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Abstract—Emerging nonvolatile memory technologies (some-
times referred as Storage Class Memory (SCM)), are poised to
close the enormous performance gap between persistent storage
and main memory. The SCM devices can be attached directly to
memory bus and accessed like normal DRAM. It becomes then
possible to exploit memory management hardware resources to
improve file system performance. However, in this case, SCM
may share critical system resources such as the TLB, page table
with DRAM which can potentially impact SCM’s performance.

In this paper, we propose to solve this problem by employing
superpages to reduce the pressure on memory management
resources such as the TLB. As a result, the file system perfor-
mance is further improved. We also analyze the space utilization
efficiency of superpages. We improve space efficiency of the file
system by allocating normal pages (4KB) for small files while
allocating super pages (2MB on x86) for large files. We show
that it is possible to achieve better performance without loss of
space utilization efficiency of nonvolatile memory.

I. INTRODUCTION

For decades, modern file systems are designed on the as-

sumption that the underlying storage devices are block-based,

such as disk or flash-based SSD. The recent development of

nonvolatile memory technologies such as phase change mem-

ory (PCM) are poised to revolutionize storage in computer

systems. These technologies collectively are termed Storage

Class Memory (SCM). The SCM devices are attached directly

to memory bus and are byte-addressable. SCM can offer com-

parable access latency to DRAM and are orders of magnitude

faster than traditional disks. Processor can access persistent

data through memory load/store instructions. Figure 1 shows

the potential system hierarchy while building SCM as the

persistent storage. As shown in Figure 1, the DRAM and SCM

can sit in parallel and be accessed through memory bus. It

becomes possible to leverage the memory management module

to simplify and accelerate file system operations such as space

management and file block addressing. Our previous work –

SCMFS [21] has exploited memory management hardware to

improve file system performance. However, this approach also

added more work on memory hardware resources such as TLB

and MMU which caused increased data TLB misses. In this

paper, we show that it is possible to obtain better file system

performance by reducing pressures on such resources.

In this work, we propose to solve the problem of increased

TLB misses by employing superpages. As a result, the perfor-

mance of our file system is further improved. Compared with
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Fig. 1. Storage Class Memory

normal pages (usually 4K), the super pages (2MB on x86) are

able to enlarge the coverage of TLB because a TLB entry for

super pages covers more memory than normal 4KB pages. As

a result, we can effectively reduce the TLB misses when the

size of TLB is limited and fixed.

We also analyze the space utilization efficiency of super-

pages. We improve space efficiency of the file system by

allocating normal pages for small files and metadata while

allocating super pages for large files. We show that it is

possible to achieve better performance without loss of space

utilization efficiency of nonvolatile memory.

The primary contributions of this paper are as follows: (a)

This paper analyzes the impact of TLB misses while designing

a nonvolatile memory file system. (b) We propose to solve

this problem by employing superpages for large files while

utilizing normal pages for small files and metadata. (c) We

show that it is possible to achieve better performance without

loss of space utilization efficiency of nonvolatile memory.

The remainder of the paper is organized as follows: We will

discuss the related work in Section II. In Section III we present

the motivation for superpage. In Section IV we present the

implementation of superpage within our file system which are

then evaluated in Section V. Section VI concludes the paper.

II. RELATED WORK

A number of recent works proposed hybrid file systems

via byte-addressable NVRAM and HDDs [5], [11]. In [11],

Miller et al. proposed using a byte-addressable NVRAM

file system which used NVRAM as storage for file system

metadata, a write buffer, and storage for the front parts of

files. In the Conquest file system [5], the byte-addressable

NVRAM layer holds metadata, small files and executable files

while the large files reside on HDDs. Hybrid file systems

for byte-addressable NVRAM and NAND Flash are proposed978-1-4673-1747-4/12/$31.00 c© 2013 IEEE



to address NAND-Flash file system specific issues using

byte-addressable NVRAM [3], [8], [16]. They include mount

latency, recovery overhead against unexpected system failure,

and the overhead in accessing page metadata for a NAND

Flash device. All of these previous works assume the NVRAM

is small and stores only metadata and/or small files. While

our file system is designed for purely nonvolatile memory

based persistent storage which expects the NVRAM to be large

enough to hold the whole file system data.

BPFS [2] file system designed for non-volatile byte-

addressable memory, uses shadow paging techniques to pro-

vide fast and consistent updates. It also requires architectural

enhancements to provide new interfaces for enforcing a flex-

ible level of write ordering. DFS [6] is another file system

designed for flash storage. DFS incorporates the functionality

of block management in the device driver and firmware to

simplify the file system, and also keeps the files contiguous

in a huge address space. It is designed for a PCIe based

SSD device by FusionIo, and relies on specific features in

the hardware.

Solutions have been proposed to speed up memory access

operations, to reduce writes, and for wear-leveling on PCM

devices. Some of these solutions improve the lifetime or the

performance of PCM devices at the hardware level [9], [10].

