
SLO-aware Hybrid Store

Priya Sehgal, Kaladhar Voruganti, Rajesh Sundaram

NetApp Inc.

Email: {priya.sehgal, kaladhar.voruganti, rajesh.sundaram}@netapp.com

Abstract—In the past storage vendors used different

types of storage depending upon the type of workload.

For example, they used Solid State Drives (SSDs) or FC

hard disks (HDD) for online transaction, while SATA

for archival type workloads. However, recently many

storage vendors are designing hybrid SSD/HDD based

systems that can satisfy multiple service level objectives

(SLOs) of different workloads all placed together in one

storage box, at better cost points. The combination is

achieved by using SSDs as a read-write cache while

HDD as a permanent store. In this paper we present an

SLO based resource management algorithm that

controls the amount of SSD given to a particular

workload. This algorithm solves following problems: 1)

it ensures that workloads do not interfere with each

other 2) it ensure that we do not overprovision (cost

wise) the amount of SSD allocated to a workload to

satisfy its SLO (latency requirement) and 3)

dynamically adjust SSD allocated in light of changing

workload characteristics (i.e., provide only required

amount of SSD). We have implemented our algorithm in

a prototype Hybrid Store, and have tested its efficacy

using many real workloads. Our algorithm satisfies

latency SLOs almost always by utilizing close to optimal

amount of SSD and saving 6-50% of SSD space

compared to the naïve algorithm.

Keywords-SSD;Flash; SLO; Hybrid Storage; dynamic

partition

I. INTRODUCTION

A cloud is usually characterized by multiple
applications/workloads that share the same set of storage
system. Each of these applications have certain set of Service
Level Objectives (SLOs) [1], namely performance (average
I/O latency, average throughput), capacity, reliability, and
security (retention of data, encryption), etc. One of the aims
of a cloud provider is to satisfy all the SLOs at the lowest
cost. With the emergence of Flash and SSDs, storage
vendors are combining it with HDDs to satisfy SLOs at
better cost points than pure Flash/SSD or pure HDD based
solutions. They are placing SSDs as a read-write cache in
front of HDDs or using SSD as a different storage tier. We
call such a solution a Hybrid Storage (HyS). Examples
include NetApp

®
 FlashCache [2], EMC

2
® FAST [3], etc.

One problem common to all the above mentioned multi-
tenant Hybrid Storage systems is the lack of SLO based
management for SSDs or flash. SSD cache is shared across

the different workloads i.e., there is a common LRU queue to
manage the SSD cache space across all the workloads. Thus,
Hybrid Store treats all the workloads in similar fashion. This
leads to three major problems: (1) SLO inversion of
workloads, (2) SLO violation of few workloads, and (3)
suboptimal SSD utilization.

With a single shared LRU queue in the SSD tier of
Hybrid Store, workloads that do not have a very stringent
latency requirement can utilize more than the required
amount of SSD to meet their target latency, depriving the
other stricter SLO workloads of SSD resources and hurting
their performance. This results in SLO inversion, e.g., Silver
customer perceiving Gold customer experience and vice-
versa. Further, this results in SLO violation of workloads that
have stringent latency requirements. Since the SSD resource
is not utilized by the right set of workloads, it leads to sub-
optimal SSD utilization.

This paper brings the concept of SLO to the SSD caching
layer in Hybrid Store. In this paper we focus only on
performance SLO and more specifically latency SLO. We
have designed and implemented a light-weight feedback-
based proportional controller, called Error-aware Feedback
Controller (EAFC) that dynamically sizes the SSD caching
tier of Hybrid Store for each workload, depending upon its
latency requirements and workload characteristics. Similar
idea can be applied on any other shared resource in the
storage stack, but we have limited our study to only SSD
caching layer when used as a read cache only.

The major contribution of this work is design and
implementation of per-workload feedback controller that
sizes the SSD partition on a HyS for each workload close to
optimal so as to meet its respective latency requirement, and
dynamically adapt the partition size to changes in workload
and working set sizes. The key insights gained by this work
on SSD cache sizing are:

 In order to meet latency requirement only a fraction

of working set size needs to be cached depending

upon workload characteristics and working set size.

 SSD cache size should keep some headroom to

accommodate workload changes: if the sizing

algorithm tries to meet 75
th
 percentile observed

latency, average target latency is always met.

 We do not require a lot of history to set the partition

size appropriately. A simple feedback controller

algorithm looking at only a few 100 history points

works accurately.

