prototype based on
a single node variant and running performance tests using a
real cluster of machines. This differs from other evaluations
of clustered deduplication systems that are mostly based on
simulations or theoretical analysis.

A. Evaluation Methodology

There is no agreed upon public benchmark for deduplication
systems (see, e.g., [23]). New deduplication systems are often
not evaluated using a prototype or a real implementation.
Furthermore evaluations often use non-public data sets, which
are either gathered ad-hoc or which are based on customer
data [2].

We evaluate our prototype by generating a fully artificial
data stream that resembles a block based backup. The data
generation model is based on data deduplication traces from a
previous study of the authors [1]. The source code and all other



necessary data of the data generator are available on GitHub1.
We hope that this will help other researchers to perform similar
tests and to provide comparable evaluation results.

The data written to the deduplication system is generated as
follows. As long as the test runs, we pick the next from two
states (U for unique data or R for redundant data) and choose
independently and randomly how much data is continuously
generated from the chosen state. The length is chosen based
on the empirical distribution extracted from the raw traces
of a previous study [1]. In the study the central file server
of the University of Paderborn, Germany, was scanned every
weekend and all fingerprints were traced. The trace data was
used to calculate the possible deduplication ratio on the file
server and between different backup runs. It was not possible
to fit the empirical distributions good enough to well-known
probability distributions like the exponential distribution. The
probability distributions of U and R are highly skewed and
appear to be heavy-tailed. It is an important insight that unique
and redundant chunks are not distributed uniformly in the
data stream, but they come in “runs”. If a chunk is unique,
it is probably that the next chunk is unique, too. We found
that besides the basic property of the deduplication ratio, this
distribution of chunk lengths is the most important property
to generate artificial data for the evaluation of deduplication
systems. Park and Lilja confirmed these runs [24]. They
observed that the average run length varies little between the
different data sets they have analyzed. However, the maximal
run length and the skewness varies, which has an impact on
the throughput observed in their simulations. The run length
statistics of redundant data observed in the trace file used
for the data generation have a mean of 143 KB, a median
of 16 KB, and a maximum of 3498 MB. The statistics for the
run lengths of unique data have a mean of 337 KB, a median
of 19 KB, and a maximum of 6582 MB.

The data for the unique state U is generated using a
pseudo random number generator with a sufficient sequence
length. To generate redundant data (R), we pre-generate a
number of redundant blocks and then pick one of these blocks
independent at random via an exponential distribution, as we
observed that an exponential distribution is a good fit for the
reuse pattern of redundant chunks.

Similar to previous studies, we distinguish the first backup
generation and further backup generations. The system is
empty before the first generation, so that no inter-backup
redundancy can be used. In the second (and later) generations,
the deduplication system can use chunk fingerprints already
stored in the index.

The second data generation is generated similarly to the first
one. Here we use the empirical distributions for new unique
data (U ), intra-backup redundant data (R), and inter-backup
redundant data (BR). The probability distributions are also
extracted from the same real-world traces. The redundancy
between consecutive backup runs is determined by comparing
the changes between weekly trace runs. In addition, we

1https://github.com/dmeister/dedupbenchmark/tree/online

BR U BR R BR R BR R U

Fig. 6. Illustration of the data pattern of the second backup generation. BR
= inter-backup redundant data, R = intra-backup redundant data, U = unique
data. The length of the blocks are randomly chosen according to a probability
distribution extracted from real world data. The marker in upper half denote
the chunks.

extracted the probability distribution of state switches between
the states (U , R, BR). The most common state switch is to
the R state, as up to 98% of the data is redundant data. We
assume that the Markov condition holds for state switches,
which means that the probability for a state switch does not
depend on previous state switches. The generation for U and
R is the same as in the first generation. Intra-backup redundant
data is generated by generating the same data as in the first
run. Figure 6 shows an illustration of the data generation for
the second generation.

We have chosen to simulate a block based backup with
4 KB blocks. All generated run lengths are rounded up to the
block size. We only benchmark the first and the second backup
generations and are unable to include long-term effects, which
is not the focus of this study. As we have no trace data about
data sharing between clients, we have not been able to model
cross-client sharing. We generate data with different random
generator seeds for each client and therefore do not have
any data sharing, which is a worst-case assumption for the
environment.

The approach of the workload generation allows an evalu-
ation of a fingerprinting-based deduplication system without
using proprietary ad-hoc datasets. It allows to reasonably re-
assemble backup runs of arbitrary size. It generates backup
data with similar deduplication ratios and similar data layout
of redundant and non-redundant parts of the data stream.

