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Abstract—We study the problem of accurately estimating the
data reduction ratio achieved by deduplication and compression
on a specific data set. This turns out to be a challenging task – It
has been shown both empirically and analytically that essentially
all of the data at hand needs to be inspected in order to come
up with a accurate estimation when deduplication is involved.
Moreover, even when permitted to inspect all the data, there
are challenges in devising an efficient, yet accurate, method.
Efficiency in this case refers to the demanding CPU, memory
and disk usage associated with deduplication and compression.
Our study focuses on what can be done when scanning the entire
data set.

We present a novel two-phased framework for such estima-
tions. Our techniques are provably accurate, yet run with very
low memory requirements and avoid overheads associated with
maintaining large deduplication tables. We give formal proofs
of the correctness of our algorithm, compare it to existing
techniques from the database and streaming literature and
evaluate our technique on a number of real world workloads. For
example, we estimate the data reduction ratio of a 7 TB data set
with accuracy guarantees of at most a 1% relative error while
using as little as 1 MB of RAM (and no additional disk access).
In the interesting case of full-file deduplication, our framework
readily accepts optimizations that allow estimation on a large
data set without reading most of the actual data. For one of the
workloads we used in this work we achieved accuracy guarantee
of 2% relative error while reading only 27% of the data from
disk. Our technique is practical, simple to implement, and useful
for multiple scenarios, including estimating the number of disks
to buy, choosing a deduplication technique, deciding whether
to dedupe or not dedupe and conducting large-scale academic
studies related to deduplication ratios.

I. INTRODUCTION

a) Problem Statement and Challenges: With the ex-
plosion of data stored by organizations, deduplication and
compression techniques are becoming ever more popular.
The question of how much these techniques actually gain
is becoming more and more relevant. This is exemplified
by recent publications [25], [10], [22] trying to get a better
understanding of the effect of deduplication, compression and
their combination on some ”real world scenarios”. While
we can gain quite a bit from general studies and get some
rule-of-thumb estimations on what to expect from different
techniques on various workloads, in practice, this is far from
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giving an accurate estimation for a specific workload and for
a specific user. Experts working in the field of deduplication
for backup claim they have seen deduplication ratios vary
from 2:1 to 50:1 for the same application by the same vendor.
The variations originate from many factors, including backup
regimes, different setups, and user behavior and tendencies. So
one cannot expect to get a precise estimate without examining
the actual data at hand.

This work aims at giving techniques for accurately estimat-
ing deduplication and compression ratios for given data sets.
A naı̈ve approach would be to simply run the data reduction
technique over the whole data set (perhaps just recording the
savings rather than storing the reduced data set). While being
very accurate, for large data sets this approach is prohibitively
expensive (in terms of time, CPU/memory consumption and
disk accesses). Instead, we look for techniques that give
accurate estimates while not being excessive in terms of the
required resources for this estimation.

As we show in this paper, this problem is far from being
trivial. The most straightforward approach to overcome the
resource limitations is to sample a subset of the data and com-
pute exhaustively the data reduction ratio of the sampled data.
However, this approach is bound to fail: it is common wisdom
among practitioners who are skilled in the art that without
incorporating specific knowledge on the repetitive structure
of the data, it is impossible to predict the deduplication ratio
accurately by looking only at a random subset of the data.
Moreover, there are analytical proofs that such an approach
can give arbitrarily skewed results. A simple test we have
done on our data (the personal data workload) shows an error
of more than 7% in dedupe ratio estimation when sampling as
much as 37% of the data, and an error of 13% when looking
at 21% of the data. Therefore, given this limitation, there are
two ways to approach this problem: either incorporate major
knowledge about the structure of the data to smartly sample it
and then extrapolate what the overall ratio should be, or else
to devise methods that look at all the data yet perform this
efficiently with limited resources. In this paper we consider
the latter (leaving the approach of ”educated-sampling” for
specific data types out of the scope of our paper).

b) Motivation and Applications: Why is this an impor-
tant problem? Section VI provides an in-depth discussion on
the motivation with practical examples. For example, when
considering a new deduplication system, one needs to de-978-1-4673-1747-4/12/$31.00 c© 2013 IEEE



termine what would be the benefits, if any, of the systems;
whether to dedupe or not; if so, what type of technique to use
(fixed vs. variable, block vs. file etc). Even more so, one needs
to decide how much storage to buy – a decision that translates
directly to saving money. In a more advanced scenario, it may
be questionable whether consolidated deduplication across
storage pools is worth the cost associated with enlarging the
deduplication domain. Moreover, in some extreme big-data
scenarios (e.g. [25]), the meta-data itself is so big that even
running simple tests on it requires an extensive effort.

c) Our Contributions: Our contributions in this paper
are two fold. First, we set the grounds on the limitations
and inherent difficulties (both analytical and in practice) of
sampling techniques, and relate our results to known studies
in other fields such as databases and streaming algorithms. We
then devise a general framework that provides an efficient,
yet provably accurate estimation method. The framework is
general and is not tied to one particular deduplication tech-
nique or another. We provide an in-depth empirical study of
this framework, based on four different workloads: personal
workstations, enterprise file system repository, and backup data
of two types. The largest data set contains approximately 7 TB
of data. Our empirical study demonstrates that the accuracy
obtained in practice is very close to the stated analytical bound,
and that in some special cases only a small portion of the data
is inspected. We finally elaborate on practice-and-experience
issues related to implementing this estimation system.

