
A QoS Aware Non-work-conserving Disk Scheduler
Pedro Eugênio Rocha

Federal University of Paraná, Brazil
pedro@inf.ufpr.br

Luis C. E. Bona
Federal University of Paraná, Brazil

bona@inf.ufpr.br

Abstract—Disk schedulers should provide QoS guarantees to
applications, thus sharing proportionally the storage resource and
enforcing performance isolation. Disk schedulers must execute
requests in an efficient order though, preventing poor disk
usage. Non-work-conserving disk schedulers help to increase disk
throughput by predicting future requests’ arrival and therefore
exploiting disk spatial locality. Previous work are limited to either
provide QoS guarantees or exploit disk spatial locality. In this
paper, we propose a new non-work-conserving disk scheduler
called High-throughput Token Bucket Scheduler (HTBS), which
can provide both QoS guarantees and high throughput by (a)
assigning tags to requests in a fair queuing-like fashion and (b)
predicting future requests’ arrival. We show through experiments
with our Linux Kernel implementation that HTBS outperforms
previous QoS aware work-conserving disk schedulers throughput
as well as provides tight QoS guarantees, unlike other non-work-
conserving algorithms.

I. INTRODUCTION

Storage consolidation in dedicated servers is a growing
approach in organizational and departmental data manage-
ment. This consolidation brings several benefits, such as ease
of management and backup, optimized hardware usage and
flexibility in the storage capacity allocation. In order to share
a centralized storage resource, a virtual disk abstraction must
be provided, which can be expressed in terms of capacity
and QoS guarantees. This approach is specially interesting
in virtualized environments, where the underlying hardware
must be multiplexed among VMs while providing performance
guarantees.

A very common approach when providing QoS guarantees
is to modify the disk scheduler [4], [6], [8], [11]. QoS aware
disk schedulers are usually based on fair queuing algorithms,
initially used for packet scheduling and then adapted to the
disk scheduling context. In a fair queuing algorithm, each
request receives one or more tags1 according to its QoS
guarantees, defined in terms of bandwidth, latency and bursts.
In fact, providing QoS guarantees enforces the so-called
performance isolation, in which the performance experienced
by an application should not suffer due to variations in the
workload from other applications [10].

Nevertheless, is it also necessary that the scheduler executes
requests in an efficient order, thus increasing disk throughput.
Non-work-conserving disk schedulers, which are widely used
in current systems, like Anticipatory [7] and Completely Fair
Queuing (CFQ) [1], are intended to increase disk performance
through future request prediction [12]. The key idea behind

1Tags are timestamps assigned per-request (or per-packet) based on either
virtual or real time.

these schedulers is that a request that is soon to arrive might
be closer to the current disk head position than other pending
requests. If the seek time needed to serve other pending
requests is greater then the cost of keeping the disk idle while
waiting for future requests (assuming that such request does
arrive), than the idle waiting is justified.

This performance gain is commonly observed when the
scheduler must deal with concurrent applications issuing syn-
chronous requests. In the meanwhile between synchronous
requests, a work-conserving scheduler would serve a pending
request from another application, thus losing spatial locality.
This behavior, commonly known as deceptive idleness [7],
causes unnecessary seek time and harms disk performance.
As non-work-conserving schedulers consider both pending and
future requests when taking schedule decisions, then several
synchronous requests issued by the same application can be
dispatched sequentially, increasing disk throughput.

This paper presents a new non-work-conserving disk sched-
uler algorithm called High-throughput Token Bucket Sched-
uler (HTBS). As far as we know, previous work were focused
on either providing QoS guarantees [4], [6] or high throughput
[1], [7], [11]. HTBS aims to ensure both. Our algorithm
can provide QoS guarantees, defined in terms of bandwidth,
latency and bursts, by assigning tags to requests in a fair
queuing-like fashion. In addition, HTBS schedules future
requests as well, ensuring high performance.

We implemented the HTBS scheduler as a module for
Linux Kernel 2.6.38. Through experiments, we show that
HTBS outperforms previous work in two dimensions: (a)
achieving higher performance than former QoS aware work-
conserving schedulers, and (b) still providing QoS guarantees
to applications with different attributes even in the presence
of synchronous requests.

The rest of this paper is organized as follows. Section
II points to related work. Section III describes the HTBS
disk scheduler algorithm. Our Linux implementation and
experiments are presented in Section IV. Finally, Section V
concludes this paper.