We validated the workload generation comparing a real data
set from work-group computers with a similar deduplication
ratio and the data generation on a single-node dedupv1 system.
The throughput differs within a margin of 5%. The data
generation seems to capture the essence of the data pattern
and data localities needed for the throughput evaluation of
our deduplication prototype.

An early version of the scheme has been described in a
previous work of the authors [9]. The two most important
differences are: 1) We are now able to generate the data during
the test run instead of only pre-generating data, which is read
from disk/SSD during the tests. The benchmark environment
therefore does not have to include large and fast disk storage
on the workload generating clients and allows the generation of
arbitrary large data sets. 2) The generation of redundant data is
now modeled more accurate. It has been observed (e.g., [1])
that some redundant chunks are referenced more often than
other redundant chunks. We now incorporate the skew in the
usage of redundant chunks into the data generation algorithm.

We have had exclusive access to a 60-node cluster for
the scalability tests. All nodes are identical 1U Fujitsu



RX200S6 servers with two 6-core Intel X4650 CPUs running
at 2.67 GHz and having 36 GB RAM. All nodes have GBit
Ethernet and InfiniBand 4xSDR HCAs. Both networks are
fully switched. We used a CentOS 5.4 with a custom 2.6.18
Linux kernel. The distributed dedupv1 system is actually
designed to work with deduplication nodes built out of low-
end hardware and to scale horizontally. Most CPU power and
the RAM available in the evaluation cluster has been mainly
unused, originating from the fact that we had only the nodes
of an HPC cluster available for our evaluation.

The 60-node cluster has been partitioned as follows. Up to
24 nodes built the deduplication cluster. Up to 24 nodes are
used as clients for workload generation. Up to 12 nodes are
used as iSCSI targets to provide the shared storage emulation
(6 SSD, 6 HDD). There is always a 1:1 correspondence be-
tween deduplication nodes and clients and a 4:1 ratio between
deduplication nodes and storage emulation nodes if more than
4 deduplication nodes are used.

The internal communication of the deduplication cluster can
be switched between GBit Ethernet and IP over InfiniBand
(IPoIB), which is a protocol to tunnel IP packets over Infini-
Band. Unless otherwise noted, the GBit interface is used. The
system is configured to use 8 KB content-defined chunking
using Rabin Fingerprints and to store chunks in 4 MB con-
tainers. We did not compress each chunk using an additional
compression as usually done in deduplication systems, e.g., in
[2]. Given enough CPU power, a fast compression additionally
helps to increase the throughput by reducing the amount of
data written to the backend storage. The distributed chunk
lookup cache is set to 2 MB per deduplication node.

The client nodes generate backup data using the data
generation scheme described above and write the data to
volumes exported by the deduplication system via iSCSI. Each
client writes 256 GB data in each generation. Therefore, the
evaluation scaled up to 12 TB of written data in the largest
test configuration. The iSCSI traffic uses IP over InfiniBand
(IPoIB) to ensure that the GBit Ethernet network is free
for the internal communication. A real deduplication system
would instead have two or more separate Ethernet connections.
Additionally, this ensures that the iSCSI transfer throughput
is not the bottleneck.

The HPC-cluster had no shared storage available that would
have been appropriate for our use case. As hardware changes
were not possible, we had to simulate SSD storage using an
SSD performance model proposed by El Maghraoui et al.
[25]. We patched an iSCSI target framework, so that a RAM-
disk-based volume has been exported over iSCSI that behaved
according to the SSD performance model. The extra latency
for a 4 KB read was 245µs, the write latency of it 791µs. The
general processing overhead, e.g., of iSCSI added additional
latency. We have emulated the HDD-RAID-like storage in
a similar way. As only sequential write operations (4 MB
container commit) are performed in the tests, we adjusted
the latency accordingly to 1,700µs. The data itself has not
been stored, as we did not wanted to include the influence
of backend HDD storage, which can be nearly arbitrarily
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Fig. 7. Throughput using Gigabit Ethernet interconnect for different cluster
sizes. The dashed bars show a linear scaling.

scaled today. We validated the storage setup with our single-
node version and have seen a similar performance with real
hardware. The differences can be explained, e.g., as we have
used a different SSD model than it was used by El Maghraoui
et al. to generate the SSD performance model.

The deduplication nodes are stopped and restarted between
the first and second data generation as well as all operating
system caches are cleared after the system initialization and
the simulated backup runs.

