
Valmar: High-Bandwidth Real-Time Streaming Data
Management

David Bigelow

University of California,

Santa Cruz

dbigelow@cs.ucsc.edu

Scott Brandt

University of California,

Santa Cruz

scott@cs.ucsc.edu

John Bent1

EMC

John.Bent@emc.com

HB Chen

Los Alamos

National Laboratory

hbchen@lanl.gov

Abstract—In applications ranging from radio telescopes to
Internet traffic monitoring, our ability to generate data has
outpaced our ability to effectively capture, mine, and manage it.
These ultra-high-bandwidth data streams typically contain little
useful information and most of the data can be safely discarded.
Periodically, however, an event of interest is observed and a
large segment of the data must be preserved, including data
preceding detection of the event. Doing so requires guaranteed
data capture at source rates, line speed filtering to detect events
and data points of interest, and TiVo-like ability to save past data
once an event has been detected. We present Valmar, a system
for guaranteed capture, indexing, and storage of ultra-high-
bandwidth data streams. Our results show that Valmar performs
at nearly full disk bandwidth, up to several orders of magnitude
faster than flat file and database systems, works well with both
small and large data elements, and allows concurrent read and
search access without compromising data capture guarantees.

I. INTRODUCTION

In an information-driven world, the ability to capture and

store data in real time is of the utmost importance. The scope

and intent of such data capture, however, varies widely. Indi-

viduals record television programs for later viewing, govern-

ments maintain vast sensor networks to warn against calamity,

scientists conduct experiments requiring immense data col-

lection, and automated monitoring tools supervise a host of

processes which human hands rarely touch. All such tasks have

the same basic requirements – guaranteed capture of streaming

real-time data – but with greatly differing parameters of size

and scope. Our ability to process and interpret data has grown

faster than our ability to store and manage it, which has led to

the curious condition of being able to recognize the importance

of data without being able to store it, and hence unable to later

profit by it.

Data at large scales is very difficult to store indefinitely:

the Large Hadron Collider (LHC) generates continuous data

at a rate of around 300 MB/s [7], the Long Wavelength Array

(LWA) is designed for an initial data rate of 3.75 GB/s [9], and

Internet routers can handle traffic ranging from a few MB/s to

as much as 5 GB/s in a single core router. At 100 PB/year

for the LWA and potentially more for Internet traffic, the

greater portion of this data must be defined as “unimportant”

when judged against the cost of its long-term storage. Though

continuously collected, data at this magnitude can only be

stored for a short time before overwriting it with new, retaining

978-1-4673-1747-4/12/$31.00 c©2012 IEEE

 0

 20

 40

 60

 80

 100

 120

 0 0.5 1 1.5 2 2.5 3

B
a
n

d
w

id
th

,
M

B
/s

Position in Data Cycle

Valmar Write
Valmar Read

General Purpose Filesystem
Database

Fig. 1. Comparison of Valmar with a general-purpose filesystem and a
database system. Only Valmar has bandwidth available for reads; the other
two cannot maintain the requested write volume.

permanently only that which is most interesting. No storage

system has yet been designed to effectively manage this class

of data: massive amounts continuously written but rarely read.

Addressing this problem requires us to combine certain

aspects of a database with other aspects of a general-purpose

filesystem, neither of which is well-suited to the problem on its

own. Indexing many small elements (as with Internet traffic)

and executing arbitrary queries upon them is best handled,

in theory, by a database. In practice, no database is capable

of keeping up with a never-ending stream of IP packets in

the magnitude that we target, and nor can it execute timely

queries while continuing to keep up with the collection of

new real-time data. In contrast, general-purpose filesystems

perform well when handling large amounts of data, but are less

impressive when the individual data elements become small,

and less impressive still if one attempts a generalized search

over them. Neither system is capable of making performance

guarantees and upholding quality of service deadlines on bulk-

storage rotational disk drives operating at near-full capacity,

as this problem requires.