A. The Challenges of Efficient Estimation

We now give a more in depth account of the challenges that
the estimation problem poses. The starting point of our work
comes from the realization that going over a small part of
the data set is insufficient for estimating deduplication ratios
accurately. In particular, sampling parts of the data set, whether
randomly or according to various sampling methodologies can
yield arbitrarily inaccurate deduplication ratios. This underly-
ing fact is backed up both by practical experience and also by
analytical proofs. Specifically, it was formalized in [8] who
show both formal proofs and empirical tests and ultimately
in [27] that present a near-linear lower bound on the sample
size required to estimate the number of distinct elements in
a set (near linear in the size of the set). In a nutshell, the
difficulty stems from two central issues: i) unlike compression,
in order to see the effects of data reduction that come from
deduplication, one has to include in the sample more than
one replica of a repeating item. Without prior knowledge on
the locations of replication, one has a small chance of hitting
the same element twice, and an extremely low probability of
hitting k replicas of the same element (unless the sample
size is very big). ii) Even if replicas are observed in the
sample (e.g., if the sample is relatively large or due to prior
knowledge) this still does not suffice to distinguish if the
replication is a local phenomena or a global one. Hence,
extrapolating from the sample to the full data set might be
misleading. We stress that sampling based approaches can
fail badly on workloads and distribution that are quite likely

to appear in practice and not only in theory. One direction
of overcoming these limitations is by gathering enough prior
knowledge on the typical behavior of different workloads. This
seems challenging since deduplication of similar data types
may be highly influenced by the individuals involved (how
much collaboration actually exists in the environment); see
for example [30] on peer-assisted deduplication. Rather, in this
paper, we study what can be done under the assumption that
essentially the whole data set is scanned.

Even under the assumption that all data (or at least meta-
data) in the data set is scanned, it is not clear how to
estimate deduplication and compression ratios accurately in
an efficient manner. The naı̈ve approach to compute dedupe-
ratios is to actually mimic the data reduction process. Namely,
to record hash values for each element in the system (be it
file or a chunk, depending on the technique studied), and
its compression rate, in a hash index-table. However, this
methodology has a high toll in terms of resources, a price
that may be acceptable when running a system designed for
deduplication, but not when one simply wants an estimate.

The main resources that are required when considering this
approach are:

• Memory: The hash index table which can be very large
either needs to be stored in main memory, thus consuming
a lot of RAM, or paged on disk, thus entailing a major
slow down in performance. For instance, a moderate sized
data set of 7 TB requires in an optimal implementation
around 24 GB of memory for 8 KB chunks stats. A
naı̈ve implementation using Python’s dictionary structure
(based on open addressing) required as much as 17 GB
for a repository of only 1.2 TB. For larger data-sets, with
hundreds of TBs this would become infeasible to store
in memory, no matter what the implementation is.

• Time: The main bulk of time consumed by an estimation
scan is taken up by the following operations: reading the
data from disk, computing the hash, running a compres-
sion algorithm and updating the index table. The heaviest
operations are access to the disk and compression. The
computation of the hash function is far cheaper than both
in this sense (see Appendix A). When a large index
table is placed on disk, the random access to the disk
causes substantial slow down. Real life deduplication
systems (e.g. [31], [24], [12]) use an array of techniques
ranging from clever caching to use of flash in order to
improve the update time to the table. Most of these rely
heavily on locality properties of backup streams which
may not necessarily be as pronounced in primary data.
The compression overhead is also very substantial (as
demonstrated in Appendix A).

Another naı̈ve approach would be to simply log all metadata
on disk and process it off-line at a later stage. However,
this method requires both the appropriate disk space and
additional off-line processing to analyze large metadata files
(which in turn consumes more time, disk accesses and CPU).
This solution is inferior to our solution that provides an



answer immediately at the end of the scan and with very
light resource consumption. In addition our method achieves
improved scan times when compression is involved and in the
full-file deduplication, improvement that are not gained with
an off-line processing technique.

B. Our Results

We present a general framework for space efficient es-
timation of deduplication and compression techniques. The
framework consists of two basic phases:

1) Sample phase: A base sample of elements are taken
from the entire data set. The sample is taken at ran-
dom where each element appears independently with
probability that is relative to the element size (that
is, identical probability for fixed chunk size but varies
substantially for files). Hash values and compression
rates are computed for each element in the sample.

2) Scan phase: Go over the entire data set and store
statistics only about elements in the base sample. The
hash is computed for each element but it is only recorded
if it matches a hash of an element in the base sample.

The statistics recorded in the scan phase are used to derive the
data-reduction ratio estimate.

We give an analytical proof that, using a small base
sample, our framework indeed estimates the data-reduction
ratio with high accuracy (Section IV), and back our claims
with experimental results on a number of different workloads
(Section V). With as little as 200 MB of RAM, we can
provably guarantee estimations to within a 1% relative error
for workloads with high compression and deduplication ratios.
One key observation is that we can do better for data sets with
smaller deduplication ratios. In fact, our experimental results
demonstrate that with as little as 1 MB of memory we can
estimate the deduplication ratio of a 7 TB data set to within 1%
of its true value. Moreover, our guarantees work with the same
sample size also for much larger data-sets, even, on the order
of petabytes. Thus the benefits become much more pronounced
as the data set grows and our methods more useful with the
current trend of growth in data stores.

Our methodology is general and works for a multitude
of deduplication techniques. In the paper we study specific
methods including fixed and variable sized chunking, full-
file deduplication and combinations with compression. Our
techniques can also be adapted for other cases such as dis-
tributed systems (for example the real life system presented
in [14]). The low memory requirement allows the process
to place all of its information in main memory and thus
perform the scan without extra disk accesses. Moreover, our
frameworks naturally accommodates efficiency improvements
in several scenarios. For instance, our algorithms benefit from
the fact that they need to compute the heavy compression
algorithms only on the base sample. This saves one of the most
costly operations, as demonstrated in Appendix A. Note also
that the scan phase is highly parallelizable using a standard
map-reduce framework and thus can perform well in highly
distributed storage systems.

Finally, in the special case of full-file deduplication and
compression we present an adaptation of our framework that
uses file length and hashes on the first block of data in each
file (typically this is part of the file’s inode) and avoid reading
the actual data for disk for almost all data that is not relevant
to the base sample. In our examples, we manage to read only
27% of the data from disk, yet achieve accuracy of at least
2%.