Figure 1. High Level Architecture of the Sizing Controller

II. RELATED WORK

In the past, there has been a lot of research that focused
on resource management to achieve service differentiation
(QoS), and fairness for multiple resources. Static and
dynamic partitioning has been looked upon as one of the
approaches to achieve these objectives [5-9]. CacheCOW
[11] presents algorithms to dynamically allocate cache space
among multiple classes of workloads to meet QoS
differentiation and performance maximization. Lu, et al. [10]
proposes a QoS-control paradigm that is based on adaptive
control theory. Guerra et al. [12] implements a dynamic
tiering solution that dynamically places extents across SSDs
and HDDs to satisfy performance requirement while
minimizing dynamic power consumption.

In our work we present an adaptable, feedback heuristic
controller that dynamically changes SSD cache sizes
allocated to workloads depending upon their expected and
observed latencies and SSD usage. It is related to work
presented in [10] and [11], but our sizing decisions are made
keeping the SSD media idiosyncrasies, like SSD cache warm
up time, in mind.

III. HIGH LEVEL ARCHITECTURE

Service level objective (SLO) is a technology
independent term for specifying the services desired from a
data set [1]. For example, performance level is described
primarily in terms of a target latency and target throughput.
Performance SLO, say latency, can be expressed as service

level by a tuple like <max latency, conformance

window, conformance percentage>. Here,
latency SLO is considered to be met if average observed
latency over a period of conformance window is well below
max latency for at-least conformance percentage times. This

is the definition of SLO at a very high level in storage stack.
But, at lower layers like file system (where SSD caching
logic resides), the SLO terminology changes; the file system
(FS) layer sees stringent deadlines associated with each I/O
packet, after deducting all the queuing delays at the higher
layers. FS layer cannot borrow the same notion of
conformance window and percentage, but should meet the
deadlines as much as possible. It is also not necessary for FS
to meet per-I/O deadline 100% of time, since end user will
only perceive average performance and it would result in
caching the entire working set in SSD cache, thereby using
SSD sub-optimally. Thus, it is essential that caching layer of
FS in HyS tries to meet average latency over a period of time
called as controller window (discussed later).

Hybrid Store consists of a set of HDDs used for
permanent storage that are front-ended with SSDs used for
read caching. HDDs are configured with RAID and
provision multiple data sets or logical data volumes. All the
I/O streams coming to one volume are termed as a workload.
In this work, we assume that there is only one user
application, say Oracle DB, associated with one workload or
volume. We assume that the storage system provides
interface to set latency SLO, as described above, on a per-
workload basis. As discussed later in this section, we assume
HyS to provide an infrastructure that allows gathering and
reporting of important storage and SLO statistics for every
workload at the caching layer (FS layer). Lastly, we consider
that HyS supports dynamically partitioned SSD cache – one
LRU per workload, where LRU size can be changed.

To implement a dynamic SSD cache sizing for every
workload depending upon the latency requirement, we
designed a two-level controller: per-workload feedback
controller (or EAFC) and a master controller, both
depending on storage and SLO statistics reported by

monitoring daemon, as shown in Figure 1. The eviction
engine is per workload. It is a daemon in HyS that aids in
dynamic SSD partitioning of its respective workload: it is
responsible for knowing the partition size set by EAFC for
its workload and managing LRU. The eviction engine is
woken up whenever the SSD utilization reaches a threshold,
such that it can make place for new to-be inserted blocks in
advance. The following paragraphs explain each of these
modules and their interaction in more detail.

Monitoring Daemon: Assuming the storage system
maintains statistics; this module collects these stats every 5
seconds, and stores it in a comma separated log file (Store in
Figure 1). The per-workload statistics that are collected by
the daemon include SLO stats like average observed I/O
latency at the HyS layer and SSD statistics like SSD cache
used and SSD cache hit ratio.

Per-workload Feedback Controller: This is the error-
aware feedback controller, one per workload, shown in
Figure 2. If we have 10 workloads each tied to different
volumes on a HyS; we will have 10 different EAFC. EAFC
sleeps for most of the time and wakes up after every n
seconds - called the controller window (cwnd). When EAFC
wakes up, it looks up the statistics collected by monitoring
daemon in the last cwnd and determines the partition size for
its workload (explained in Section IV). As the feedback
controller works on the most recent history of statistics, it is
adaptive to workload and working set size changes.

Master Controller: The master controller is an arbitrator of
all the EAFCs. In contrast to EAFC, the master controller
has a global view of all the workloads i.e., their statistics and
priority. In case of SSD space contention, the master
controller solves a variation of knapsack problem such that
most of the high priority workloads meet their SLOs at the
cost of violating SLOs of few low priority ones. The master
controller chooses low priority victim workloads whose SSD
sizes are shrunk to benefit higher priority workloads.