We have developed methods to manage high-bandwidth

real-time data while making performance guarantees about

the rate of capture. Data is automatically indexed such that

it can be quickly located via queries, and old data expires au-

tomatically to make room for new, unless specifically marked

as “interesting.” This system can operate at nearly the full

1Formerly of Los Alamos National Laboratory, at the time this research
was performed.

rate of the underlying disk, without the significant bandwidth

loss from metadata management or cataloging present in many

other systems. Parameters have been developed in consultation

with astronomers and network experts at several institutions,

including individuals associated with the LWA and LSST

projects, and cybersecurity experts working with network

intrusion detection systems.

Figure 1 shows a comparison of data recording ability

between our prototype system (Valmar), a general-purpose

filesystem using flat files, and a database approach. Valmar

shows consistent performance, necessary when making per-

formance guarantees, and a higher bandwidth availability than

the other two systems.

II. OVERVIEW AND SYSTEM DESIGN

“Write-once, read-maybe” data is not typical in storage

systems. Data may sometimes be stored with no intent of

reading it again, except where needed for failure recovery,

as in checkpointing or backup systems. In contrast, we now

focus on a problem area which requires the erasure of old data

in order to store new, and will often read data back as part of

its normal operation — but each individual piece of data will

only “maybe” be read, and the majority will expire unseen.

Our methods are designed to work on individual commodity

disk drives utilizing commodity hardware and infrastructure.

This highly decentralized approach allows us to use a hetero-

geneous environment and to configure individual drive loads

based on individual capabilities. Instances communicate with

each other in order to provide reliability services, but we focus

here on the individual instances and their mode of operation,

rather than their inter-process activities.

A. Ring Buffer Model

The operational state of this type of storage system can be

described thusly:

1) Current data is preserved for a limited time only. The

extent of that time depends on system capacity and

policy determination.

2) Current data can be specifically marked for preservation,

with the understanding that such preservation will reduce

the total available storage capacity.

3) Old data is automatically overwritten in a first-in, first-

out manner as new data enters the system.

4) New data has priority at all times with respect to storage

system capability allocation; it is being generated in real

time and there are no second chances for collection.

This manner of data collection describes a system commonly

known as a “ring buffer,” though the standard model does not

usually incorporate in-place preservation of existing data.

B. Disk Performance and Data Chunking

Rotational disk drives are often regarded as unreliable

for real-time purposes due to their mechanical nature and

the opacity of their internal data arrangement, yet they are

among the most efficient devices available for bulk online

data storage. Latency may differ by orders of magnitude

 0
 50

 100
 150
 200
 250
 300
 350
 400
 450
 500
 550
 600
 650

64K 256K 1M 5M 25M 50M

S
e

c
o

n
d

s

Chunk Size

Fig. 2. Comparison of write times with varying chunk sizes, for 10 GB of
data.

based on the order in which one accesses data [8], and the

available bandwidth changes significantly based on different

arrangements of physical data location on the spinning platter.

Such real-time systems that have made use of mechanical disks

have usually assumed absolute worst-case conditions in order

to guarantee their deadlines, and have thus been able to utilize

only a fraction of the drive’s peak capabilities. Although it

is necessary to adhere to worst-case limitations to make a

real-time guarantee, it is possible to establish tighter bounds

on those worst-case figures and use a higher percentage of a

drive’s capabilities.

We now define two terms:

• A Data Element is a single piece of data that should be

treated as an indivisible unit. For example, a data element

might be a single snapshot from an optical telescope, or

a single IP packet intercepted from network monitoring.

• A Data Chunk is a unit that the storage system interacts

with. It may contain a single large data element or many

smaller ones. It may also contain additional metadata-like

information from outside the standard datastream.