C. Related Work

The question of estimating the number of distinct elements
in a large collection of elements has been well studied over
the years both from an analytical aspect and from a practical
point of view. This problem has received attention in two
main fields of computing, the first is in studies of databases
and more recently in the realm of streaming algorithms. A
good overview of these works can be found in [18]. Both
communities observe that sampling based algorithms may fail
for many relevant inputs with the strong formal lower bounds
proved in [8], [27]. The problem was raised in the context of
databases where estimating the number of distinct elements in
a column serves as a tool for performing several operations.
There are numerous algorithms that estimate the number of
distinct elements using small space. A central underlying
technique in most of these works stems from the work of
Flajolet and Martin [16], by which all elements are mapped
onto a small numerical segment (using a hash function onto,
say, [0, 1]). At the end, the minimal value that is mapped
to in the segment serves as an indicator to the estimated
number of elements. On this basic techniques, a large number
of variations and stochastic mappings were built to provide
better estimates with low space (E.g., [4], [6], [20], [23] is
a partial list). Another closely related approach introduced
in [19], [17] maintains at all times a bounded size sample
of distinct elements. This approach differs from ours as its
sample is uniform on the distinct elements set, rather than
the entire data set. Most of these techniques are comparable
to ours with respect to memory requirements, except for the
second algorithm of [4] and the recent optimal bound of
[23]. The techniques can be readily applied to estimate the
fixed size chunk deduplication ratio. However, they need to
be adapted in order to succeed with variable size chunks and
even more so for the case of full files (where the variance in
element size is much larger). Moreover, in order to adapt these
techniques to deal with compression as well, one would have
to compress all of the elements in the data-set (in contrast to
our solutions that require compressing only the elements in
the base sample. Note that computing the deduplication and
compression ratios separately and taking their multiplication
as the overall ratio is an inaccurate method, since it is quite
common to have a correlation between what dedupes well and
what compresses well. Indeed in some of our workloads we
observed errors of over 7% when using this practice. In the
distinct sampling techniques [17], the number of compressed
elements can be reduced dramatically, but is still higher than
the fraction compressed in our method. Finally, all the above



mentioned techniques do not benefit from our optimizations
for full-file deduplication.

In the realm of deduplication, there is a large body of
”deduplication calculators” which do not examine the actual
data; they are surveyed in Section VI. A recent paper of
Constantinescu and Lu [11] raises similar questions to ours.
They suggest a sampling method, but only for the easier
task of estimating compression rates (and not deduplication).
For full-file deduplication, they also suggest using the file
length and first hash, but in their method the occurrence of
undesired collisions results in reduced accuracy, whereas we
pay by reading a slightly larger fraction of the data, but do
not compromise the estimations precision. In addition, their
scheme does not cope well with the problem of a large index
for huge data sets.

Finally, the use of sampling is not new to deduplication. It
has been used to improve efficiency in handling of the hash
index (e.g. [24]), and to help in making distribution decisions
in large distributed deduplication systems (e.g., [7], [30], [14]).

II. PRELIMINARIES

Deduplication and compression are widely used in stor-
age systems. In this paper we discuss either techniques that
consider deduplication alone, or combine deduplication with
“local” compression. In compression we refer techniques that
look at a single file or chunk of data and compress it on its
own, typically using variants of the Lempel-Ziv algorithm (e.g.
[32]). The common approach to combining deduplication and
compression is to first define a deduplication element, with the
main choices being fixed of variable sized chunks (usually on
the order of 2-16 KBs each) or full files/objects. Compression
is typically performed after deduplication, on a per element
basis so that it does not interfere with the benefits of deduplica-
tion. This is the type of compression and deduplication combo
that we discuss in this paper. The basic methodology for
deduplicating data is by fingerprinting each chunk/file using a
good cryptographic hash function (such as the 160 bit SHA1).
The hash function practically ensures no inadvertent collisions.
Now the deduplication process maintains a hash index table
of all elements (hash values) that already appeared in the data
set. When a new element arrives, it is either found in the table,
and deduplicated against an existing element, or it is added to
the index table (along with a pointer to where it is stored).

III. OUR ESTIMATION TECHNIQUE

A. The General framework

Our framework works in two phases, a sampling and a
scanning phase. We use the term elements to describe the basic
deduplication unit – a file or a chunk of fixed or variable size.
The two phases are outlined below:

1) The Sampling Phase: From the entire data-set (denoted
S) we choose m elements randomly where m is a pa-
rameter chosen in advance (in Section IV-A we elaborate
on how to choose m). For each element, we calculate
its hash value and add it to a set that we call the base
sample (denoted B). Multiple appearances of the same

hash value are merged into one entry in B and each
such entry holds a counter of how many instances of
this hash were in the sample. Each chosen element is
taken in random from the whole data set, giving each
element a probability that is proportional to its size in the
data set. For each element in the base sample, indexed
i ∈ B, the following data is computed and recorded:
(1) hi – A hash signature of the element; (2) ρi – The
compression ratio of the element (in case compression
is used. ρ = 1 otherwise); (3) basei – The number of
appearances of an element with this hash signature in
the base sample; and (4) counti – set initially to zero.

2) The Scanning Phase: This is the heavier part of the
algorithm in which the entire data-set is scanned. For
each element e ∈ S its hash signature he is computed.
If this signature matches hi for some i ∈ B then
counti is incremented by 1. If he does not match any
element in the base sample then it is ignored. Note
that there is no relevance to the specific order of the
scan (in fact it can be run in parallel). In addition at
this stage, no compression statistics are gathered, but
rather signatures are computed. This is crucial since
compression is a much heavier task than computation
of a typical cryptographic hash function.

At the end of the scan, the following data reduction estimate
is computed:

Est =
1

m

∑
i∈B

basei · ρi
counti

Note that the length of the elements are not recorded, but
come into play during the sampling phase.