In this paper, we have designed and implemented
monitoring daemon and EAFC. Here, the EAFC directly
talks to its respective eviction engine to modify the partition
size. We have not implemented the master controller and
plan to do it in the future.

IV. FEEDBACK CONTROLLER

A. Design Dimensions

While designing the per-workload EAFC controller, we

considered various dimensions:
Un-partitioned vs. Partitioned Cache: In a multi-workload
environment, it is difficult to avoid interference between
competing workloads in an un-partitioned cache. One of the
most prevalent methods to achieve differentiated QoS is
through resource partitioning [5-11]. Thus, we chose to
implement a per-workload SSD partition cache, where each
eviction engine manages block insertion/eviction from its
own private LRU queue (partition).

Figure 2. Error-Aware Feedback Controller

Static vs. Dynamic Cache Partitioning: Partitioning can
primarily be implemented in two ways: static or dynamic.
Static partitioning could set the partition size for a particular
workload to a fixed value depending upon it working set
size, if known a-priori. Problems with static cache sizing are
that it is not adaptive to latency target, working set size and
workload characteristics changes, leading to over-
provisioning or under-provisioning the workload. Hence, we
chose dynamic cache sizing technique.

Aggressive vs. Conservative SSD Partition Decrease: The
feedback controller increases the partition size when the SLO
is not met and decreases it when observed SLO is better than
expected. We found experimentally that if the partition size
is decreased as soon as EAFC sees minimal improvement in
SLO, it leads to EAFC oscillation and sometimes SLO
violation. This is because of unnecessary evictions of some
useful blocks. Hence, we need a conservative decrease
policy.

We ran a few experiments with static cache size and
observed that even if the partition size was kept fixed, the
observed latency oscillates because of the very nature of the
workload and SSD cache misses. On analysis of the results,
we found that for every static size, less than the working set
size, the observed latency oscillated within a range – min-
max range. Thus, if for every expected latency EAFC tries to
operate within a min-max range, where max latency is same
as expected latency, while min latency is some fraction of
max latency, SLO violation can be mitigated. In the min-max
range operation, EAFC decreases the partition size only if
observed latency goes below min latency. We observed that
with min-max range of operation, the oscillations reduced as
the partition size remained constant for a substantial amount
of time, thereby avoiding unnecessary evictions. In all our
experiments min latency was set to half the target latency.

B. Feedback Controller Algorithm

The EAFC is a simple feedback based proportional
controller, which performs a proportional increase if the
SLO is not met and a proportional decrease if the SLO is
beyond expectation i.e., below minimum latency, otherwise
it keeps the partition size unchanged (shown in Figure 2.).
The controller decides the next steps depending on the
statistics collected in last cwnd only.

Figure 3. provides the pseudo-code of EAFC. The
feedback controller receives two types of inputs: external and
feedback inputs. Feedback input is the output from the
system (i.e., HyS), which is collected by the monitoring
daemon, while external input is provided by the user, e.g.,
controller window cwnd. Note that EAFC compares the 75

th

percentile of observed latency (latencyobs) with the expected
latency (latencymax) so that the average observed latency

Notations:

cwnd: Controller (EAFC) window (10 minutes)

latencyobs: Observed latency (75th percentile) in last cwnd

latencymax: Average maximum expected latency at caching layer

latencymin: Average minimum expected latency at caching layer

ssd_utilavg: Average amount of SSD used

cache_szcur: Current SSD partition size

cache_szprev: SSD partition size in the last cwnd

Kpinc, Kpdec: Increase/decrease proportionality constants.

Tinc, Tdec: Threshold for multiplicative increase and decrease

Tutil: SSD utilization threshold

External Inputs: cwnd, latencymax, Kpinc, Kpdec Tinc, Tdec Tutil
Feedback Inputs: latencyobs, ssd_utilavg, cache_szprev

Outputs: cache_szcur

Initialization: latencymin = 0.5 latencymax

CASE 1: SLO met, but within min-max range

 i.e., latencymax ≥ latencyobs ≥ latencymin

 EAFC goes to sleep for cwnd without changing

 SSD partition size

CASE 2: SLO not met i.e., latencyobs > latencymax

if (ssd_utilavg ÷ cache_szprev) ≥ Tutil

error = latencyobs – latencymax

ratioinc = error Kpinc .

