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Abstract—In the past storage vendors used different 

types of storage depending upon the type of workload. 

For example, they used Solid State Drives (SSDs) or FC 

hard disks (HDD) for online transaction, while SATA 

for archival type workloads. However, recently many 

storage vendors are designing hybrid SSD/HDD based 

systems that can satisfy multiple service level objectives 

(SLOs) of different workloads all placed together in one 

storage box, at better cost points. The combination is 

achieved by using SSDs as a read-write cache while 

HDD as a permanent store. In this paper we present an 

SLO based resource management algorithm that 

controls the amount of SSD given to a particular 

workload. This algorithm solves following problems: 1) 

it ensures that workloads do not interfere with each 

other 2) it ensure that we do not overprovision (cost 

wise) the amount of SSD allocated to a workload to 

satisfy its SLO (latency requirement) and 3)  

dynamically adjust SSD allocated in light of changing 

workload characteristics (i.e., provide only required 

amount of SSD). We have implemented our algorithm in 

a prototype Hybrid Store, and have tested its efficacy 

using many real workloads. Our algorithm satisfies 

latency SLOs almost always by utilizing close to optimal 

amount of SSD and saving 6-50% of SSD space 

compared to the naïve algorithm. 
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I.  INTRODUCTION 

A cloud is usually characterized by multiple 
applications/workloads that share the same set of storage 
system. Each of these applications have certain set of Service 
Level Objectives (SLOs) [1], namely performance (average 
I/O latency, average throughput), capacity, reliability, and 
security (retention of data, encryption), etc. One of the aims 
of a cloud provider is to satisfy all the SLOs at the lowest 
cost. With the emergence of Flash and SSDs, storage 
vendors are combining it with HDDs to satisfy SLOs at 
better cost points than pure Flash/SSD or pure HDD based 
solutions. They are placing SSDs as a read-write cache in 
front of HDDs or using SSD as a different storage tier. We 
call such a solution a Hybrid Storage (HyS). Examples 
include NetApp

®
 FlashCache [2], EMC

2
® FAST [3], etc. 

One problem common to all the above mentioned multi-
tenant Hybrid Storage systems is the lack of SLO based 
management for SSDs or flash. SSD cache is shared across 

the different workloads i.e., there is a common LRU queue to 
manage the SSD cache space across all the workloads. Thus, 
Hybrid Store treats all the workloads in similar fashion. This 
leads to three major problems: (1) SLO inversion of 
workloads, (2) SLO violation of few workloads, and (3) 
suboptimal SSD utilization.  

With a single shared LRU queue in the SSD tier of 
Hybrid Store, workloads that do not have a very stringent 
latency requirement can utilize more than the required 
amount of SSD to meet their target latency, depriving the 
other stricter SLO workloads of SSD resources and hurting 
their performance. This results in SLO inversion, e.g., Silver 
customer perceiving Gold customer experience and vice-
versa. Further, this results in SLO violation of workloads that 
have stringent latency requirements. Since the SSD resource 
is not utilized by the right set of workloads, it leads to sub-
optimal SSD utilization. 

This paper brings the concept of SLO to the SSD caching 
layer in Hybrid Store. In this paper we focus only on 
performance SLO and more specifically latency SLO. We 
have designed and implemented a light-weight feedback-
based proportional controller, called Error-aware Feedback 
Controller (EAFC) that dynamically sizes the SSD caching 
tier of Hybrid Store for each workload, depending upon its 
latency requirements and workload characteristics. Similar 
idea can be applied on any other shared resource in the 
storage stack, but we have limited our study to only SSD 
caching layer when used as a read cache only. 

The major contribution of this work is design and 
implementation of per-workload feedback controller that 
sizes the SSD partition on a HyS  for each workload close to 
optimal so as to meet its respective latency requirement, and 
dynamically adapt the partition size to changes in workload 
and working set sizes. The key insights gained by this work 
on SSD cache sizing are: 

 In order to meet latency requirement only a fraction 

of working set size needs to be cached depending 

upon workload characteristics and working set size. 

 SSD cache size should keep some headroom to 

accommodate workload changes: if the sizing 

algorithm tries to meet 75
th
 percentile observed 

latency, average target latency is always met.   