B. Chunk Level Deduplication

We turn to describe in more detail the algorithm for the case
of fixed size chunk deduplication. The data-set S consists of
n chunks of equal size (for example 8 KBs each). For the
sampling phase, this means that each chunk has independent
probability m

n to be in the base sample. Note that this is not
distinct element sampling (see [17]) in which the sample is
uniform over the set of distinct elements. In our case, an
element that has two replicas in the data set has double the
probability of being included in the base sample. Moreover,
more than one replica of an element can be taken to the base
sample (since these are merged into one in the base sample,
the size of the set B can be smaller than m).

d) Sampling Chunks: Knowledge of n, the total number
of chunks in the data set, is essential in the sampling process.
The overall size of the data set can be computed by a standard
traversal of the file system (e.g., unix du command), or
extracted from existing metadata statistics on the data set (e.g.,
unix df command). There are several approaches that can be
used for sampling. We list the main options:

1) One can choose m random numbers in {1, ..., n} (one
can eliminate repetitions here although this is not crucial
to the success of the estimation). Now go over some
ordering of the data set in order to find the chosen



chunks. In a file system, for instance, this would require
a traversal of the directory tree, and the use of the file
sizes in order to figure out which files need to be read
and at what offset.

2) An alternative approach is to traverse the whole directory
tree and make decisions on a per file basis. Let ` denote
the number of chunks in the file. Now generate a random
number k according to the binomial distribution of `
Bernouli trials with probability m

n per trial. Namely,
choose k ∼ B(`, nm ) (there are standard libraries for
generating such distributions). If k = 0 then no chunk
was chosen from the file (and the file can be ignores).
If k ≥ 1 choose k random chunks in {1, ..., `} and add
them to the sample. This approach requires more random
coin tosses than the first approach and also return m
samples on average, but maybe slightly less (this can
be easily remedied by using m′

n with m′ slightly larger
than m and then choosing m of the chosen chunks
at random). The benefit is that this approach does not
need to store the m chosen indices at any point, and is
essentially stateless and thus can be run in parallel.

Having the base sample prepared, we are ready for the scan
phase. The entire algorithm is described in the following
pseudocode (Algorithm III.1).

Algorithm III.1: CHUNK ESTIMATE(S)

Chunk Sample(S)
Choose sample of m random elements ∈ S
for each e in sample

do if ∃ i ∈ B s.t. he = hi
then basei ← basei + 1

else


add e to B and record :
he ← hash signature of e
ρe ← the compression ratio of e
basee ← 1
counte ← 0

Chunk Scan(S)
for each e in S

do
{

if ∃ i ∈ B s.t. he = hi
then counti ← counti + 1

C. Full file deduplication

This scenario in which deduplication is only done between
identical files has its disadvantages mainly as it achieves less
than optimal deduplication ratios in many cases. Yet it is a
popular choice since it is typically easier to implement and
was shown to perform sufficiently well in some workloads ,
especially when combined with compression (see [25], [10]).
Our methodology translates well in this setting, and using
some additional tweaks can actually reduce significantly the
amount of data actually read from disk. Although the metadata
for all files will be scanned, the actual data needs to be read
only for a small fraction of the files, which is related to the
base sample.

e) Sampling Files: In the case of files one needs to take
into account the length of a file since there is a great variance
between file sizes (this is true also, to a lesser extent, for
variable sized chunks). Moreover, the total size of the data-set
is no longer naturally counted in terms of chunks, but rather in
terms of a common denominator of the lengths in which files
are stored. This can either be the page size of the file system
(if files are stored as a collection of full pages), or in the most
general case in terms of single bytes. Denote by N the total
number of bytes in the data-set. In our handling of files, each
such byte has independent probability m

N to be chosen, and for
each chosen byte the owning file (or chunk) is included in the
base sample. Note that the same file might be chosen more
than once for the base sample, and this duplication should be
recorded.

The actual sampling follows closely the two options raised
for chunks (Section III-B). In option 1, m offsets are chosen in
{1, ..., N} and a file is chosen to be part of the base sample
if it contains a chosen offset. If it contains more than one
offset then the base counter of this file reflects this. In option
2, the base counter is the result of the corresponding binomial
random variable (where 0 means it is not in the sample).

f) Scan phase optimizations: In the case of full files we
take advantage of metadata that is readily available in a typical
file system in order to reduce the need to read all data from
disk in the scan phase. The point is that we only need to
process files that are relevant to the base sample (their hash
is in the base sample). By simply looking at the file length,
we can rule out for many files the possibility that they are
relevant, since a file can only be there if a file with the same
length is ready in the bases sample. This serves in a similar
role as a Bloom filter, namely, only look at the data if the data
has a chance of being relevant. A second filter is a hash on the
first block of the file. This could be as short as a single page
of the file system. In many file systems this first block resides
in the i-node of the file and thus can be read quickly during a
metadata scan without the addition of extra disk seeks. Only
files that have both length and first hash matching an entry in
the base sample need to be read from disk. Formally we add
the following information into the base sample. For each file
in the base sample, indexed i ∈ B, we add:

• `i - The length of the file.
• h1i - A hash signature on the first block of the file.

Now the process during the scan phase, for each element
(file) e in the data set do the following:

1) If the length of the file `e matches `i for some i ∈ B
continue. Otherwise ignore the file e.

2) Compute the hash on the first block of e to get h1e. If
there exists i ∈ B such that `e = `i and h1e = h1i then
continue. Otherwise ignore the file e.

3) Compute the full hash on the file e to get he. If there
exists i ∈ B such that he = hi then counti = counti+1.
Otherwise ignore the file e.



The ratio at the end of the process is computed as before.
Namely:

Est =
1

m

∑
i∈B

basei · ρi
counti

Again, notice that the length of the files is ignored in the
computation of the ratio (although it is recorded). The rationale
is that in our sampling method a long file is more likely to
appear in the base sample than a short one (and in extreme
cases will even appear twice or more), which is desirable as
a long file is more influential on the overall compression rate
than a short file. This bias in the sampling allows us to avoid
adding a bias in the ratio calculation. The detailed pseudocode
is given in Algorithm III.2.