B. Scalability and Throughput

The throughput of a deduplication system is the most impor-
tant performance property besides the storage savings, because
the size of a backup window is typically very small. As our
deduplication scheme ensures the same deduplication ratio as a
single-node deduplication system with the same chunk size, we
focus here on the overall cluster throughput. For the evaluation,
we scaled the cluster from 2 to 24 nodes as described above.
The throughput and scalability for the GBit interconnect is
shown in Figure 7 for up to 24 deduplication nodes. We
achieved 3.01 GB/s for the first generation and 5.2 GB/s for
the second generation. We can observe an exponential scaling
with a factor of over 0.86. This means that if we double the
size of the scenario and the system under evaluation, then the
throughput increases by at least 86% (at least up to 24 nodes).

Figure 8 shows a detailed breakdown of the timings for an
average write for the first and second generation in the 24
nodes case. In the first generation, the chunk writing and the
chunk lookups dominate with a total share of 91.9%. The high
chunk write share of 66.9% is caused by the high percentage
of new data. The next larger component is the chunk lookup
with 24.5%, which represents the time to collect necessary
chunk information from all nodes. The remaining components
(block index 4.4%, chunking 2.7%, fingerprinting 1.3%) play
a smaller role.
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In the second generation, the chunk write share (2.4%)
nearly vanishes, because most data is now known and does not
need to be stored. As a consequence, the fractions of chunk
lookup (67.4%), block index (17.1%), chunking (9.0%) and
fingerprinting (3.8%) rise.

Additionally, we used InfiniBand hardware as a drop-
in replacement using IPoIB for intra-node communication,
which is tunneling IP traffic over the InfiniBand network. The
throughput results are shown together with the GBit results
in Table I. Surprisingly, the throughput is not significantly
different. Even lower throughput has been measured. This is
another indication that the internal processing capabilities are
the bottleneck in our evaluation, and not the network itself.
The additional evaluations focused on the network, which we
present in the next section, support this assumption.

C. Communication-induced Limits on Throughput

An interesting property we focus our further analysis on
is the interconnect. In the evaluation with 4 nodes, each
node sends on average 6,573 messages per second with an
average message size of 118 bytes. Each chunk lookup request
message contains on average requests for 3.6 chunks (see
Section IV for the underlying mechanisms).

The aggregation of multiple chunks into a single chunk
lookup request message significantly reduces the load in

TABLE I
AVERAGE PER-NODE/TOTAL THROUGHPUT IN MB/S USING DIFFERENT

INTRA-NODE INTERCONNECTS.

Gigabit InfiniBand
1.Gen 2.Gen 1.Gen 2.Gen

1 166 166 343 343 166 166 342 342
2 155 310 311 622 156 312 304 608
4 134 536 281 1124 134 536 278 1112
8 134 1072 263 2104 133 1064 255 2040

16 126 2016 232 3712 127 2032 229 3664
24 125 3000 218 5232 124 2976 209 5016
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Fig. 9. Theoretical limits on cluster throughput based on network commu-
nication.

smaller clusters, but the effect vanishes later. In the case of a 16
node deduplication cluster, the average message size decreases
to 58 bytes and each node has to send 19,528 messages per
second on average. Each message includes on average requests
for 2.3 chunks. This drops even to 1.5 chunks on average for
clusters with 32 nodes.

The important observation is that the number of generated
messages per node based on incoming SCSI writes cannot
increase to a number higher than the number of chunks
per request. For each incoming 256 KB data block, a node
generates at most as much messages as there are chunks,
regardless of the number of nodes in the network.

This explains the sub-linear scalability observed in the
evaluation measurements for our cluster with up to 24 nodes.
In that node range, each increase in the node count increases
the number of messages a node has to process in two ways: 1)
More nodes (in our experiment) means more write requests,
which create more chunk lookup requests and 2) the average
number of chunks per chunk lookup request is reduced, which
means more messages per write request. However, with each
increase in the number of nodes the ability to process messages
increases only linearly.

This opens up a new question. Assuming that we can scale
the actual chunk index lookups on the SSD storage using
faster and/or more SSDs: what is the performance limit caused
by the communication overhead if we also ignore all other
components of the deduplication system. The focus on the
impact of the communication and networking aspects allows
us to derive a limit using the current setup and architecture.

For the estimation, we used the same hardware as before
(see Section VI-A), but this time we only had up to 8 nodes
available. Each node generated one million requests that repre-
sent writes of size 256 KB. For each request, a node randomly
maps chunks to nodes and sends the fingerprints to the chosen
ones. All chunks to the same node are aggregated together



and sent as a single chunk lookup message. A receiving node
declares each chunk as new with a probability of 2% to reflect
the rate of new data in consecutive backup runs. This models
the communication pattern of the chunk index lookups in our
distributed deduplication system, while eliminating all other
factors.