 We do not require a lot of history to set the partition 

size appropriately.  A simple feedback controller 

algorithm looking at only a few 100 history points 

works accurately. 



 

Figure 1.  High Level Architecture of the Sizing Controller 

 

II. RELATED WORK 

In the past, there has been a lot of research that focused 
on resource management to achieve service differentiation 
(QoS), and fairness for multiple resources. Static and 
dynamic partitioning has been looked upon as one of the 
approaches to achieve these objectives [5-9]. CacheCOW 
[11] presents algorithms to dynamically allocate cache space 
among multiple classes of workloads to meet QoS 
differentiation and performance maximization. Lu, et al. [10] 
proposes a QoS-control paradigm that is based on adaptive 
control theory. Guerra et al. [12] implements a dynamic 
tiering solution that dynamically places extents across SSDs 
and HDDs to satisfy performance requirement while 
minimizing dynamic power consumption.  

In our work we present an adaptable, feedback heuristic 
controller that dynamically changes SSD cache sizes 
allocated to workloads depending upon their expected and 
observed latencies and SSD usage. It is related to work 
presented in [10] and [11], but our sizing decisions are made 
keeping the SSD media idiosyncrasies, like SSD cache warm 
up time, in mind.  

III. HIGH LEVEL ARCHITECTURE 

Service level objective (SLO) is a technology 
independent term for specifying the services desired from a 
data set [1]. For example, performance level is described 
primarily in terms of a target latency and target throughput. 
Performance SLO, say latency, can be expressed as service 

level by a tuple like <max latency, conformance 

window, conformance percentage>. Here, 
latency SLO is considered to be met if average observed 
latency over a period of conformance window is well below 
max latency for at-least conformance percentage times. This 

is the definition of SLO at a very high level in storage stack. 
But, at lower layers like file system (where SSD caching 
logic resides), the SLO terminology changes; the file system 
(FS) layer sees stringent deadlines associated with each I/O 
packet, after deducting all the queuing delays at the higher 
layers. FS layer cannot borrow the same notion of 
conformance window and percentage, but should meet the 
deadlines as much as possible. It is also not necessary for FS 
to meet per-I/O deadline 100% of time, since end user will 
only perceive average performance and it would result in 
caching the entire working set in SSD cache, thereby using 
SSD sub-optimally. Thus, it is essential that caching layer of 
FS in HyS tries to meet average latency over a period of time 
called as controller window (discussed later).  

Hybrid Store consists of a set of HDDs used for 
permanent storage that are front-ended with SSDs used for 
read caching. HDDs are configured with RAID and 
provision multiple data sets or logical data volumes. All the 
I/O streams coming to one volume are termed as a workload. 
In this work, we assume that there is only one user 
application, say Oracle DB, associated with one workload or 
volume. We assume that the storage system provides 
interface to set latency SLO, as described above, on a per-
workload basis. As discussed later in this section, we assume 
HyS to provide an infrastructure that allows gathering and 
reporting of important storage and SLO statistics for every 
workload at the caching layer (FS layer). Lastly, we consider 
that HyS supports dynamically partitioned SSD cache – one 
LRU per workload, where LRU size can be changed. 

To implement a dynamic SSD cache sizing for every 
workload depending upon the latency requirement, we 
designed a two-level controller: per-workload feedback 
controller (or EAFC) and a master controller, both 
depending on storage and SLO statistics reported by 



monitoring daemon, as shown in Figure 1. The eviction 
engine is per workload. It is a daemon in HyS that aids in 
dynamic SSD partitioning of its respective workload: it is 
responsible for knowing the partition size set by EAFC for 
its workload and managing LRU. The eviction engine is 
woken up whenever the SSD utilization reaches a threshold, 
such that it can make place for new to-be inserted blocks in 
advance. The following paragraphs explain each of these 
modules and their interaction in more detail. 
 
Monitoring Daemon: Assuming the storage system 
maintains statistics; this module collects these stats every 5 
seconds, and stores it in a comma separated log file (Store in 
Figure 1). The per-workload statistics that are collected by 
the daemon include SLO stats like average observed I/O 
latency at the HyS layer and SSD statistics like SSD cache 
used and SSD cache hit ratio. 
 