if (ratioinc > Tinc) : ratioinc = Tinc

cache_szcur = cache_szprev (1 + ratioinc)

else

 cache_szcur = cache_szprev

CASE 3: SLO exceedingly met i.e., latencyobs < latencymin

error = latencymin – latencyobs

ratiodec = error Kpdec

if (ratiodec > Tdec) : ratiodec = Tdec

cache_szcur = cache_szprev (1 – ratiodec)

meets the SLO almost all the time. This enables EAFC to
keep enough extra SSD space so as to avoid SLO violation in
the average case. Further, experimental results showed that
operating at 75

th
 percentile is better than stringent latency

(e.g., 90
th

, 99
th
 percentile), as the latter resulted is partition

size oscillation and average latency violation.
The algorithm is broken into 3 cases. In Case 1, latencyobs

is within min-max range, hence the controller does nothing
and goes to sleep. Case 2 handles SLO violation; if the SSD
utilization is below Tutil, workload has not used up the
available SSD and hence EAFC does nothing. If the SSD
utilization is above Tutil, cache_szcur is increased by a
proportion (Kpinc) of the error in latencyobs and latencymax. In
Case 3, when SLO exceeds expectation and latencyobs is
below latencymin, EAFC calculates the error in latencies and
decreases the SSD cache size by proportion (Kpdec) of this
error.

V. EVALUATION

We used FileBench[4] Web server and SPECsfs2008[13]
like workload to study the effectiveness of the feedback
sizing controller. We evaluated the efficacy of EAFC in
terms of meeting target latency with close to optimal amount
of SSD under following use cases: (a) Changing the expected
latency for workload, (b) Varying working set sizes of the
same workload, and (c) Varying the workload intensity or
load.

Our experimental setup consisted of a prototype Hybrid
Store with 1TB of HDD space exposed as one volume, 160
GB of SSD space used as read cache for this volume, and 16
GB of RAM. The 1TB volume was exported through NFS.
All the I/O streams coming to this volume were denoted as a
workload, which was tied up to a latency target. The server
setup remained constant for all variations of the tests. The
client setup was specific to individual experiment (discussed
later).

Note that in all the graphs (Figure 4.) the left axis
denotes average observed latency in milliseconds and right
axis represents SSD size in GBs. The x-axis represents time
in units of 10 minutes i.e., cwnd. In the graphs, partition_sz
plot represents the SSD partition size set by the controller,
while Used_SSD denotes the amount of SSD utilized by the
workload in GB. As the eviction engine makes space for
newly inserted blocks, the utilization does not go beyond
90% of partition size.

A. FileBench Web Server

For FileBench[4] web server workload, we used the same
server setup as described earlier in this section. The NFS
client setup consisted of two Linux (Ubuntu) machines each
with 4 GB RAM and 2 CPUs. Each client mounted the NFS
exported volume and created its dataset in a different
directory in the mount point. We tried multiple variants of
web server workload, but due to space constraints discuss the
results of only two scenarios. The first test was to determine
that the feedback controller adapts the SSD partition to the
latency requirement of a workload. For this test, the web
server workload consisted of a total of 400 threads (200 on

Figure 3. EAFC pseudo-code

each client) accessing a total of 1.6 million small files
(~20KB), resulting in working set size of 40GB.

Figure 4a and 4b show results of the first test for average
expected latency requirements of 10ms and 5ms,
respectively. If we compare the two figures, we find that for
both 10ms and 5ms target requirement, the feedback
controller is able to meet the average latency almost all the
time. During the initial cache warm up time the observed
latencies are higher than expected, but later the latencies
remain well below the maximum expected latency target. For
10ms latency requirement, the average SSD partition size
required was 39GB, while for 5ms it increased to 41 GB.
Thus, the SSD partition size depends upon the expected
latency requirement. When this test was executed on a no-
controller setup (vanilla), SSD space utilized was 40GB and
resulted in approximately 1ms observed latency. Considering
the SSD utilization cannot go beyond 90% of partition size,
the partition size required by vanilla case would be 44GB. If
we compare the partition size required by vanilla case and
EAFC, we see that the latter saves 6% and 11% SSD space
for 5ms and 10ms, respectively, yet achieving 100% SLO
conformance.

Figure 4. Average observed latency, SSD partition size and SSD utilization plots for FileBench and SPECsfs2008

In the second test, we tried to determine if the controller
can adapt to changes in working set sizes. We repeated the
web server workload with same client configuration, but for
30GB working set size (i.e., number of files per client was
750,000) and setting the expected latency to 10ms. Figure 4c
shows the result of this experiment. If we compare Figure 4a
and 4c, we see that our controller adapts to different working
set sizes– average SSD partition size drops from 39GB to
28GB when the working set size decreases for SLO
requirement of 10ms.