Algorithm III.2: FULL-FILE ESTIMATE(S)

File Sample(S)
for each file e ∈ S

do k ← B(`e,
m
N )

if k > 0
then if ∃ i ∈ B s.t. he = hi
then basei ← basei + k

else



add e to B and record :
he ← hash signature of e
ρe ← the compression ratio of e
`e ← length of e
h1e ← hash of the first block of e
basee ← k
counte ← 0

Full File Scan(S)
for each file e in S

do



if ∃i ∈ B s.t. `e = `i

then



compute h1e
if ∃i ∈ B s.t. `e = `i and
h1e = h1i

then


compute he
if ∃i ∈ Bs.t. `e = `i and
h1e = h1i and he = hi
then counti = counti + 1

g) Variable sized chunking: Variable sized chunking
poses a challenge, since one can neither figure out how many
chunks are in a file nor at what offset the jth chunk might
be, without reading and chunking the entire file. Instead, the
sampling should choose exact offsets in the files, and then
choose the chunk which contains this offset. Suppose that an
offset k was chosen in a file, then this can be implemented by
reading the file at an offset k−maxchunk and chunking from
there until the chunk containing the relevant offset is found.
This both relieves the need to read entire files and achieves
the desired result of giving each chunk a probability that is
linear to the chunk’s actual length.

D. Systems Implementation Issues
h) Maintaining the base sample: There are numerous

ways to hold the base sample during the scan phase. The

most economic in terms of memory space is by sorting the
base sample according to the hash value at the end of the
sample phase. Since no insertions are needed during the scan
phase, then updating the counters in the base sample only
entails lookups, that can be performed by searching over a
sorted array (at the cost of logm lookups in the RAM table).
Thus at run time one can get by with as little as m · 20 bytes
of memory for the hash values (the output length of a SHA1
cryptographic hash function), plus m · 4 more bytes for the
count and compression ratio numbers.

An alternative is to use more sophisticated hash based
structures that can work with good memory utilization such
as cuckoo hashing or open addressing. These will gain faster
average lookup times (constant number per lookup), but will
require more memory since their performance deteriorates
when they become full. In addition there are some overheads
in handling the data structures (the open addressing imple-
mentation used for Python’s dictionary demonstrated a 7 fold
overhead to the dictionary size).

We note that the fact that our algorithm only does lookups
in the scan phase, rather than insertions and deletions of items
to the base sample, alleviates the run time of the scan of the
heaviest operations associated with maintaining data structures
for fast lookup.

i) Parallel execution: Note that the scan phase can be
run in parallel on a distributed system. The base sample needs
to be circulated to all the scanning nodes, and each node will
do the scan locally and accumulate the count for the data
adjacent to this node. At the end of the process, all of the
counts are accumulated centrally and the data reduction ratio
is calculated. This fits naturally in the Map Reduce framework
for parallel computing. Note that we cannot avoid holding the
entire base sample at each node, so a process running on k
nodes in parallel will require holding k simultaneous copies
of the base sample.

IV. ANALYSIS OF ACCURACY

In this section we present a formal proof that our estimation
technique is successful. We start by defining what it means to
be a successful estimation algorithm.

Definition 1. A probabilistic algorithm Est(·) is said to be
an (ε, δ)-estimation scheme if for every data-set S with data
reduction ratio r, we have Pr[ |Est(S)−r|r > ε] < δ where the
probability is taken over the randomness of Est.

Our basic accuracy claim is stated in the following Theorem:

Theorem 1. The algorithm presented in section III when run
over a data set with reduction ratio r and uses a base sample
of size m >

ln 2+ln 1
δ

2ε2r2 is an (ε, δ)-estimation scheme.

The proof is given in Appendix A.

A. Choosing the Size of the Base Sample

Given the analytical result in Theorem 1, we can deduce the
size that would be sufficient for the base sample. Note however
that the ratio r which is the target of the estimation process



appears in the bound of how many sample points are required.
Specifically, the higher the data-reduction ratio is (and the
better the data compresses) the harder it becomes to give an
accurate estimation (this also makes sense since an error of 1%
of 1 TB is much smaller than the same proportional error of
10 TBs). In order to choose the sample size we must first give
a bound rmax on the expected compression ratio and plug it
into the formula from Theorem1 and taking m =

⌈
ln 2+ln 1

δ

2ε2r2max

⌉
.

We can also predict that the memory overhead required for
each entry in the base sample to be as little as m · 24 bytes
of memory (as explained in Section III-D).

Some examples of choices for sample sizes are given in
Table I.

rmax ε δ m Memory
3:1 0.01 0.0001 44557 1 MB
5:1 0.01 0.0001 1237938 28.3 MB
15:1 0.01 0.0001 11142000 255 MB

TABLE I
The table summarizes the required sample size and memory needed
to hold this sample for achieving an (ε, δ)-estimation with ratio at

most rmax

Note that the estimated values do not grow with the size of
the data set at hand. This means that our techniques are more
appealing as the data set grows. While the benefits may not be
as pronounced when looking at a system with a few hundreds
of GBs, it is quite clear that for systems with many TBs of
data (let alone PBs) the size of the required base sample is
very small.

V. EMPIRICAL EVALUATION

We evaluate our technique by testing it on a number of
real world workloads. The workloads are taken from varying
environments in order to capture different behaviors of data
and to test that our algorithms work well on all of these
scenarios. We used four different data sets as described below:

1) Personal workstations: This workload includes stor-
age dumps of laptops and workstations of 16 R&D
employees within a company. Some are within the
same organizational unit, but some are not. The data-set
includes 6.3 Million files amounting to a total capacity
of 1.1 TB.