In order to maximally exploit a drive’s performance, two

main factors must be taken into account: the bandwidth limi-

tations of the spinning platter, and the actual physical layout

of logically-consecutive data on the disk. The bandwidth of

the spinning platter is a physical limitation and cannot be

entirely mitigated, but awareness of that constraint allows

one to understand the bandwidth curve and regulate demand

accordingly [2]. However, the required time for a series

of operations cannot be determined merely by studying the

bandwidth curve; physically repositioning the disk hardware

to read two non-consecutive regions may add a significant

amount to the total time. This overhead is always present, but

can be more or less relevant depending on the size of the

surrounding operations. If I/O operations are small and disk

repositioning frequent, observed bandwidth is significantly less

than if I/O operations are very large, and disk repositioning

infrequent.

The problem is most acute when the drive is nearly full and

free space is only available in small non-contiguous regions.

Since we expect each drive to have a constant utilization rate

of near-maximum, data fragmentation would quickly become a

major problem in any standard filesystem. In order to eliminate

this fragmentation, we must carefully choose and restrict data

layout, size, and placement. As a example of this principle,

Figure 2 shows actual results from a disk drive for a non-

worst-case scenario. It measures the time required to write 10

GB of data to the drive with several different chunk sizes.

In each case, the chunks are proportionally written throughout

the entire space of the disk, from outermost to innermost track

and many places in between. Even a 64-KB chunk size (the

smallest shown on the graph) is considerably larger than the

minimum for most filesystems.

It is obvious that we cannot achieve reasonable efficiency

over a continuous stream of I/O operations unless we constrain

the minimum I/O size to be on the order of several megabytes,

and several tens of megabytes is better still. Therefore, we

define a minimum chunk size and allow no writes or data

placement smaller than this size. Read operations may be

smaller where desired, since reads do not change the struc-

ture on disk. This minimum chunk size prevents small and

inefficient I/O operations and has the simultaneous effect

of drastically reducing data fragmentation in comparison to

regular file systems. Chunk size is customizable based on the

exact nature of the data, but a general rule of thumb is that

“bigger is better” from the perspective of absolute performance

on the disk, up to several tens of MB in size.

C. Indexing and Searching

The ability to store data in real time is wasted if one cannot

later find that data. This problem is particularly acute in a low-

lifetime system since the inability to locate the data quickly

may translate to an inability to ever locate it, as it will soon

no longer exist. When data is lost in this manner, it is as if it

had never been captured at all. Therefore, not only must the

data storage be subject to real-time deadlines and performance

guarantees, but the categorization and indexing of data must

also be done in real time, as fast as the raw data itself arrives.

Indexing may be managed at several different scales. If

data elements are large and require little indexing data per

element, there are few problems. If data elements are small

and need to be categorized based on multiple aspects at once,

the indexing information may amount to a sizable fraction

of the full dataset. As the indexing becomes more complex

and involves larger amounts of the original data, searching

becomes problematic from any perspective: a full search

approaches the equivalent of reading the entire data set. A

small index may be kept in main memory alone and this will

simplify all problems related to queries, but we here consider

the case where index size requires that at least part of it be

kept on disk.

Indexing information is best treated in the same manner as

the data itself: gather indexing elements together into chunks

which can be treated as a single I/O unit. Indexing chunks can

then be stored throughout the drive alongside data chunks. If

the size of the indexing chunks can be computed in advance

(for example, if IP packets are a constant 1500 bytes at all

times), then the size of the required indexing information can

be pre-computed, and dedicated regions of the disk may be set

aside for them. This could allow indexing chunks to be stored

in the highest bandwidth region of the drive, for example,

speeding up queries. However, when data element sizes are

variable, indexing chunks should be treated as data chunks

and placed on the disk drive by the same placement methods

and ordering layout.
Indexing chunks “expire” when they no longer reference

current data, and thus maintain the same lifecycle pattern as

data chunks. If certain data chunks are preserved, partially-

expired indexing chunks must also be preserved to properly

reference the data, which can introduce a storage overhead as

unnecessary portions of the index are needlessly preserved.

An engineering refinement is to use spare bandwidth to

periodically consolidate partially-expired indexing chunks so

as to keep wasted storage space at a minimum.