B. SPECsfs2008

We ran SPECsfs2008[13] like workload consisting of 20

threads, and increasing the total IOPS after every 5 hours;

total IOPS being 2000, 4000, and 5000. This resulted in

increase in both the workload intensity and working set.

Figure 4d shows results of this 15 hour run with EAFC

controlling the SSD size for SLO requirement of 3ms. The

initial SSD partition was set to 10GB. We see that during

the first 5 hours (when the IOPS = 2000), SLO is always

met, hence the SSD partition size is decreased. This was

because of high buffer cache hit ratio. As the load increases

to 4000 and 5000 IOPS, the buffer cache miss increases and

hence partition size rises in order to meet the SLO. Note that

we see sudden rise in the observed latency at two points –

these are the places where the workload’s (SPECsfs)

intensity increased, resulting in SSD cache misses. From the

graph it is clear that our feedback controller sizes the cache

close to optimal to meet the SLO – it adapted the size based

on demand and tried to meet SLO almost all the time. We

also found that EAFC saved around 50% space compared to

vanilla scenario.

VI. CONCLUSION

This paper presents the design, implementation and

evaluation of error-aware feedback controller that sizes the

SSD partition for a workload based on its latency

requirement, thereby utilizing SSD efficiently yet meeting

SLOs. Our results show that EAFC adapts to changes in

workload intensity, working set size and latency

requirements. In the future, we plan to implement the master

controller that would arbitrate between multiple EAFC in

case of SSD contention.

ACKNOWLEDGEMENT

We would like to acknowledge various NetApp ATG

members who helped improve the work through many

brainstorming sessions and reviewing the paper. We would

also like to thank the anonymous reviewers for their

valuable comments.

REFERENCES
[1] L. N. Bairavasundaram, G. Soundararajan, V. Mathur, K. Voruganti,

and S. Kleiman, ―Italian for Beginners: The Next Steps for SLO-
Based Management‖, USENIX HotStorage ’11.

[2] NetApp Flash Cache: http://www.netapp.com/us/products/ storage-
systems/flash-cache/

[3] EMC2® FAST: http://www.emc.com/collateral/software/white-
papers/h8046-clariion-celerra-unified-fast-cache-wp.pdf

[4] FileBench: http://sourceforge.net/projects/filebench/

[5] S.Kim, D. Chandra, and Y.Solihin, ‖Fair Cache Sharing and
Partitioning in a Chip Multiprocessor Architecture‖, In Proc.
PACT’04.

[6] R.Lyer, ―QoS: A framework for enabling qos in shared caches cmp
platforms‖, In Proc.ICS’04, pp.257-266, 2004.

[7] H. S. Stone, J. Turek, and J.L. Wolf, ―Optimal partitioning of cache
memory‖, IEEE Transactions on Computers., 41(9), 1992.

[8] G. E. Suh, L. Rudolph, and S. Devadas, ―Dynamic partitioning of
shared cache memory‖, In Journal of Supercomputing, 2004.

[9] M. K. Qureshi and Y.N. Patt, ―Utility-Based Cache Partitioning: A
Low-Overhead, High-Performance, Runtime Mechanism to Partition
Shared Caches‖, In Proc. of the 39th Annual IEEE/ACM
International Symposium on Microarchitecture.

[10] Y. Lu, T. Abdelzaher , C. Lu , and G. Tao, ―An Adaptive Control
Framework for QoS Guarantees and its Application to Differentiated
Caching Services‖, In Proc. Tenth International Workshop on Quality
of Service, 2002.

[11] P. Goyal, D. Jadav, D. Modha, and R. Tewari, ―CacheCOW: QoS for
Storage System Cache‖, In Eleventh International Workshop on
Quality of Service, 2003.

[12] J. Guerra, H. Pucha, J. Glider, W. Belluomini and R. Rangaswami,
―Cost Effective Storage using Extent Based Dynamic Tiering‖, FAST
2011.

[13] SPECsfs2008: http://www.spec.org/sfs2008/

http://www.emc.com/collateral/software/white-papers/h8046-clariion-celerra-unified-fast-cache-wp.pdf
http://www.emc.com/collateral/software/white-papers/h8046-clariion-celerra-unified-fast-cache-wp.pdf
http://sourceforge.net/projects/filebench/