Figure 9 shows the theoretical achievable maximum
throughput with different cluster and chunk sizes when we
only focus on the chunk lookup network traffic (with 95%
confidence intervals). The cluster throughput for 8 KB chunks
starts at 6.2 GB/s and rises to 9.4 GB/s for 4 nodes after which
it slowly degrades to 8.8 GB/s for 8 nodes. This shows that
the message processing rate of the nodes is the bottleneck
rather than the network itself, because the total number of
messages sent during the experiment has no impact on the
performance. In a 4 node cluster with an average chunk size
of 8 KB each request results in expected 32 chunks such
that each node has to answer expected 8 chunks. Hence, a
request generates at least 3 messages w.h.p. not counting extra
communication for new chunks. In an 8 nodes cluster each
node has to answer expected 4 chunks, which results in at
least 7 messages per request. The slight performance decrease
comes from the increased waiting time, as the nodes must
process more messages.

The results support our thesis introduced earlier that the
nodes’ ability to process messages is the bottleneck in these
experiments. However, as explained before, the number of
generated messages only grows linearly after a certain cluster
size is reached. We see this for the scalability in latter
experiments for the large chunk sizes, even for the small
cluster of only up to 8 nodes. The turning point where the
communication system would stop to be a scalability problem
is approximately 32 nodes for 8 KB chunks and 16 nodes for
16 KB chunks.

Another source of scalability problems could be the network
switch. It would be possible to reach a point where the switch
is not able to deliver the messages per second. However, the
results show no sign of a saturation in the GBit Ethernet
network switch. As long as all nodes are connected to a
single HPC-class switch, we do not expect this to be an issue.
However this is here the case, because only fingerprints and
not the actual chunk data is exchanged over the network.

The overall throughput improves if the message processing
load per node decreases. This can be achieved by either
adding more nodes while fixing the number of requests or
by increasing the average chunk size. The latter can be seen
in Figure 9 and reduces the number of chunks per request
and thus, the maximum number of messages for collecting
the chunk information. The best performance is reached for
256 KB chunks, where each request only contains one chunk.

As we ignored the actual chunk index lookup on the
SSD storage in this setting, these limits are also valid for
deduplication systems which hold the complete chunk index
in RAM instead on an SSD. It does not hold for other types of
deduplication system like approximate deduplication systems
or systems, where it is not necessary to lookup most chunks

over the network which use, e.g., a locality-preserving caching
scheme [2].

Another way to increase the upper-bound is to further opti-
mize the communication system. For example decreasing lock
contentions would actually have an impact on the upper bound
on the throughput. However, we claim that while optimizations
are certainly possible, we already put much effort into the
communication system, so that this is not trivial.

The major conclusion of this section is that the network
will be able to scale further. Factors like chunking and
fingerprinting can obviously scale linearly with the number
of nodes. If also the storage components are scaled with the
number of cluster nodes, the overall system is scalable.

VII. RELATED WORK

Data deduplication systems have been subject to intensive
research for the last few years. The approaches can be classi-
fied in fingerprinting-based approaches and delta-encoding ap-
proaches. All fingerprinting-based approaches share that after
a chunking step the chunks are hashed using a cryptographic
fingerprinting method like SHA-1. The chunking splits the
data stream either into fixed-size chunks [8], [26] or uses a
content-defined chunking methods [2], [3], [9], [27]. Delta-
encoding based systems do not search for identical chunks,
but for similar chunks and then delta-compress chunks based
on similar chunks. An example for a delta-encoding system is
IBM’s Diligent system, whose design has been described by
Aronovich et al. [4].

Recently, it became clear that a single-node deduplication
system cannot fulfill the throughput and scalability needed
by today’s enterprises. Most realistically investigated solutions
trade-off throughput versus deduplication ratios and are willing
to miss opportunities to deduplicate data chunks, which a
single node deduplication systems would detect.

Extreme Binning by Bhagwat et al. chooses a representative
chunk id per file [5]. The authors do not analyze the throughput
of their system. Redundancies between files are only found
when the chosen chunk id is the same for both files. The
approach is based on Broder’s theorem that essentially states
that if two files share the same chunk id, both files are likely
very similar. Dong et al.’s extension of the Zhu et al. work
on Data Domain file system is based on similar ideas, but use
so called “super chunks” for the data routing instead using a
chunk id per file [2], [6].