2) Major file repository of enterprise organization: This
is the organization’s main file repository and is utilized
by a multitude of users for various purposes. It contains
16.4 Million files and a total capacity of 7 TB was
tested. The data was collected in 4 KB chunks but no
compression data was collected, so the tests for this data
set consider only deduplication and no compression.

3) Backup storage of small enterprise organization: This
is the backend repository of an organization’s backup
system. The repository contains backup of user files as
well as development environment. We collected 250 GB
of data from this repository in 1.2 Million files.

4) Periodic backup of exchange DB: This is a classical
backup setting of an exchange DB. The data set consists

of 13 periodical backups of the entire 17 GB DB
taken on an almost daily basis. All together the data
set contains 13 · 17 = 221 GB. This data was used
in the chunk based tests only, and not in the full-file
deduplication case, since it only contains 13 large files.

A. Empirical Accuracy Results

We ran our tests on the aforementioned workloads to
validate our algorithms accuracy and to evaluate how this
accuracy behaves when real world distributions are involved.
We validated this behavior across all of our workloads, by
running 1000 independent tests per workload (each time the
sampling algorithm uses fresh random coins). The algorithm
runs with arbitrarily growing sample sizes in order to view
the behavior as the sample size grows. The graphs show the
general trends that we have seen across all workloads (for each
such behavior we present only a single representative graph
in order to avoid repetition and save space).

Fig. 1. The graph depicts our test on the file repository data for fixed chunk
deduplication. We run 1000 different test and depict the highest and lowest
deviations from the actual data as a function of the base sample size. We
observe that after 43000 samples the error always remains below 1%.

Figure 1 shows the behavior of our estimation method as a
function of the sample size. This is for the file repository work-
load and we see a nice converging behavior of the algorithm as
the sample size grows with the error going well below 1% at
approximately 43000 points in the base sample. This depicts
the extreme errors out of 1000 tests, where the majority of
the tests yielded far better estimations. A more comprehensive
look at the tests looks at the standard deviation of the 1000
samples. We show this (Figure 2) on a different workload,
the personal data workload with compression. This workload
shows the diminishing standard deviation as a function of the
sample size, yet at a slower rate (an artifact of the better overall
ratio).

Moreover, we can see that the behavior for a fixed sample
size shows a nice looking gaussian as seen in Figure 3. This is
expected since our algorithm produces the sum of (essentially)
independent random variables, and this sum should behave



Fig. 2. The graph shows the normalized standard deviation as a function of
the sample size, as computed for 1000 tests on the personal data workload
for fixed chunk deduplication and compression. The normalization is by the
target ratio. That is, a standard deviation of 0.01 equals 1% of the target ratio.

according to the normal distribution. Combined with the
standard deviation measure we can deduce the assurance δ
that our estimation will indeed fall within an ε error of the
target ratio.

Fig. 3. We show the distribution of results of the estimation process as
obtained from 1000 executions with sample size 50000. The tests were run
on the file repository data which has deduplication ratio 0.691. We compare
the distribution to a true normal distribution with the same expectation and
variance.

Our findings regarding chunk based deduplication are de-
tailed in Table II both for deduplication and for the combina-
tion of deduplication and compression.

The results that we get are only slightly better than those
presented by the analytical bounds. The improvement can be
explained due to some slackness in the concentration bounds
that we use. These bounds take into account arbitrarily bad
distributions (and in fact assume nothing on the variance of
the underlying distribution. The distribution displayed in real
life situations is in general a nice distribution. For example,
while the highest frequency of a chunk in the 7 TB data set is
on the order of 121 Million, the next in line is only of order 1
Million. This isn’t close to what it could potentially be, given
that the total number of chunks is approximately 1260 Million.

j) The ratio matters: A key point that we see both here
and in the analytical bounds is that the data reduction ratio

plays a big role in setting the bound of how many samples
need to be used. Specifically, for bad ratios, such as r = 0.69
for the files repository deduplication, the number of samples
needed can be as little as 40000. However, when the reduction
is effective, such as the case of the backup repository with
r = 0.107, this balloons to 419000. This phenomena forces
us to obtain a reasonably good idea of what the actual ratio
maybe in order to be more efficient. Rule of thumb estimations
can be used here as initial, very rough, estimators in order to
pick a satisfactory sample size. Note that if the chosen sample
size was too small, this will be discovered once the estimation
results are produced. In such a case, we can still make use of
the estimation, but the confidence level will decrease and a
larger potential error should be taken into account.

B. Full-File Deduplication

As in the case of chunks, we evaluate our full-file algorithm
on the relevant workloads (excluding the exchange DB). The
results appear in Table III. The results are very similar to those
presented in the case of chunks.

The enticing feature of our method for full-file deduplication
and compression is the ability to forgo reading a large portion
of the data from disk. So in addition to the accuracy results, we
run estimates on how big this portion can actually be in a real
life scenario. Basically, only files related to the base sample are
read. If they have the length of a file in the base sample then
their first block is read, and if their first block is identical to
one in the base sample (with the same length) then the whole
file is read. This means that the workload’s characteristics have
a large influence on the fraction read. For example, if the
lengths of files vary a lot or tend to repeat. Or even more so, if
files in the base sample have large multiplicities (a high dedupe
ratio) leads to reading more files. We estimate the benefit for
the largest data set (7 TBs of data) and learn that one can
get guarantees of up to 2% relative error when reading 26.6%
of the actual data. For a 1% relative error guarantee we our
algorithm requires reading 46% of the data. The full tradeoff
between accuracy and percentage read is depicted in Figure 4.

Fig. 4. The graph depicts the tradeoff between percentage read and estimation
accuracy. The error is calculated according to the worst error of 1000
independent tests, and the percentage read is the average over these tests.