Some of them use a DRAM device as a cache of PCM in the

hierarchy. [17] presents a page placement policy on memory

controller to implement PCM-DRAM hybrid memory systems.

Several wear-leveling schemes to protect PCM devices from

normal applications and even malicious attacks have been

proposed [12], [13], [18], [22]. Since our work focuses on the

file system layer, all the hardware techniques can be integrated

with our file system to provide better performance or stronger

protection.

The importance of TLB performance and support for super-

pages has been described in [4], [15], [19], [20]. Impact on

TLB misses on application performance prompted proposals

for effective superpage management [15]. The architectural

and operating system support required to exploit medium-sized

superpages (e.g., 64KB) is presented in [20]. Our approach

focuses on employing superpages within a nonvolatile memory

file system. We propose to utilize both normal pages and super

pages to achieve better performance of file system without loss

of space utilization efficiency of the SCM device.

III. MOTIVATION

When building storage class memory for persistent storage,

we may have a system hierarchy as shown in Figure 1.

The SCM and normal DRAM can be both accessed through

memory bus. Then it becomes possible to leverage the memory

management module within the operating system to help

manage the space of SCM devices. For this consideration, we

have built a file system (SCMFS) [21] on virtual address space

and largely simplified the complexity and operations of file

system. As shown in Figure 2, regular file systems are built

on top of the generic block layer, while SCMFS is on top

of the modified memory management module. We simplified
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Fig. 2. File systems in operating systems

file block addressing by allocating each file within contiguous

virtual address space. To get the location of the request data,

we just add the offset to the start address of the file. The actual

physical location of the data is available through the TLB

or page table translation (VA to PA). Although this approach

largely reduced the instruction set and the complexity of the

file system, it added more pressure on memory management

hardware such as TLB, since both normal applications and file

system share those resources now.

To relieve the pressure on TLB, operating systems some-

times map the whole memory in the system to a linear address

space using a larger page size (e.g., 2MB). However, this

approach does not fit SCMFS. As shown in Figure 3, File1

and File2 may have different access permissions, i.e. File1

can be opened for both read and write, while File2 is only

readable. In such a case, we can not allocate File1 and File2 on

the same superpage. It is difficult to maintain different access

permissions within one superpage since its corresponding TLB

entry defines one unified access permission for the whole page.

If we map each file into a separate superpage, there will be

lots of internal fragmentation for small files. We will present

how we employ superpages within our file system to solve the

space utilization issue in section IV.
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Fig. 3. Address Mapping

IV. SUPERPAGE IMPLEMENTATION

To accelerate the memory access speed, modern processors

cache the virtual to physical address mappings from the page

tables in TLB. Expensive performance penalties are incurred

whenever we get TLB misses. To enlarge the coverage of TLB,

most hardware and operating systems support superpages. In

this section, we describe how to efficiently employ superpages

within our file system.



A. Preservation for superpage

A superpage is a memory page of larger size than an

ordinary page. To allocate a superpage, we are required to

have a contiguous memory space which is usually multiple

sizes of a normal page. Therefore it is not guaranteed to be able

to obtain a superpage successfully even though there is still

sufficient physical memory. In our implementation, we solve

this problem by preserving a contiguous, configurable size of

SCM for allocating superpages. We divide the physical space

of SCM into two regions, one for normal page allocation and

the other for superpages. The boundary between normal and

super page region is configurable during file system mounting.

Figure 4 shows the layout of the physical space of SCM.

…. ….

Normal Page region

Physical Address Space of SCM

…. …. LP2

Superpage region

LP1SP2SP1

Configurable Boundary

Small files and metadata Large files

Fig. 4. Physical Space of SCM

B. Space utilization

In a file system, we may have a number of small and large

files as well as metadata that need to be stored. The space

utilization efficiency is very important especially for SCM

devices considering their expensive cost. We want to utilize

superpages for storing data which may potentially reduce

the pressure on TLB and improve file system performance.

However, allocating the whole file system data with superpage

will generate lots of internal fragmentation, especially for

small files and metadata. In such a case, we may have a low

space utilization efficiency on the SCM device.

To achieve better performance without loss of space utiliza-

tion efficiency, we propose using both normal and super pages

within our file system. As shown in Figure 4, small files and

metadata are mapped to normal pages while large files are

stored within super pages. As a result, we solve the internal

fragmentation issue for small size data while TLB misses are

reduced effectively whenever accessing large files on super

pages.

