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Abstract—Enterprise storage systems are generally shared by
multiple servers in a SAN environment. Our experiments as
well as industry reports have shown that disk arrays show
poor performance when multiple servers share one RAID due
to resource contention as well as frequent disk head movements.
We have studied IO performance characteristics of several shared
storage settings of practical business operations. To avoid the IO
contention, we propose a new dynamic data relocation technique
on shared RAID storages, referred to as DROP, Dynamic data
Relocation to Optimize Performance. DROP allocates/manages a
group of cache data areas and relocates/drops the portion of hot
data at a predefined sub array that is a physical partition on
the top of the entire shared array. By analyzing profiling data
to make each cache area owned by one server, we are able to
determine optimal data relocation and partition of disks in the
RAID to maximize large sequential block accesses on individual
disks and at the same time maximize parallel accesses across disks
in the array. As a result, DROP minimizes disk head movements
in the array at run time giving rise to high IO performance. A
prototype DROP has been implemented as a software module at
the storage target controller. Extensive experiments have been
carried out using real world IO workloads to evaluate the
performance of the DROP implementation. Experimental results
have shown that DROP improves shared IO performance greatly.
The performance improvements in terms of average IO response
time range from 20% to a factor 2.5 at no additional hardware
cost.

I. INTRODUCTION

Storage consolidation has been widely adopted by IT or-
ganizations for high efficiency, good scalability, easy man-
agement, and low cost. In such a consolidated storage envi-
ronment, many servers typically share a storage pool through
either a storage area network (SAN) or network attached stor-
age (NAS). It is not uncommon to find, in a IT department of
small to medium size enterprises, a high performance or a mid
range disk array that is shared by many servers that perform
different applications and data services. The performance of
the shared disk array is essential to the effectiveness of the
data services of the enterprises.

Many IO optimization techniques exist at OS level or
application level [1]–[3] by either increasing sequential data
accesses on individual disks or maximizing parallelism in
RAID. These techniques work well on storages for single
servers. When the RAID is shared by multiple servers that

run different applications and different file systems, the IO
throughput drops sharply as the number of servers sharing the
storage increases. Such a rapid decrease in IO performance
is the direct result of intermixes of IOs from heterogeneous
servers. Although IOs are optimized from each server point
of view by means of large block accesses or parallelism, the
mixed IOs from different servers as viewed from the shared
disk array causes a great amount of disk head movements. As
a result, the overall IO throughput becomes very poor and gets
worse as the number of servers increases.

A straightforward solution to this problem is to statically
allocate a fixed number of disks from the array to each
server so that the RAID is contention free. Each server only
accesses its own allocated disks and the IOs are optimized
for the applications and the OS running on each server. For
example, if a shared disk array has N disks shared by P servers,
each server can be allocated N/P disks dedicated to provide
disk storage to the server. If the relative IO requirements of
servers are known a priori, disks can be allocated to servers
proportionally to their disk storage requirements. While this
solution eliminates the problem of disk contention and exces-
sive disk head movements, it results in poor load balancing and
goes against the original motivation of storage consolidation.
Furthermore, it results in excessive waste of disk storage space
if all servers are to be provided with high IO throughput and
fault tolerances that are expected from a disk array.

Based on the analysis of real world IO access characteristics,
we propose a new dynamic data relocation technique that
allows balanced storage sharing of a RAID among hetero-
geneous servers. When a LUN (logic unit number) is created
for a server, the entire disk array is available to the server
for storage allocation to maximize data parallelism and fault
tolerance, leading to true storage consolidation and sharing. To
minimize the frequent seek operations caused by intermixes
of the IO streams from different servers, we perform dynamic
data relocation to optimize performance (DROP) of IOs from
different servers. DROP relocates hot data to a special partition
of the disk array in such a way that large block accesses
on any individual disk and the parallelism of data accesses
across multiple disks are maximized. The special partition
forms different RAID levels to match the IO access patterns



of servers sharing the storage for optimal IO response time.
The partition works in a similar way as a lower level storage
cache with a capacity several orders of magnitude larger than
a RAM cache. The high-speed access of this cache is achieved
by means of large sequential block accesses on individual disks
and high parallelism across an array of disks.

A prototype DROP has been implemented at block level as
a storage target. The prototype consists of profiling module,
dynamic data relocation module, algorithm module, RAID and
interface module. All these modules are implemented in the
standard Linux iSCSI target [9]. Multiple servers with iSCSI
initiators are connected to the iSCSI storage target with the
DROP prototype. Real world traces are used to drive the
storage target. Experimental results have shown that DROP
improves IO response time greatly. The average improvement
in terms of IO response time ranges from 20% to a factor 2.5
without any additional hardware. Furthermore, DROP is the
least intrusive to servers because it is implemented in a storage
target at block level without any need to change servers’ OS
or applications.