Meanwhile, the search process has similarities to both stan-

dard file systems and databases, but with different techniques

and stricter deadlines. The quick cycle of data precludes a

gradual buildup of a full index, and the most likely outcome

is that no search will ever be performed on a given portion of

data as it quickly expires. When a search is performed, it is

almost certainly a one-time occurrence to preserve a region of

data, and will likely not be repeated. This means that search

results should not be preemptive nor cached. Such behavior

would not only confer no advantage, but would in fact hinder

those searches which are required.

In a system where data lifetime is measured in hours, it is

safe to assume that a search has only one purpose: to find

data that is “interesting,” and by implication, data that should

be marked for preservation (or alternately, to find data that

is no longer interesting for the purpose of “unpreserving” it).

Therefore, we define a real-time search as follows:

1) A real-time search is conducted over all data present in

the system at the time the query is initiated.

2) A real-time search is considered successful if it locates

all specified data in the system, and that data is still

present in the system by the time the results are returned.

3) A real-time search is considered at least partially un-

successful (or, as having missed its deadline) when it is

unable to consider data because of expiration, or if it

locates data which is no longer present in the system by

the time the results are returned.

We impose no absolute time requirements on such a search

in the primary definition, though a faster search is naturally

superior to a slower one.

D. Prototype System

Valmar is implemented as a multithreaded process that runs

in userspace and accesses disk drives as raw devices. Multiple

processes may run on the same node, as many independent

processes as disks, and additional components may be con-

figured to accept multiple data streams and configure them

for RAID-like reliability purposes. All accesses to any given

disk must take place through the associated process in order to

properly manage bandwidth. Each process/disk is governed by

configuration settings that specify, among other information,

the chunk size, the element size (or size range), and the

aspect(s) upon which each element is indexed.

 0

 20

 40

 60

 80

 100

 120

 0 1000 2000 3000 4000

B
a

n
d

w
id

th
,
M

B
/s

Data Processed, GB

(a) Valmar

Write Bandwidth
Read Bandwidth

 0

 20

 40

 60

 80

 100

 120

 0 1000 2000 3000 4000

B
a

n
d

w
id

th
,
M

B
/s

Data Processed, GB

(b) General-Purpose Filesystem

Write Bandwidth
Read Bandwidth

 0

 20

 40

 60

 80

 100

 120

 0 1000 2000 3000 4000

B
a

n
d

w
id

th
,
M

B
/s

Data Processed, GB

(c) Database

Write Bandwidth
Read Bandwidth

Fig. 3. Performance of Valmar, a general-purpose filesystem, and a database, storing large elements. Read bandwidth in graph (b) is so low as to be
indistinguishable from zero, and graph (c) has a read performance of exactly zero.

III. TESTING AND EVALUATION

Since no existing systems are designed to handle this type of

workload, we constructed two comparison systems to measure

against our own prototype, Valmar. The first comparison sys-

tem is based around a general-purpose filesystem, which per-

forms best with large data elements and minimal indexing. The

second system is based around a database, which is appropriate

for complex queries on small data elements, though it too

can handle larger data elements requiring minimal indexing.

Here, we evaluate the performance of Valmar and the two

comparison systems.

A. Testing Procedure

Our testing took place on a variety of hard drives on

different sets of hardware, and we obtained similar relative

results for each setup. All experiments presented in this section

are run on the same hardware configuration for accurate

comparisons between all results. The disk shown in these

results is a Hitachi Deskstar HD32000 IDK/7K 7200 RPM

SATA drive of 2 decimal TB capacity. All results in this section

should be interpreted as using the binary conventions of bytes.

We used ext2 as our comparison general-purpose file sys-

tem, and again as the underlying file system for our mysql-

based database comparison system. We chose ext2 because

it has superior performance compared to several other file

systems, including ext3 and XFS, most likely due to their

journaling nature. Both comparison systems were constructed

such that they prioritized data capture over data reading,

rather than relying on an unwanted “fair” allocation of re-

sources. Furthermore, rather than relying on system metadata

to determine the order of data expiration, we included an

external index structure in both comparison systems, similar to

what Valmar uses. Without this external indexing system, the

performance of both comparison systems drops precipitously

when expiring data, since it takes a great deal of time to even

find the data due to be expired, before actually overwriting it.