II. RELATED WORK

Prior effort in disk scheduler development can be classified
into two major groups: high-throughput schedulers and QoS
aware schedulers. High-throughput schedulers are generally
non-work-conserving, i.e., they do predict future requests, in
order to increase the disk performance. On the other hand,
QoS aware disk schedulers do not implement future request

prediction as they are usually work-conserving, what can lead
to poor performance.

Iyer et al. [7] introduced the concept of future requests
scheduling. In their work, they proposed an Anticipation
framework that can be placed on top of others disk schedulers.
However, their analysis covers only proportional-share sched-
ulers (YFQ [4], in particular). Proportional-share schedulers
are limited since one cannot configure bandwidth and latency
independently. Therefore, if a flow has higher bandwidth
guarantees, it will necessarily have lower latency than lower
bandwidth flows, differently from our algorithm.

Another algorithm that implements future request predic-
tion is the Completely Fair Queuing (CFQ) [1], which is
the default disk scheduler used by most Linux distributions.
CFQ distributes time slices to applications, similarly to CPU
scheduling, based on processes’ I/O priority. CFQ is not able
to provide QoS guarantees though.

The Budget Fair Queuing (BFQ) [11] predicts future re-
quests in a similar fashion as the Anticipatory Scheduler, using
a proportional-share algorithm to assign tags and to control
the virtual clock. The main differences between our work and
BFQ are: (a) BFQ assigns tags per-application, not per-request
(or per-packet), like modern fair queuing algorithms; (b) BFQ
does not provide an explicit way to configure per-application
bandwidth, e.g., in kilobytes per second or I/Os per second,
but just a weight that relies on disk performance, which is
very difficult to predict; and (c) lack of support for bursts and
delay configuration per-application.

pClock [6] is a disk scheduler based on former fair queuing
algorithms [2], [3], [5], [9]. In pClock, tag assignment policies
were extended thereby allowing the configuration of QoS
guarantees in terms of bandwidth, delay and bursts. However,
request dispatching order in pClock is solely based on per-
request tags, resulting in low spatial locality and consequently
poor disk performance. Besides, pClock is a work-conserving
scheduler since it does not predict future requests.

III. HIGH-THROUGHPUT TOKEN BUCKET SCHEDULER

In this Section, we detail the High-throughput Token Bucket
Scheduler (HTBS). HTBS uses a tag assignment policy that
is similar to others fair queuing-based schedulers [6], since
they provide good capacity allocation, with a modified dis-
patch order. The modified dispatch order from HTBS prevents
deceptive idleness by scheduling future requests, like other
non-work-conserving algorithms.

A. Algorithm Specification
Like any fair-queuing algorithm, HTBS relies on times-

tamps, also called tags [4], [6], [11]. For each request two tags
are assigned: start tag S j

i and finish tag F j
i , where i represents

the application and j is the request identifier. Moreover, there
is one per-application tag, named MaxSi, which represents the
biggest start tag between the pending requests from i, used to
compute new requests’ tags.

An application (which could represent a real application,
process groups, threads or even entire virtual machines) con-
sists of a request queue and three performance attributes,

σ i, ρ i and δ i, representing bursts, bandwidth and delay,
respectively. We also define the backlog of an application
i, namely Bi, as the number of pending requests in a given
queue. An application is said backlogged if Bi > 0. Finally,
the application that is currently receiving service from the disk
is named active application.

There are also two parameters in HTBS: Bmax and Twait .
Bmax controls the maximum number of requests from the same
application the scheduler can issue consecutively. This param-
eter avoids starvation of requests issued by other applications.
Moreover, Twait limits the time the disk can be kept idle
when waiting for future requests. Twait must be equal to the
smallest period of time necessary for an application to handle
the completion of a prior request, process it and then issue the
next one.

The HTBS main algorithm is shown in pseudo-code in
Figure 1. The function dispatch request (line 7) returns the
next request to be served. Basically, it performs two actions:
selecting the active application (the application whose requests
will be served), and dispatching one of its requests. When the
active application is not set, the function will search for the
application which issued the request with the smaller finish
tag (lines 10 and 11). In fact, the active application is only
changed in three cases:
• Last active application already dispatched Bmax consecu-

tive requests (line 9). To prevent starvation, we limit the
maximum number of requests an application can dispatch
consecutively. Reaching that limit, the active application
is changed anyhow.