This paper makes the following contributions:
1) A new dynamic data relocation technique from a large

disk array to a small cache disk array that is a partition
of the large disk array to avoid the IO contention;

2) A prototype implementation of the new data relocation
technique, DROP, at block level in the Linux iSCSI
target;

3) Extensive experiments and performance evaluations us-
ing real world IO traces and standard benchmarks to
show that DROP improves IO response time greatly with
no additional hardware cost.

The rest of the paper is organized as follows. Next section
presents the architecture and algorithm of DROP followed by
the implementation details. Section 3 describes our evaluation
methodology and workload characteristics. We discuss our
experimental results in Section 4. Related work is discussed
in Section 5. Section 6 concludes the paper.

II. DROP DESIGN

A. DROP layout

The main idea of DROP is dynamically relocating active
data in the shared disk array based on on-line profiling so that
IO performance can be optimized. The shared disk array is
partitioned into three different areas. The main area is used to
store data belonging to all servers sharing the storage. Another
area is used as a storage cache that stores active data like a
second level cache with orders of magnitude larger capacity.
The third area stores necessary metadata to implement the
dynamic data relocation. Consider an example disk array with
8 disks shared by three different servers as shown in Figure 1.
At the bottom of this array called common storage area, three
LUNs are allocated to the three servers as their respective data
storage. On top of the LUN area, 6GB space is reserved on
each of the 8 disks as a partition for cache purpose. At the top
of the figure, 1GB partition from each disk is used to store
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Fig. 1. Data layout on a DROP array.
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Fig. 2. Software structure of DROP design.

the necessary metadata for data relocation including hotspot
data information for each server, RAID mapping table, and
Hash table from each server. The configuration of the cache
area (gray color area) is done dynamically at system idle time
depending on the IO activities and profiling analysis of each
server. Such configuration includes the number of disks and
what RAID level should be used for each server. Based on
our analysis of profiling data, we dynamically form sub-RAID
[10] in the cache area for each server, which can be deployed
as RAID5 for reliability. Every sub-RAID is owned by one
server. Data allocation in the cache area is done in a way to
maximize large sequential disk access on any individual disk
and to maximize parallel IOs across disks in each sub-RAID.

By partitioning the shared area into three disjoint areas and
dynamically relocating data, DROP provides several advan-
tageous features. First of all, active data of different servers
are mapped to different sub-RAID in the cache area so that
contention among different servers is minimized and so is the
number of disk head movements. Secondly, hot data of each
server are physically allocated close to each other in its cache
area to reduce disk head movements. In addition, dynamic
relocation based on profiling data makes it possible to balance
the IO workload. Once relocation is done, the cache mapping
table is fixed for a long period of time until next relocation.
The mapping table is stored in metadata area of the disks as
persistent data to allow crash recovery.
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B. DROP structure

The overall structure of DROP is shown in Figure 2 as
a software module embedded in the standard iSCSI target.
It consists of three tables (HDT: Hotspot Data Table, RMT:
RAID Mapping Table and HT: Hash Table) to manage meta-
data and maintain the data consistence.
Metadata Structures: The cache area in the DROP system
consists of many sub-RAIDs as shown in Figure 1. Data in
this cache area cannot be accessed directly using requests’
LBAs. The hotspot data will be compiled statistically in terms
of access time during a period and recorded in the HDT.
Two major metadata structures for mapping LBAs to physical
addresses in the cache: RMT and HT. The structure and the
relationship between the two mapping tables are shown in
Figure 3. The server can locate the LUN storage resources
according the users’ IP information, including DataRaid and
CacheRaid from RMT when an authorized user requests the
service. Then, the read/write IOs uses the block address
(block id) to calculate the HASH value and handle the IO by
indexing HT. The reliability of metadata depends on RAID
level used
Data Rebuilder:

This function is acting as data importor (write back the dirty
data) and plays the role of data prefetching. The data importing
thread will start when the storage system is idle. This thread
can import dirty data writing back into the corresponding
position of main data areas and update the data mapping
relationship in cache areas. The parallel processing of data
importing can improve efficiency due to the multi-stream
transferring from cache areas to memoires. After gathering the
access time of blocks and recording into HDT, data rebuilder
relocates hot data to the cache area. Before such migration,
data rebuilder first writes back all dirty data in the cache area
to their respective locations in the LUNs of the main area as
shown at the bottom of Figure 1. As soon as the hot data are
relocated to the cache area, the corresponding RMT and HT
are written in the metadata area of the disk array. Every time
such relocation is initiated, the data rebuilder reorganizes sub-
RAID in the cache area and allocates data according to the
profiling analysis. Some servers may have larger sub-RAID
than others depending on the history of access profile. We
decide the number of sub-RAID disks of the server with less
workloads prior to the one with more workloads, and the last
server (with the heaviest workloads) is allocated with the left