Per-workload Feedback Controller: This is the error-
aware feedback controller, one per workload, shown in 
Figure 2. If we have 10 workloads each tied to different 
volumes on a HyS; we will have 10 different EAFC. EAFC 
sleeps for most of the time and wakes up after every n 
seconds - called the controller window (cwnd). When EAFC 
wakes up, it looks up the statistics collected by monitoring 
daemon in the last cwnd and determines the partition size for 
its  workload (explained in Section IV). As the feedback 
controller works on the most recent history of statistics, it is 
adaptive to workload and working set size changes.  
 
Master Controller: The master controller is an arbitrator of 
all the EAFCs. In contrast to EAFC, the master controller 
has a global view of all the workloads i.e., their statistics and 
priority. In case of SSD space contention, the master 
controller solves a variation of knapsack problem such that 
most of the high priority workloads meet their SLOs at the 
cost of violating SLOs of few low priority ones. The master 
controller chooses low priority victim workloads whose SSD 
sizes are shrunk to benefit higher priority workloads.  

In this paper, we have designed and implemented 
monitoring daemon and EAFC. Here, the EAFC directly 
talks to its respective eviction engine to modify the partition 
size. We have not implemented the master controller and 
plan to do it in the future.  

IV. FEEDBACK CONTROLLER  

A. Design Dimensions 

While designing the per-workload EAFC controller, we 

considered various dimensions:  
Un-partitioned vs. Partitioned Cache: In a multi-workload 
environment, it is difficult to avoid interference between 
competing workloads in an un-partitioned cache. One of the 
most prevalent methods to achieve differentiated QoS is 
through resource partitioning [5-11]. Thus, we chose to 
implement a per-workload SSD partition cache, where each 
eviction engine manages block insertion/eviction from its 
own private LRU queue (partition).  
 

 
Figure 2.  Error-Aware Feedback Controller 

Static vs. Dynamic Cache Partitioning: Partitioning can 
primarily be implemented in two ways: static or dynamic. 
Static partitioning could set the partition size for a particular 
workload to a fixed value depending upon it working set 
size, if known a-priori. Problems with static cache sizing are 
that it is not adaptive to latency target, working set size and 
workload characteristics changes, leading to over-
provisioning or under-provisioning the workload. Hence, we 
chose dynamic cache sizing technique. 
 
Aggressive vs. Conservative SSD Partition Decrease: The 
feedback controller increases the partition size when the SLO 
is not met and decreases it when observed SLO is better than 
expected. We found experimentally that if the partition size 
is decreased as soon as EAFC sees minimal improvement in 
SLO, it leads to EAFC oscillation and sometimes SLO 
violation. This is because of unnecessary evictions of some 
useful blocks. Hence, we need a conservative decrease 
policy.  

We ran a few experiments with static cache size and 
observed that even if the partition size was kept fixed, the 
observed latency oscillates because of the very nature of the 
workload and SSD cache misses. On analysis of the results, 
we found that for every static size, less than the working set 
size, the observed latency oscillated within a range – min-
max range. Thus, if for every expected latency EAFC tries to 
operate within a min-max range, where max latency is same 
as expected latency, while min latency is some fraction of 
max latency, SLO violation can be mitigated. In the min-max 
range operation, EAFC decreases the partition size only if 
observed latency goes below min latency. We observed that 
with min-max range of operation, the oscillations reduced  as 
the partition size remained constant for a substantial amount 
of time, thereby avoiding unnecessary evictions. In all our 
experiments min latency was set to half the target latency. 
 

B. Feedback Controller Algorithm 

The EAFC is a simple feedback based proportional 
controller, which performs a proportional increase if the 
SLO is not met and a proportional decrease if the SLO is 
beyond expectation i.e., below minimum latency, otherwise 
it keeps the partition size unchanged (shown in Figure 2. ). 
The controller decides the next steps depending on the 
statistics collected in last cwnd only.  