• Twait expired and none requests arrived (line 21). Twait
limits the time the disk can be kept idle, when waiting
for future requests. Thus, if Twait expires and none re-
quests arrives, it means that future request prediction has
failed, and the scheduler must serve another backlogged
application.

• The application disk pattern is random. The whole point
of predicting future requests is to minimize the seek
time overhead by dispatching requests with strong spatial
locality. If the application access pattern is random, there
is no gain in executing its requests consecutively.

After selecting the active application, its request with min-
imum finish tag will be dispatched (line 14) if the active
application is backlogged (if there are pending requests).
Otherwise, the disk will be kept idle up to Twait milliseconds
(line 16), waiting for future requests to arrive, thus avoiding
deceptive idleness. In short, either a pending or a future request
is scheduled.

When a new request arrives the scheduler, through the
function add request (line 1), there are two possible scenarios.
If the disk was waiting for future requests and the request
belongs to the active application (lines 2 and 3), it should
be dispatched immediately. Therefore, unset timer (line 4)
is called, preventing the execution of timer expired, and the
new request will be dispatched in the next execution of
dispatch request. Furthermore, if the disk was not waiting for
future requests, the request is queued among the others. In

1 add request (i, r)
2 if active app == i and
3 i is waiting for the next request then
4 unset timer ()
5 update num tokens (i)
6 compute tags (i, r)

7 dispatch request ()
8 if active app == nil or
9 active app dispatched more than Bmax then
10 w = request with minimum finish tag Fw

j
11 active app = application j which issued w
12 else
13 if active app is backlogged then
14 w = request with minimum finish tag

Fw
j from active app

15 else
16 set timer (Twait)
17 return nil
18 return w

19 timer expired ()
20 active app = nil
21 dispatch request ()

Fig. 1. HTBS main functions.

both cases, two functions are called: update num tokens and
compute tags.

Figure 2 shows these two functions, called whenever a
request arrives the scheduler. Update num tokens (line 1)
updates the number of tokens of a given application. The new
tokens available are proportional to the time elapsed since
the last update, as well as the bandwidth ρ assigned to the
application (line 3). Tokens bound the number of requests an
applications can dispatch. This function also controls bursts,
through the attribute σ , by limiting the maximum amount of
tokens a bucket can store (lines 4 and 5).

1 update num tokens (i)
2 Let ∆ be the time interval since last request
3 numtokensi += ∆ x ρ i
4 if numtokensi > σ i then
5 numtokensi = σ i

6 compute tags (i, r)
7 if numtokensi < 1 then
8 Sr

i = max {MaxSi , t}
9 MaxSi = Sr

i + 1 / ρi
10 else
11 Sr

i = t
12 Fr

i = Sr
i + δi

13 numtokensi −= 1

Fig. 2. Fair queuing-like functions.

Finally, tags are assigned to requests through the function
compute tags. Start tags are set to current time (line 11),
unless the application had exceeded its guarantees. In such
cases, the scheduler assigns a greater value to start tags (line
8). In practice, assigning a time in the future for the start
tag tries to approximate the value that this tag would have if
the application had not exceeded its guarantees. Finish tags
are always equal to the sum between start tag and the delay
attribute, δ i (line 12).

B. Parameters Discussion

HTBS has two parameters: Twait , which limits the maximum
amount of time the disk can be kept idle when waiting for
the next request from the active application, thus preventing
deceptive idleness, and Bmax, which bounds the number of
consecutive requests one application can issue.

A reasonable value for Twait heavily depends on applica-
tions’ and systems’ characteristics. If the average processing
time between consecutive synchronous requests in one system
is higher, this parameter should be increased. Although, as-
signing a large value to Twait could decrease the system overall
performance, since the disk can be kept idle unnecessarily
when future request prediction fails.

Finally, Bmax limits the number of requests one application
can issue consecutively. The greater Bmax is, greater is the
number of requests dispatched with locality, whereas locality
increases the system performance. However, a high value to
Bmax can starve requests issued by other applications, as well
as deadline guarantees can be missed.

IV. EXPERIMENTAL RESULTS

We have implemented the algorithm HTBS as a disk
scheduler module for Linux Kernel 2.6.38. In order to com-
pare HTBS with related work, we also implemented pClock,
another QoS-aware disk scheduler which uses a similar tag
assignment policy as HTBS, but without predicting future
requests. All tests were executed in a AMD Athlon X2 240
2800 MHz dual-core processor PC, with 4 GB of DDR3
memory. The disk used is a Samsung HD080HJ SATA, 80
GB, 7200 rpm and 8 MB of onboard cache without NCQ
(Native Command Queuing) support.