Dubnicki et al. presented an deduplication cluster system
called HYDRAstore using large chunks (64 KB) and a Shared
Nothing architecture. The chunk fingerprint data is distributed
using a distributed hash table (DHT). The data is distributed
to multiple nodes using erasure coding for resiliency. The
bypass the disk bottleneck usually seen in data deduplica-
tion systems by using 64 KB chunks and holding the chunk
metadata in memory al the time. While the design is that of
an exact deduplication system, the choice of the chunk size
favors throughput over deduplication ratio [28], [29]. They
report scalability results up to 12 nodes with a throughput of
800 MB/s for non-deduplicating data.



MAD2 by Wei et al. is another approach for a distributed
deduplication system applying exact deduplication [7]. The
chunk data is distributed using a DHT using a bloom filter
scheme and a locality preserving caching scheme very similar
to Zhu et al.’s [2]. The system using local storage, but
doesn’t replicate chunk fingerprints to multiple nodes so that
the system cannot tolerate node crashes. Additionally, the
prototype has been demonstrated only using two nodes. The
authors do not try to evaluate further scalability nor do they
have a look on the impact of the underlaying network.

DEBAR, an adjacent work by partly the same authors as
MAD2, proposed a post-processing deduplication system clus-
ter [30]. In a post processing system, all data is immediately
written to disk and only in a post-processing stage

There are some commercial clustered storage systems with
deduplication or similar techniques available: Septon provide
a clustered deduplicating backup system using a content meta-
data aware deduplication scheme with a byte-level comparison.
Based on the information available it is hard to classify it, but it
is certainly not fingerprinting-based deduplication [31]. This
is different from the systems by Permabit which are inline,
fingerprint-based deduplication system using a DHT-based
approach using local storage at the nodes [32]. According to
[33], Permabit may use a scheme storing metadata about the
fingerprints in RAM using a scheme that allows membership-
testing with a certain false-positive rate. The data structure
uses the property that the keys are cryptographic fingerprints
for a scheme more efficient than Bloom filters. Little is known
about its approaches for data distribution, load balancing, and
fault tolerance.

An alternative to distributed deduplication systems is the
use multiple separate deduplication appliances that are not
cooperating. However, this reduces the possible savings be-
cause overlap between backup data stored on different ma-
chines is stored multiple times. Additionally, moving backups
between machines, e.g. after adding new appliances, causes
to store already deduplicated data another time. Douglis et al.
present a load balancing/backup assignment scheme so that
backups are assigned to deduplication instances so that the
overlap and affinity between backups runs is increased [34].
However, a clustered deduplication system like ours where
the data deduplicated between all deduplication nodes makes
the management easier, enabled an easier load balancing, and
increases the storage savings of data deduplication.

The discussion between shared disk and stored nothing
storage systems is not a new one. There are several examples
for both concepts. IBM’s GPFS and IBM Storage Tank are
classic examples for a shared disk storage systems [35], [36].
On the other hand, Ceph, Lustre, and PanFS use local disks,
to which other nodes never have block-level access [37]–[39].

Our hybrid approach to use the shared disk only for crash
recovery is similar to Devarakonda et al.’s approach presented
in the Calypso file system [40]. They also use shared storage,
called multi-ported disk there, to recover the storage system
state after crashes, while only a single server accesses a disk at
any time. They also relied on RAID or mirroring approaches

to provide disk fault tolerance. In addition, they used client-
state to recover from node failures, a possibility we don’t
have. A contrary position is a Sprite position statement that
proposes using replicate state in main memory for recovery.
As explained before, we avoid this mainly to free the intra-
node network from the replication traffic [41]. Our approach
to allow that nodes are allowed to only see a subset of the
available storage is related to the storage pool concept of
V:Drive [42].

The communication and the network interconnect between
storage peers has been analyzed before by Brinkmann et al.
[43]. They concluded that the interconnect can become the
bottleneck, but the authors concentrate on bandwidth limited
traffic. We bypass this trap by avoiding that the actual data
is sent over the internal communication network. Similar
observations have been done presented in [39].

VIII. CONCLUSION

This paper presents an exact inline-deduplication cluster,
which is able to detect as much redundancy as a single-node
solution by using a joint distributed chunk index and small
chunk sizes. We show that the solution has good scaling
properties by presenting a prototype evaluation. One key
element of the ability to scale well is the communication
protocol that avoids sending the full data over the network.
Instead only fingerprints are exchanged between nodes. The
use of shared storage furthermore enable an efficient support
for fault tolerance. Therefore, we have been able to show
that, despite different claims in previous papers, it is possi-
ble to combine exact deduplication, small chunk sizes, and
scalability within one environment using only a commodity
GBit Ethernet interconnect. Additionally, we investigated the
throughput and scalability limitations with a special focus on
the intra-node communication.
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