Figure 3. provides the pseudo-code of EAFC. The 
feedback controller receives two types of inputs: external and 
feedback inputs. Feedback input is the output from the 
system (i.e., HyS), which is collected by the monitoring 
daemon, while external input is provided by the user, e.g., 
controller window cwnd. Note that EAFC compares the 75

th 

percentile of observed latency (latencyobs) with the expected 
latency (latencymax) so that the average observed latency 



Notations: 

cwnd: Controller (EAFC) window (10 minutes) 

latencyobs: Observed latency (75th percentile) in last cwnd 

latencymax: Average maximum expected latency at caching layer 

latencymin: Average minimum expected latency at caching layer 

ssd_utilavg: Average amount of SSD used 

cache_szcur: Current SSD partition size 

cache_szprev: SSD partition size in the last cwnd 

Kpinc, Kpdec: Increase/decrease proportionality constants.  

Tinc, Tdec: Threshold for multiplicative increase and decrease  

Tutil: SSD utilization threshold  

External Inputs: cwnd, latencymax, Kpinc, Kpdec Tinc, Tdec Tutil 
Feedback Inputs: latencyobs, ssd_utilavg, cache_szprev 

Outputs: cache_szcur 

Initialization: latencymin = 0.5  latencymax 

 

CASE 1: SLO met, but within min-max range 

        i.e., latencymax ≥ latencyobs ≥ latencymin 

        EAFC goes to sleep for cwnd without changing  

        SSD partition size 

 
CASE 2: SLO not met i.e., latencyobs > latencymax 

if (ssd_utilavg ÷ cache_szprev) ≥ Tutil 

error = latencyobs – latencymax 

ratioinc = error  Kpinc .   

if (ratioinc > Tinc) : ratioinc = Tinc 

cache_szcur = cache_szprev (1 + ratioinc) 

else 

         cache_szcur = cache_szprev 

CASE 3: SLO exceedingly met i.e., latencyobs < latencymin 

error = latencymin – latencyobs 

ratiodec = error  Kpdec   

if (ratiodec > Tdec) : ratiodec = Tdec 

cache_szcur = cache_szprev (1 – ratiodec) 

 

meets the SLO almost all the time. This enables EAFC to 
keep enough extra SSD space so as to avoid SLO violation in 
the average case. Further, experimental results showed that 
operating at 75

th
 percentile is better than stringent latency 

(e.g., 90
th

, 99
th
 percentile), as the latter resulted is partition 

size oscillation and average latency violation. 
The algorithm is broken into 3 cases. In Case 1, latencyobs 

is within min-max range, hence the controller does nothing 
and goes to sleep. Case 2 handles SLO violation; if the SSD 
utilization is below Tutil, workload has not used up the 
available SSD and hence EAFC does nothing. If the SSD 
utilization is above Tutil, cache_szcur is increased by a 
proportion (Kpinc) of the error in latencyobs and  latencymax. In 
Case 3, when SLO exceeds expectation and latencyobs is 
below latencymin, EAFC calculates the error in latencies and 
decreases the SSD cache size by proportion (Kpdec) of this 
error.  

V. EVALUATION 

We used FileBench[4] Web server and SPECsfs2008[13] 
like workload to study the effectiveness of the feedback 
sizing controller. We evaluated the efficacy of EAFC in 
terms of meeting target latency with close to optimal amount 
of SSD under following use cases: (a) Changing the expected 
latency for workload, (b) Varying working set sizes of the 
same workload, and (c) Varying the workload intensity or 
load. 

Our experimental setup consisted of a prototype Hybrid 
Store with 1TB of HDD space exposed as one volume, 160 
GB of SSD space used as read cache for this volume, and 16 
GB of RAM. The 1TB volume was exported through NFS. 
All the I/O streams coming to this volume were denoted as a 
workload, which was tied up to a latency target. The server 
setup remained constant for all variations of the tests. The 
client setup was specific to individual experiment (discussed 
later). 