Dedupe only Dedupe+compression
Workload ratio ε = 0.01 ε = 0.015 ratio ε = 0.01 ε = 0.015

Personal data 0.559 69000 (1.6 MB) 25600 (0.6 MB) 0.359 98000 (2.2 MB) 50600 (1.2 MB)
File repository 0.691 43000 (1 MB) 13000 (0.3 MB) – – –

Backup repository 0.571 60000 (1.4 MB) 22300 (0.5 MB) 0.107 419000 (9.6 MB) 242000 (5.5 MB)
Exchange backup 0.109 300800 (6.9 MB) 101000 (2.3 MB) 0.076 213200 (4.9 MB) 84100 (1.9 MB)

TABLE II
Chunk based deduplication: The sample size required (and memory requirement in parenthesis) for different accuracy levels as indicated

by 1000 executions over each of the workloads.

Dedupe only Dedupe+compression
Workload ratio ε = 0.01 ε = 0.015 ratio ε = 0.01 ε = 0.015

Personal data 0.665 44500 (1 MB) 16200 (0.4 MB) 0.377 94300 (2.2 MB) 43600 (1 MB)
File repository 0.820 18700 (0.4 MB) 12500 (0.3 MB) – – –

Backup repository 0.685 38700 (0.9 MB) 13000 (0.3 MB) 0.128 400000 (9.2 MB) 318000 (7.3 MB)

TABLE III
Full-file deduplication: The sample size required (and memory in parenthesis) for different accuracy levels as indicated by 1000

executions over each of the workloads.

Recall that a straightforward, yet representative, sampling of
37% of the data-set that we ran on our personal data repository
yielded an error of 7% (this was for a single test, and there
is no guarantee that this cannot be occasionally much worse
if more tests were run). In contrast, our algorithm can ensure
an error of no more than 5% when reading just 10.5% of the
data. The potential of this technique is immense for data sets
that are much larger than the 7 TB, since the sample size
does not have to grow. Extrapolating the results we have here
to a repository of 500 TBs would yield guarantees of 1% on
by reading as little as 5% of the data. We hope to be able
to validate this when data of such proportions will become
available.

VI. MOTIVATION AND FURTHER APPLICATIONS

There are a number of reasons why one should strive for an
accurate measure of what is in store when planning to use a
data reduction technology. We list some of these motivations:
• How many disks to buy: This question comes up in prac-

tice when data reduction is used, but is paramount when a
customer starts using a backup device with deduplication
(e.g., [2], [1] among many others). These devices take
pride in saving massive amounts of storage space with
their advance data reduction techniques, allowing the
user to buy far fewer disks for his backup. Reports of
how much one can gain move from a 2:1 ratio up to
100:1 in extreme cases. Getting a good read on this ratio
before hand can have major consequences: Over estimate
results in overspending , under estimate and you may end
up without enough space for your backups. The most
common approach to address this problem, is to use
one of the myriad “deduplication calculator” designed
to answer this challenge [3], [5], [9], [13], [26]. The
practice in these calculator is for the user to answer a
number of questions about their application types and
backup habits and to come up with an estimate of how
much storage space they would likely consume. None of
these techniques actually require to look at the users real
data which, in many cases is accessible. Experts in the
field claim that these estimation techniques are useful in

general (especially with lack of a better alternative) but
at times are terribly off the mark. For example, it had
been observed that the deduplication factor of a major
vendor’s database may vary from 2:1 to 50:1, depending
on the configuration used by the site admin and the actual
data involved, whether it is backed up daily or weekly. A
comprehensive discussion about the factors that should be
taken into account and affect in practice the deduplication
ratio can be found in [15]. In conclusion, relying solely
on the “deduplication calculators” approach may lead to
significant cost implications when estimating how many
disks to buy.

k) Note:: Our methodology does not always fit directly
for the case of backup since a) typically the data as
a whole is inaccessible but rather one has access to a
few versions of a data set (or just to the dynamically
changing data-set); and b) the typically very high dedu-
plication ratios require more memory in our methods.
Yet our techniques may prove quite useful in answering
accurately two questions that are crucial to the success of
estimation calculators: a) what is the change rate between
backed up versions of the same data set? and b) what is
the data reduction potential within a single version of the
data-set?

• What technique to use: Studies (e.g. [29]) have shown
that the reduction ratio may vary highly according to
the specific workload at hand, but also according to the
underlying data reduction technique (i.e., compression,
full file deduplication, fixed chuck size vs. variable chunk
size in deduplication and combinations of all of the
above). The best technique for one user is not necessarily
the optimal one for another. One can of course try all
techniques and figure out which is best, but this may be
prohibitively costly. Since our estimation can be taylored
for many deduplication techniques, it can be used as
an efficient and feasible tool for understanding which
technique is best for an existing data set, by estimating
the ratio using any one of the methods.



• To dedupe or not to dedupe? Deduplication and com-
pression do not come for free [31], [24]. Neither the
technology (the price of the software/hardware involved)
nor the system resources involved once the technology
is in place (such as response times, CPU and memory
usage). With this in mind, one should make a conscious
decision of how much to invest in data reduction, and
knowledge of how much is to gain by employing such
a technology is key to making a wise decision. With
primary data, it is often questioned whether any data
reduction technique is worthwhile? We aim at giving tools
to evaluate this on a given data set.