One potential problem is that it is not easy to decide how

the file size will grow during creation. Therefore, initially, we

always allocate normal pages for file data. Whenever the file

size become larger than a configurable threshold, we begin to

migrate this file to super pages. After migration, the original

file data (on normal pages) will be freed and the corresponding

inode metadata will be updated. To minimize the impact on

SCMFS’s performance, we use a background kernel thread to

handle the migration. This kernel thread will pick up those

files that are not being written currently to do migration. It is

noted that read request can still be handled by the original file

(on normal pages) during migration, while write request has

to wait until the migration process finishes. Since most large

files in real system are multi-media or read-heavily files, which

usually keep a relatively stable size once written. Therefore

the migration between normal and super pages will not be

frequent.

C. Modifications to kernel

To support superpages within our file system, we made

several modifications to the original Linux kernel 2.6.33.

We first add a memory zone “ZONE STORAGE” into the

kernel. We put all the address range of DRAM space

which we used to emulate SCM into the new zone

“ZONE STORAGE”. Then we add a set of memory alloca-

tion/deallocation functions for super pages. Generally, there

are four main functions used by our file system. The function

nvmalloc superpage() allocates designated number of super

pages from “ZONE STORAGE” while nvfree superpage()

is the corresponding function for deallocation. Another

two functions are nvmalloc expand superpage() and nvmal-

loc shrink superpage(). The former one is used when the file

size increases and the mapped super pages are not enough,

while the latter one is used to recycle the allocated but unused

super pages.

V. EVALUATION

In this section, we evaluate the performance of enhanced

SCMFS with superpage support. We implemented superpages

within SCMFS on a linux kernel of version 2.6.33.

A. Methodology

To evaluate superpage performance of SCMFS, we use mul-

tiple benchmarks. The first benchmark, IOZONE [1] creates a

large file and issues different kinds of read/write requests on

this file. Since the file is only opened once in each test, we use

IOZONE to evaluate the performance of accessing file data.

The second benchmark we use is postmark [7], which creates

a lot of files and performs read/write operations on them. The

file size can be configured within one specific range. We use

this benchmark to evaluate superpage’s impact when accessing

both small and large files in SCMFS. In all experiments,

we track the number of allocated superpages and the actual

file data size. We see that our approach keeps the internal

fragmentation within 1% on average. In the experimental

environment, the test machine is a commodity PC system

equipped with a 2.33GHz Intel Core2 Quad Processor Q8200,

8GB of main memory. We configured 4GB of the memory as

the type “ZONE STORAGE”, and used it as Storage Class

Memory.

In all the benchmarks, we compare the performance of

SCMFS with/without superpage supported to that of other

existing file systems, including ramfs, tmpfs and ext2. Since

ext2 is designed for a traditional storage device, we run it on

ramdisk which emulates a disk drive by using normal RAM

in main memory. It is noted that tmpfs, ramfs and ramdisk are

not designed for persistent memory, and none of them can be

directly used on storage class memory.
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B. IOZONE Results

We run IOZONE with sequential and random workloads

for both read and write. To obtain the performance of TLB,

we used the performance counters in the modern processors

through the PAPI library [14]. Figure 5 and 6 show the data

TLB misses of all file systems while running IOZONE’s

sequential and random write workloads. We can see SCMFS

with superpage support (bar scmfs-lp) effectively reduced the

data TLB misses compared with original SCMFS. When the

request size become larger (more than 2MB), the variance of

data TLB misses tends to be smaller among all file systems.

This is because the number of TLB entries for superpages is

limited which may not cache all the superpages when request

sizes is larger.

Figure 7 and 8 show the corresponding throughput for IO-

ZONE’s sequential and random write workloads. We can see

that employing superpages within SCMFS improves through-

put performance significantly. It is noted that in Figure 7, ext2

on ramdisk performs much better than other file systems when

request size is within 128kb–512kb. This is because within that

range, ext2 has much lower L2 data cache misses compared

to other file systems. The performance on read workloads is

consistent with the write workload. We did not show it for

lack of space.

C. Postmark Results

In this section, we evaluate the impact of superpages by

running postmark benchmark. We use postmark to generate

both intensive read and write workloads. In our experiment,

postmark created a number of small and large files and
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performed read, append and delete transactions. We again used

the PAPI library to investigate the detailed performance of

TLB.
Figure 9 and 10 show the data TLB misses of postmark

for all file systems. We can see that utilizing superpages

effectively reduces data TLB misses of SCMFS which is

consistent with IOZONE results. The throughput performance

is shown in Figure 11 and 12. We again achieved better

performance while employing superpages within SCMFS.
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VI. CONCLUSION

In this paper, we explored the approach of utilizing memory

management hardware for managing persistent storage of

SCM. We analyzed the potential impact of TLB misses on file

systems designed specially for SCM. We proposed an effective

solution by employing superpages within a nonvolatile file

system to relieve the pressure on the TLB. The experimental

results show that our approach reduced the data TLB misses

by an average of 65% and further improved the throughput

by 8.5% compared to the same file system with no superpage

support. To maintain space utilization efficiency of nonvolatile

memory, we utilized both normal and super pages within our

file system.
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