disks after all other servers are considered. The exact number
of disks allocated to a server as a sub-RAID is based on the
following formulas: No of disk = Max(2, p× Total No disks)

p =
No IO server

Total IO
× α+

Data size server

Total data size
× (1− α)

where the number of disks (No of disk) used by relocat-
ing process mainly depends on the load balance parame-
ter p, which is driven by two parameters, the number of
IO(No IO server) and data size (Data size server) from the
server. And α is a tunable weight coefficient with default being
0.5 that means the equal importance of them. Total IO and
Total data size are all variables depending on hotspot data
statistical interval. After all sub-RAIDs are formed, hot data
are stored in the sub-Raid sequentially based on their LBAs.
If the total hot data size exceeds the capacity of the cache,
data are selected based on their temperature values from high
to low.
RAID Mapping:

I/O requests will divide the data streams into the corre-
sponding sub-RAID after the processing of RAID mapping
modules. The source of IO requests can be analyzed from the
iSCSI connection by checking the IP address to obtain block
data address of the servers’ data areas and cache areas.
IO Director:

IO director is responsible to process IO requests. IET
(iscsitarget-0.4.15) processes IOs based on Linux memory
pages (4KB). IET divides all IO requests from servers into
4KB pages and IO director looks for them in the corresponding
RMT. If a block is found in the RMT, then it is a cache hit
and the corresponding cache block is returned. Otherwise, the
request is passed to the regular LUNs at the bottom of the
disk array. Lastly, if the HASH hit the Cache, access the sub-
RAID according to the CacheRaid and Cache LBA, or else
by DataRaid and Data LBA to obtain the exact position of
the block in the sub-RAID.

We use the existing RAID software of Linux, MD (Multiple
Device), for sub-RAID implementation in the cache area
dynamically. MD can be used to implement the bottom part
of shared RAID in the LUN area of DROP as described in
Figure 1.

III. EVALUATION METHODOLOGY

This section presents our experimental setting and method-
ology that we use to study quantitatively the performance of
the DROP prototype as compared to traditional RAID systems.

A. Experimental settings

Our experimental setting consists of a storage server that
forms a shared RAID and 5 application servers interconnected
using the Cisco 3750 with Gb Ethernet. The shared RAID
consists of eight 500 GB SATA drives with 60791 cylinders
each controlled by the storage server to form a RAID5 or
other RAID levels. The details of the storage server and the
disks are listed in Table I. The hardware configurations of the



TABLE I
HARDWARE DETAILS OF THE STORAGE SERVER FOR THE TRACE REPLAY

TESTBED

OS Fedora Core 8.0
Disks 1 Seagate ST3160023AS, 160GB, 7200RPM.

8 Seagate ST3500320AS, 500GB, 7200RPM.
mainboard SUPER X7DVL-I

CPU Intel(R) Xeon(R) CPU 5110 1.60GHz
NIC Intel PRO/1000

memory 1G DDR2
HBA Highpoint 2220

TABLE II
HARDWARE DETAILS OF APPLICATION SERVERS FOR THE TRACE REPLAY

TESTBED

OS Fedora Core 8.0
Disks Seagate ST3160023AS, 160GB7200RPM.

mainboard GA-945GCMX-S2
CPU Intel(R) Celeron(R) CPU 2.80GHz
NIC Reltek 8169

memory 512MB DDR2

application servers are shown in Table II. Our DROP prototype
is installed in the iSCSI target running on the storage server.

B. Workloads

The GIS traces were collected from real world storage users’
environment that has a storage shared by three servers: a
database server, a multimedia server, and a web server. They
store mainly geographical information (GIS) of an area similar
to a large city.

On the application servers, we replay the collected IO traces
using btreplay program of the blktrace tool in Linux. As results
of the replay, IO requests are generated to the RAID in the
form of iSCSI requests. The shared area using RAID5 level
acting as an iSCSI target and is allocated to the servers with
different LUNs. 1.5TB LUN is allocated to multimedia server
and 1TB LUN is allocated to other servers. Our traces were
collected over 5-7 days. To speed up our experiments, we
have eliminated the interval time between two subsequent IO
requests by using option -no-stalls when running btreplay.

C. Baseline systems

We evaluate the performance of DROP in comparison with
two baseline systems. The first baseline system (RAID) is
the traditional shared RAID with no data relocation and disk
caching mechanism used. In this case, data are stored in the
RAID based on the upper layer file systems of the servers. The
second baseline system (CACHE) uses data relocation and disk
caching mechanism similar to prior research reported in [8].
The implementation is referred to as CACHE that reserves 3
areas with 16GB across disks in the array as 3 caches for the
three servers, respectively. Hot and correlated IO data of each
server are stored in their respective cache area. The cached
data are ordered based on their LBAs to ensure sequential
and contiguous accesses of hot data in the cache. The major
difference between our DROP and the CACHE is relocating
hot data of different servers to different exclusive sub-RAID

 

Fig. 4. Average IO response times of the GIS.

areas to minimize interferences among servers’ IO requests
and to maximize parallelism of IO operations in the cache
area.