We used two benchmarking tools in this work: fio, which
allows micro-benchmarking of very specific I/O workloads,
and dd, a Linux application used to test the behavior of the
scheduler along filesystems. Twait was set to 10 milliseconds
in our experiments, which is the default waiting time used
by CFQ in most Linux distributions, and Bmax was set to 20
requests.

The experiments presented in this paper are organized as
follows. Firstly, we ran several synchronous workloads, using
fio and dd, in order to measure the throughput increase that fu-
ture request prediction can achieve. In the second experiment,
we showed that in the presence of synchronous workloads,
even QoS guarantees can be missed if the algorithm does not
implement future request prediction. In such cases, we argue

that a non-work-conserving scheduler could still providing
QoS guarantees, unlike previous work.

In the first experiment, several synchronous and sequential
fio jobs were executed against each scheduler: pClock (work-
conserving) and HTBS (non-work-conserving). All applica-
tions accessed the block device directly (bypassing the filesys-
tem layer) and read distinct positions on the disk surface.

Figure 3 presents the results. In the first bar set, there is no
significant difference between the results as just one sequential
job was executed, causing no seek time. As the number of
concurrent jobs grows, the aggregated bandwidth decreases
due to the lack of spatial locality. However, regardless of the
number of concurrent jobs, HTBS reached higher bandwidth
than pClock, because HTBS was able to execute consecutively
requests issued by the same application (up to Bmax requests),
increasing spatial locality. As pClock’ schedule decisions are
exclusively based on pending requests, no more than one
request per-application is dispatched consecutively due to the
synchronous nature of the requests, causing pathological seek
time.

 0

 5000

 10000

 15000

 20000

1 2 5 10 20

A
g

g
re

g
a
te

d
 b

a
n
d

w
id

th
 (

K
B

/s
)

Number of fio jobs

pClock
HTBS

Fig. 3. Aggregated bandwidth achieved by pClock and HTBS using the fio
benchmark.

Then, continuing the first experiment, we created several
files within an ext3 filesystem and executed an increasingly
number of concurrent dd threads, with the objective to measure
how HTBS performs along filesystems. We also compared
HTBS to our pClock implementation to check whether our
future prediction scheme increases total throughput in a more
realistic scenario. Every file read by dd processes was 100 MB
sized and the request size was 4 KB.

Figure 4 shows the results. It is possible to verify that the
behavior of the last experiment remains, even along filesys-
tems. Indeed, due to future request prediction, HTBS was able
to take better schedule choices when compared to the work-
conserving scheduler pClock, resulting in higher performance.

After showing that HTBS provides best performance than
previous work-conserving schedulers, we must also test
whether HTBS can still enforce QoS guarantees to syn-
chronous requests. To this end, in the second experiment we
created four fio synchronous jobs: app1 with bandwidth 8800
KB/s; app2 with bandwidth 4000 KB/s; app3 with bandwidth

 0

 5

 10

 15

 20

 25

 30

2 4 6

A
g

g
re

g
a
te

d
 b

a
n
d

w
id

th
 (

M
B

/s
)

Number of dd processes

pClock
HTBS

Fig. 4. Aggregated bandwidth achieved by pClock and HTBS using dd
processes.

2000 KB/s and app4 with bandwidth 800 KB/s. Deadlines
were set to 100 milliseconds for all jobs and the bursts were
disabled. Total execution time was 300 seconds.

Figure 5 shows the results obtained by the pClock algorithm
whilst Figure 6 shows the results for HTBS. As pClock does
not predict future requests, its schedule decisions are based
on the fact that an application is always idle (deceptively
idle) after issuing synchronous requests. Therefore, pClock
never dispatches consecutive synchronous requests issued by
the same application, even if its bandwidth guarantee is much
higher than other applications.

 0

 2000

 4000

 6000

 8000

 10000

 12000

 0 50000 100000 150000 200000 250000 300000

B
a
n
d

w
id

th
 (

K
B

/s
)

Time (ms)

app1
app2
app3
app4

Fig. 5. pClock: four synchronous jobs with different bandwidth attributes.