We also adopted a policy of in-place element replacement in an

attempt to prevent excessive fragmentation, greatly improving

the performance of both comparison systems at the expense

of lowering their total capacity.

Data cycles were constrained to about 1.5 TB, out of 1.8

available in order to avoid the innermost portion of the disk

platter, which has considerably lower performance for the

small amount of additional capacity that it offers. Valmar was

physically restricted to the outermost portions of the platter,

while the comparison systems were allowed to allocate their

data structures over the entire drive, which gave them a greater

flexibility and higher performance than they could reach with

comparable restrictions. We set a desired write bandwidth of

80 MB/s over the entire course of the disk, which was near-

maximum performance for the worst-performing regions at the

innermost tracks. In Valmar, data chunk sizes were also set at

80 MB, a sufficiently high amount to gain advantage from the

chunking method, and conveniently corresponding to exactly

one second worth of data.

B. Large Elements

We first tested the system using large (5 MB) fixed-size

elements as a baseline. These elements were indexed only ac-

cording to time, with no complex data categorization scheme.

The system was allowed to run for multiple data cycles,

randomly preserving data chunks, reading them to return to

an outside process, and unpreserving the chunks again. The

results of these tests can be seen in Figure 3.

Part (a) shows performance achieved by Valmar. The write

bandwidth stays steady at 80 MB/s bandwidth, and the read

bandwidth follows a sinusoidal/sawtooth pattern in accordance

with the disk head’s movement from the outermost to the

innermost regions of the disk platter. The system can continue

this mode of operation indefinitely, precisely as specified in

the problem description.

Part (b) shows performance achieved by the general-purpose

filesystem. Although the raw disk ability can easily support 80

MB/s of write bandwidth, the filesystem is unable to keep up.

Instead, it has an extremely jagged performance curve, usually

spiking between 60 and 70 MB/s bandwidth, and once spiking

above 80 MB/s in a particularly favorable region, but never

stabilizing at the rate it needs. Furthermore, as the second

cycle of data enters the system (thus requiring old data to

be deleted/overwritten), average performance drops below the

first data cycle. During the course of the test, the general-

 0

 20

 40

 60

 80

 100

 120

 0 1000 2000 3000 4000

B
a

n
d

w
id

th
,
M

B
/s

Data Processed, GB

(a) Valmar

Write bandwidth
Read bandwidth

 0

 20

 40

 60

 80

 100

 120

 0 1000 2000 3000 4000

B
a

n
d

w
id

th
,
M

B
/s

Data Processed, GB

(b) General-Purpose Filesystem

Write bandwidth
Read Bandwidth

 0

 20

 40

 60

 80

 100

 120

 0 1000 2000 3000 4000

B
a

n
d

w
id

th
,
M

B
/s

Data Processed, GB

(c) Database

Write Bandwidth
Read Bandwidth

Fig. 4. Performance of Valmar, a general-purpose filesystem, and a database, storing small elements. Read bandwidths in graphs (b) and (c) are zero

purpose filesystem lost about 26.1% of the total data. Since

writes were prioritized, reads were extremely rare, and read

bandwidth remained zero for nearly the entire test (only 650

MB were read in total at various points during the course of

the test).

Part (c) shows performance achieved by the database. Al-

though databases are not normally used to store large amounts

of relatively uncomplicated binary data, it is included here for

comparison purposes. Its performance is comparable to that

of a flat file system for just over 2 TB of processed data, and

is much more stable. However, during the second data cycle,

performance drops rapidly from about 60 MB/s to 40 MB/s,

and continues to decrease from that point. As with the general-

purpose filesystem, the database system does not achieve full

data capture and thus has zero read bandwidth. During the

course of the test, the database lost about 40.7% of all data.