IV. NUMERICAL RESULTS AND DISCUSSIONS

Using our prototype implementation and the experimental
settings, we measured the average IO response time for each
server. Figure 4 shows the average IO response times of the
three servers over all IO requests. We noticed low contention
and low response time experienced by the DB server as shown
in the Figure 4(a). The same results are demonstrated by the
Web Server and Multimedia server in Figure 4(b), Figure 4(c)
respectively. Our DROP software relocates data to the sub-
RAID in the cache area. As a result of this relocation, the ser-
vice performance improved greatly. We observed that CACHE
improves shared RAID performance by 20%, 19%, and 17%
for DB server, Web server, and multimedia server, respectively.
With DROP, much greater performance improvements were
observed. For the three servers, DROP improves the shared
RAID performance by 74%, 63%, and 96%, respectively.
This greater performance improvement of DROP compared
to the CACHE can be attributed to the dynamic and separate
allocations of physical sub-RAID to different servers. The
result of such relocation is reduction of interferences of IOs
from different servers sharing the RAID.

V. RELATED WORK

Extensive research has been reported in the literature on IO
access characteristics [4]–[7] that show spatial and temporal
locality. Researchers have found that different file systems



show different IO access characteristics [15], [16]. However,
one common characteristic is that active working set is usually
a very small portion of the entire data set. Making use of
this IO characteristics, many caching, prefetching, and data
allocation techniques have been proposed [7], [8], [17], [18].
Their results are very promising indicating the effectiveness
of exploiting data locality and repetitive IO accesses. DROP
differs from these existing research works in its consideration
of intermixed IOs from heterogeneous servers sharing a disk
array and its optimization techniques on sub-RAIDs in the disk
cache area.

One good example is BORG [8] that optimizes disk IO per-
formance by means of a cache partition on a disk. Correlated
hot data are placed in the cache area contiguously to allow fast
and sequential accesses and minimize disk head movements.
While both BORG and DROP try to minimize seek operations
on disks, DROP focuses on minimizing interferences among
IOs from separate and independent servers in addition to max-
imizing sequential disk accesses. DROP dynamically allocates
sub-RAIDs in the cache area to different servers to allow more
parallel IOs and to minimize seek operations.

Distributed file system (DFS) allows many clients to share
storage [19]–[22]. Some DFS systems allocate data based on
IO characteristics such as ROMIO [23] that uses application
hint and file access pattern to improve individual and parallel
IO performance, and web [24] that replicate read only data.

While both DFS and DROP deal with shared storages, there
are many substantial differences. 1) Data allocation of DFS
includes metadata/data allocation, caching, replication as well
as file migration policies. DROP’s data relocation focuses on
migrating block level data within a shared RAID with no file
system semantics. 2) DFS improve file system performance by
replicating and migrating data closer to client to minimize data
transfer distance and time upon IO requests, avoid hotspot, and
balance load among clients. DROP achieves high performance
by minimizing disk head movements within a disk array upon
IO requests.

There is a rich set of literature on buffer cache, secondary
level cache, and prefetching techniques for disk storages.
A good summary and comparison of these cache designs
can be found in [25], [25], [27], [28]. DROP is similar to
these cache designs in terms of exploiting locality of data
accesses but differs greatly from them in terms of placing and
relocating data blocks within one shared disk array as opposed
to managing RAM caches. DCD [29] improves small writes
performance by means of a log disk on top of data disk. DROP,
on the other hand, tries to improve both reads and writes
IOs base on dynamic profiling information in shared RAID
environments.

VI. CONCLUSION

This paper presented a new performance optimization tech-
nique for RAID storage that is shared by multiple servers.
In order to understand the IO characteristics of shared RAID
in real world, we carried out onsite studies of three storage
user scenarios where a small set of different application servers

shares a disk array as a consolidated SAN storage. To avoid the
IO contention, we came up with a new dynamic data relocation
technique referred to as DROP (dynamic relocation to optimize
performance). DROP forms sub-RAIDs on top of traditional
RAID acting as the cache data areas and relocates the data to
make the cache area serve each server individually in order
to minimize disk head movements caused by intermix of disk
requests from different servers. Through such dynamic data
relocation, DROP achieves load balance among disks in the
array, high speed disk accesses, and true storage sharing and
consolidation. A prototype DROP has been built on Linux OS
as a storage target. Extensive experiments have shown that
DROP improves disk IO performance greatly over a variety
of IO workloads and sharing scenarios.
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