Note that in all the graphs (Figure 4. ) the left axis 
denotes average observed latency in milliseconds and right 
axis represents SSD size in GBs. The x-axis represents time 
in units of 10 minutes i.e., cwnd. In the graphs, partition_sz 
plot represents the SSD partition size set by the controller, 
while Used_SSD denotes the amount of SSD utilized by the 
workload in GB. As the eviction engine makes space for 
newly inserted blocks, the utilization does not go beyond 
90% of partition size.  

 

A. FileBench Web Server 

For FileBench[4] web server workload, we used the same 
server setup as described earlier in this section. The NFS 
client setup consisted of two Linux (Ubuntu) machines each 
with 4 GB RAM and 2 CPUs. Each client mounted the NFS 
exported volume and created its dataset in a different 
directory in the mount point. We tried multiple variants of 
web server workload, but due to space constraints discuss the 
results of only two scenarios. The first test was to determine 
that the feedback controller adapts the SSD partition to the 
latency requirement of a workload. For this test, the web 
server workload consisted of a total of 400 threads (200 on  

Figure 3.  EAFC pseudo-code 

each client) accessing a total of 1.6 million small files 
(~20KB), resulting in working set size of 40GB. 

Figure 4a and 4b show results of the first test for average 
expected latency requirements of 10ms and 5ms, 
respectively. If we compare the two figures, we find that for 
both 10ms and 5ms target requirement, the feedback 
controller is able to meet the average latency almost all the 
time. During the initial cache warm up time the observed 
latencies are higher than expected, but later the latencies 
remain well below the maximum expected latency target. For 
10ms latency requirement, the average SSD partition size 
required was 39GB, while for 5ms it increased to 41 GB. 
Thus, the SSD partition size depends upon the expected 
latency requirement. When this test was executed on a no-
controller setup (vanilla), SSD space utilized was 40GB and 
resulted in approximately 1ms observed latency. Considering 
the SSD utilization cannot go beyond 90% of partition size, 
the partition size required by vanilla case would be 44GB. If 
we compare the partition size required by vanilla case and 
EAFC, we see that the latter saves 6% and 11% SSD space 
for 5ms and 10ms, respectively, yet achieving 100% SLO 
conformance.  



Figure 4.  Average observed latency, SSD partition size and SSD utilization plots for FileBench and SPECsfs2008

In the second test, we tried to determine if the controller 
can adapt to changes in working set sizes. We repeated the 
web server workload with same client configuration, but for 
30GB working set size (i.e., number of files per client was 
750,000) and setting the expected latency to 10ms. Figure 4c 
shows the result of this experiment. If we compare Figure 4a 
and 4c, we see that our controller adapts to different working 
set sizes– average SSD partition size drops from 39GB to 
28GB when the working set size decreases for SLO 
requirement of 10ms.  

B. SPECsfs2008 

We ran SPECsfs2008[13]  like workload consisting of 20 

threads, and increasing the total IOPS after every 5  hours; 

total IOPS being 2000, 4000, and 5000. This resulted in 

increase in both the workload intensity and working set. 

Figure 4d shows results of this 15 hour run with EAFC 

controlling the SSD size for SLO requirement of 3ms. The 

initial SSD partition was set to 10GB. We see that during 

the first 5 hours (when the IOPS = 2000), SLO is always 

met, hence the SSD partition size is decreased. This was 

because of high buffer cache hit ratio. As the load increases 

to 4000 and 5000 IOPS, the buffer cache miss increases and 

hence partition size rises in order to meet the SLO. Note that 

we see sudden rise in the observed latency at two points – 

these are the places where the workload’s (SPECsfs) 

intensity increased, resulting in SSD cache misses. From the 

graph it is clear that our feedback controller sizes the cache 

close to optimal to meet the SLO – it adapted the size based 

on demand and tried to meet SLO almost all the time. We 

also found that EAFC saved around 50% space compared to 

vanilla scenario. 

VI. CONCLUSION 

This paper presents the design, implementation and 

evaluation of error-aware feedback controller that sizes the 

SSD partition for a workload based on its latency 

requirement, thereby utilizing SSD efficiently yet meeting 

SLOs. Our results show that EAFC adapts to changes in 

workload intensity, working set size and latency 

requirements. In the future, we plan to implement the master 

controller that would arbitrate between multiple EAFC in 

case of SSD contention.  
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