C. Small Elements

After we established the baseline patterns with large data

elements, we moved on to the harder-to-manage small ele-

ments with variable indexing requirements. IP packets are a

practical real-world example, due to their diverse nature and

highly-structured format. It would have been impractical to use

an actual network trace due to the size and rate of the data (a

single test requires multiple terabytes of data streaming into a

single point source over the duration of the experiment), so we

generated our own simulated IP traffic instead. We used 10,000

source addresses communicating with 1,000,000 destination

addresses, at about 80 MB/s (the exact amount often being a

little bit greater to account for variable packet sizes).

IP packets were primarily indexed according to timestamp,

source address, destination address, and a metadata-like clas-

sification number based on the contents of the packet. Each

packet varied between 20 and 1500 bytes in size, uniformly

distributed in that range. Although real Internet traffic is

weighted towards larger-size packets, smaller packets place a

greater strain in the indexing system, which is part of what we

wished to test. The results of IP-packet testing can be seen in

Figure 4, again with Valmar and the two comparison systems.

Part (a) again shows performance by Valmar. Write band-

width is slightly greater than 80 MB/s on average, due to

the slight overhead of the indexing system, and the additional

storage of indexing chunks. This adds a small jitter to the write

bandwidth. However, this is an expected effect from this type

of data and does not result in any lost packets. Read bandwidth

again follows a sinusoidal/sawtooth pattern in progression with

the disk head position on the disk platter. Overall, even with

data elements with an average size of less than 0.02% the size

of the previously-tested large elements, performance is steady.

Again, the system can continue in this mode of operation

indefinitely, losing no packets, precisely as required.

Part (b) shows performance by the general-purpose filesys-

tem. This test was performed with a 128 KB element size

(each element holding many packets), since general-purpose

file systems generally do not react well when attempting to

store hundreds of millions of 20-1500 byte files in a constantly

rotating data cycle. Even with an element size over a hundred

times larger than what Valmar was using, performance was

extremely erratic. Write bandwidth quickly drops to around

50 MB/s during the first cycle of data, and thereafter drops

to around 40 MB/s of write bandwidth after several dips and

spikes. Again, read performance was zero due to the inability

to keep up with the writing data cycle. During the course of

the test, 51.3% of the data was lost.

Part (c) shows database performance. Although a database

is well-suited to indexing and querying over a large number

of small elements (or “rows” in database terminology), these

results show that it is not well suited to record that data in

real time. Performance is limited to no more than a 20 MB/s

write speed, and it drops further as the system continues into

further data cycles. There is no opportunity to read data due to

write priorities, leading to a constant read bandwidth of zero.

During the course of this test, 79.4% of the data was lost.

IV. RELATED WORK

Ring buffers are not a new concept in this type of data

management and are already used in some commercial pro-

duction systems. DataTurbine [17] use this model, though it

(and similar systems) are focused on high-bandwidth data and

do not emphasize the storage system. Rajasekar et al. has

proposed a virtual object ring buffer framework [14] designed

to manage sensor data, but again does not focus on storage.

Network monitoring tools like Argus [1], NetFlow [5], and

other commercial products are designed to capture network

traffic for status reporting, anomaly detection, and status

reporting. None of these systems are designed to track and

store past data, only focusing on the future when something is

detected. “Time Machine” [10] is designed to consider storage,

but only in the sense that it is aware of storage limitations and

prioritizes accordingly.

Due to the difficulties in making quality of service guar-

antees on unreliable mechanical devices, existing work often

guarantees only one aspect of performance, or makes only

statistical guarantees. RT-Mach [11] make real-time guarantees

through extreme worst-case usage pattern predictions while

Lottery Scheduling [18] and others focus on statistical guar-

antees through isolating workloads.

Horizon [13] also uses a two-tier approach to manage QoS

in distributed storage, including disk-level tools to move data

on and off the hardware. DROPS [15] makes reservations

based on throughput while Fahrrad [12] guarantees disk head

time rather than bandwidth or latency. Large storage systems

like Ceph [19] can often guarantee a certain service level,

but only to the degree of categorizing traffic to maintain an

appropriately “fair” level of service.