In addition our technique is particularly useful to handle the
following applications efficiently:

l) Consolidation of storage pools: In many distributed
systems deduplication is done locally in each node/server. An
interesting question is how much there is to be gained by
consolidating the deduplication efforts across nodes. Such a
consolidation is more challenging to implement due to the
substantially larger hash table and requires a higher amount
of interaction between nodes that one might hope for (see
designs of such efforts in [7], [14], [24]). Our methods can be
used to accurately estimate the benefits that can be achieved
from such an effort, serving as a tool for deciding whether to
invest in such a direction. Since the metadata (hash values)
exist in every node separately, our method gives a cheap way
for estimating the deduplication across all nodes without the
need to create the full hash index table. It can also be used to
decide which nodes, if any, to consolidate with which.

m) Scientific studies: An example of the difficulties
involved in estimating deduplication ratios on a large scale
system can be seen in studies such as the work of Meyer
and Bolosky [25]. Because of the huge amounts of metadata
involved in the computations, several techniques (such as
bloom filters, throwing out all metadata on singletons and
shortening the hash signatures) were necessary in order to
make the estimation possible. The engineering efforts invested
in such an estimation can be greatly relieved when employing
our methods.

n) Systems with built in disk scrubbing: One of the
problems with methods that scan entire data sets is that simply
reading the data is prohibitively expensive. We note that many
storage systems today actually do this anyhow as a mean for
detecting latent errors in their data – a practice known as
disk scrubbing [28]. In such systems, one can piggy back the
scrubbing scan in order to also give precise estimations of data
reduction potential of the data in the system.

VII. CONCLUSIONS

We tackle the problem of estimating deduplication and
compression ratios, a problem that is becoming more and more
relevant with the admission of more deduplication techniques
to large storage repositories. We view our techniques as a tool
that will become more and more effective as such systems
become more widely used and in ever growing scales. Anyone
who has tried to analyze data at the scale of single terabytes

knows how much simple engineering efforts are needed to
cope with the scale. This becomes prohibitively challenging
at even larger scales (e.g. in the research of [25]). We hope
our techniques will lead the way to getting accurate estimates
on very large data sets in future research.

Directions for further research include using known prop-
erties of the data in order to devise methods than can do
educated sampling of the data-set and extrapolate from this
to the entire data-set. Note that our work is orthogonal to
such effort, since it can be used in combo with any successful
sampling technique. This is because the sample itself may be
quite large and our methods can be used in order to analyze it
efficiently without taxing memory requirements. One direction
is to use our methodology as a tool for dedupe estimation
calculators for backup. Our methods can give accurate esti-
mations on the change rate and in-volume compression, as a
mean for calculating the overall capacity required for a backup
mechanism.
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APPENDIX

Proof:
The proof follows by considering the random variable

generated by our estimation algorithm and presenting it with
a different formulation. We view this random variable as an
average of m random variables xj , where each xj is generated
by randomly and uniformly choosing an element i ∈ S and
setting xj = ρi

counti
. The choice of a new xj is done taking

into account the previous choices as to not repeat already
chosen elements. Thus the xj’s are taken from what is termed
sampling without replacement. In the case of files (or variable
sized chunks), the random choice is weighted according to the
length of the file. The estimation random variable is defined
as Est = 1

m

∑m
j=1 xj .

Note that this formulation differs slightly from the formu-
lation given in Section III. Specifically this formulation does
not include the base counter basei, but this is only a semantic
change that groups identical elements together in the base
sample in order to get a more efficient implementation and
the formulations are in fact equivalent. In order to use this
formulation we first observe that the expectation of output
equals the data-reduction ratio of the data-set.

Lemma 1. E(Est) = r

Given the above lemma we can apply Hoeffding’s bound
[21], to bound the deviation of X̄ from its expectation, the
desired ratio.

Theorem 2 (Hoeffding [21]). Let x1, ..., xk be independent
random variables each in the domain xi ∈ [a, b], and denote

by X̄ = 1
k

∑k
i=1 xi then

Pr[|X̄ − E(X̄)| > t] ≤ 2e
− 2kt2

(b−a)2

Moreover, the above holds if x1, ..., xk are random samples
from a population taken without replacement.

Taking a = 0 and b = 1, k = m, X̄ = Est, t = εr and
E(X̄) = r we get:

Pr[|X̄ − r| > εr] < 2e−2mε
2r2

Plugging in m >
ln 2+ln 1

δ

2ε2r2 we get Pr[|X̄ − r| > εr] <

2e−
2(ln 2+ln 1

δ
)ε2r2

2ε2r2 = 2e−(ln 2+ln 1
δ ) = δ.

Proof:
[of Lemma 1]
The lemma follows by since the expectation also holds

for the individual random variables xj . That is, for all j
we have E(xj) = r and from the linearity of expectations
Est = 1

m

∑m
j=1E(xj) = r.

Showing that E(xj) = r is straightforward in the case of
fixed size chunks. Suppose the data set S contains n elements
and denote by D the set of distinct elements in S, containing
D elements. The data reduction ratio can be denoted as r =
1
n

∑
i∈D ρi where ρi is the compression ratio of this element

(in case no compression is used then ρi = 1 for all i and
r = D

n ). In reality, each element i ∈ D is constituted of
counti replicas in S and it can be viewed that each of the
counti replicas contributes ρi

counti
to the overall compressed

representation of the data set. So an alternative way to view
the ratio is as an average over all n elements, where each
element contributes ρi

counti
to the sum. Now by definition of

xj we have E(xj) = 1
n

∑
i∈S

ρi
counti

= r.
In the full-file case, the ratio is r = 1

n

∑
i∈D ρi`i where

`i is the length of file i and n denotes the overall length
of the data set rather then the number of elements in it.
Alternatively, r = 1

n

∑
i∈S

ρi`i
counti

. Since xj takes a random
element, and the probability of the ith element is `i

n , then
E(xj) =

∑
i∈S

`i
n

ρi
counti

= r. A similar argument holds for
the case of variable sized chunks.

To complement our study, we test the performance overhead
of some key operations needed for the estimation scheme to
run. These are reading from the disk, computing of the hash
signature and compressing a chunk. The test was run once
with a moderate file of 40 MBs and once with a large 8 GB
file. We used standard python libraries on a Intel Core2 Duo
CPU, with 2.33 GHz and 1.96 GB of RAM. The compression
is a standard LZ process run at 8 KB chunks. Our results are
detailed in the Table IV.

Process 8 GB file 40 MB file
Disk read+overheads 16.4% 20.5%
Compute sha1 hash 5% 4%

LZ compression 78.6% 75.5%

TABLE IV
Percentage of the overhead for key operations