HTBS, on the other hand, is able to take better scheduling
choices and fulfill established QoS guarantees, as it waits for
upcoming synchronous requests. On average, HTBS met band-
width guarantees for all applications created in the experiment.
Besides, through this experiment we showed empirically that
some work-conserving disk schedulers can fail to provide QoS
guarantees to synchronous workloads.

V. CONCLUSIONS

This paper presented the HTBS, a new non-work-conserving
disk scheduler algorithm that assigns tags to requests —
similarly to fair queuing algorithms — and predicts future
requests’ arrival in order to provide both QoS guarantees and

 0

 2000

 4000

 6000

 8000

 10000

 12000

 0 50000 100000 150000 200000 250000 300000

B
a
n
d

w
id

th
 (

K
B

/s
)

Time (ms)

app1
app2
app3
app4

Fig. 6. HTBS: four synchronous jobs with different bandwidth attributes.

high throughput. Scheduling future requests reduces seek time
by increasing spatial locality, and avoids deceptive idleness in
the presence of synchronous requests. Through experiments
performed with our Linux implementation, we showed that
HTBS can increase disk performance, when compared to other
QoS aware work-conserving algorithms. We also showed that
previous fair queuing based disk schedulers can fail to provide
QoS guarantees when synchronous requests are issued. By
being non-work-conserving, HTBS can enforce applications’
QoS guarantees to both synchronous and asynchronous re-
quests.

For future work, we intend to integrate HTBS with VMMs
and check whether future request prediction can still increase
throughput and fulfill QoS guarantees in those systems. In
addition, we also intend to continue testing the scheduler using
other well-known benchmarks, such as TPC, DVDStore and
filebench to simulate more realistic workloads. We believe that
fair disk throughput allocation is not a closed chapter, and that
our scheduler is just another step toward fair disk allocation.

REFERENCES

[1] J. Axboe, “Linux block I/O - present and future,” in Proceedings of the
Ottawa Linux Symposium, 2004, pp. 51–61.

[2] J. Bennet and H. Zhang, “WF2Q: Worst-case fair weighted fair queue-
ing,” in Proceedings of IEEE INFOCOM, vol. 1. IEEE, 1996, pp.
120–128.

[3] ——, “Hierarchical packet fair queueing algorithms,” in IEEE/ACM
Transactions on Networkig, vol. 5. IEEE Press, 1997, pp. 675–689.

[4] J. Bruno, J. Brustoloni, E. Gabber, B. Ozden, and A. Silberschatz, “Disk
scheduling with quality of service guarantees,” in Proceedings of the
IEEE International Conference on Multimedia Computing and Systems.
IEEE Computer Society, 1999, pp. 400–405.

[5] P. Goyal, H. Vin, and H. Cheng, “Start-time fair queuing: A schedul-
ing algorithm for integrated services packet switching networks,” in
IEEE/ACM/ Transactions on Networks, 1997, pp. 690–704.

[6] A. Gulati, A. Merchant, and P. Varman, “pClock: An arrival curve based
approach for QoS in shared storage systems,” in In Proceedings of ACM
SIGMETRICS. ACM, 2007, pp. 13–24.

[7] S. Iyer and P. Druschel, “Anticipatory scheduling: A disk scheduling
framework to overcome deceptive idleness in synchronous I/O,” in 18th
ACM Symposium on Operating Systems Principles, 2001, pp. 117–130.

[8] J. Ke, X. Zhu, W. Na, and L. Xu, “AVSS: An adaptable virtual storage
system,” in IEEE/ACM International Symposium on Cluster Computing
and the Grid. IEEE Computer Society, 2009, pp. 292–299.

[9] H. Sariowan, R. Cruz, and G. Polyzos, “Scheduling for quality of service
guarantees via service curves,” in In Proceedings of the International

Conference on Computer Communications and Networks, 1995, pp.
512–524.

[10] S. Seelam and P. Teller, “Fairness and performance isolation: an analysis
of disk scheduling algorithms,” in IEEE International Conference on
Cluster Computing. IEEE, 2006, pp. 1–10.

[11] P. Valente and F. Checconi, “High throughput disk scheduling with fair
bandwidth distribution,” in IEEE Transactions on Computing, vol. 59.
IEEE Computer Society, 2010, pp. 1172–1186.

[12] Y. Xu and S. Jiang, “A scheduling framework that makes any disk
schedulers non-work-conserving solely based on request characteristics,”
in Proceedings of the 9th USENIX conference on File and storage
technologies. USENIX Association, 2011, pp. 119–132.