Some systems meet real-time I/O deadlines by requiring cer-

tain preset conditions and workloads. Clockwise [3] and other

multimedia storage servers use a predictable file layout and

workload specification to meet predefined real-time deadlines

in these circumstances. Semantic File Systems [6] has some

applicability in this problem area, where files can be classified

and arranged on data content. This work was extended in

Connections [16], and the Damasc [4] project goes further

with configurable layers added on top of the file system.

V. CONCLUSION

Though current research has increasingly applied real-time

deadlines and quality of service considerations to storage

systems in recent years, it has not yet focused on the problem

space of high-bandwidth, low-lifetime data. We have devel-

oped methods for managing this type of data, from the initial

collection to its expiration, including its temporary storage

on mechanical disk drives. Additionally, we have established

methods by which this data can be indexed and queried in real

time without interrupting or hindering the ongoing collection

of new data. These techniques can be applied to both large and

small data elements, can work with arbitrary indexing patterns,

and can be refined for practical improvements on a given data

pattern.

We have shown experimental results from our prototype

system, Valmar, that demonstrate its ability to make real-

time performance guarantees on mechanical disk drives, and

practically index hundreds of millions of small elements at

once, as in the case of IP packets. Neither general-purpose

filesystems nor databases can match or even approach our

performance. In the future, we will continue to extend this

work to show its practicality when used over a large distributed

system, maintaining the performance we have demonstrated

here.

REFERENCES

[1] “ARGUS FAQ,” http://www.qosient.com/argus/faq.shtml, 2011.
[Online]. Available: http://www.qosient.com/argus/faq.shtml

[2] D. Bigelow, S. Brandt, J. Bent, and H. Chen, “Mahanaxar: Quality of
service guarantees in high-bandwidth, real-time streaming data storage,”
in Mass Storage Systems and Technologies (MSST), 2010 IEEE 26th

Symposium on, may 2010, pp. 1 –11.
[3] P. Bosch, S. Mullender, and P. Jansen, “Clockwise: a mixed-media file

system,” in Multimedia Computing and Systems, 1999. IEEE Interna-

tional Conference on, vol. 2, July 1999, pp. 277 –281 vol.2.
[4] S. Brandt, C. Maltzahn, N. Polyzotis, and W.-C. Tan, “Fusing

data management services with file systems,” in Proceedings of the

4th Annual Workshop on Petascale Data Storage, ser. PDSW ’09.
New York, NY, USA: ACM, 2009, pp. 42–46. [Online]. Available:
http://doi.acm.org.oca.ucsc.edu/10.1145/1713072.1713085

[5] Cisco Systems, “Introduction to Cisco IOS NetFlow - A Technical
Overview,” Cisco Systems, Tech. Rep. C17-408326-01, October 2007.

[6] D. K. Gifford, P. Jouvelot, M. A. Sheldon, and J. W. O’Toole,
Jr., “Semantic file systems,” in Proceedings of the thirteenth ACM

symposium on operating systems principles, ser. SOSP ’91. New
York, NY, USA: ACM, 1991, pp. 16–25. [Online]. Available:
http://doi.acm.org.oca.ucsc.edu/10.1145/121132.121138

[7] L. C. Grid, “Gridbriefings: Grid computing in five minutes,” August
2008.

[8] W. W. Hsu, A. J. Smith, and H. C. Young, “The automatic improvement
of locality in storage systems,” ACM Trans. Comput. Syst., vol. 23, no. 4,
pp. 424–473, 2005.

[9] “http://www.phys.unm.edu/˜lwa/index.html.”
[10] S. Kornexl, V. Paxson, H. Dreger, A. Feldmann, and R. Sommer,

“Building a time machine for efficient recording and retrieval of high-
volume network traffic,” in IMC ’05: Proceedings of the 5th ACM

SIGCOMM conference on Internet Measurement. Berkeley, CA, USA:
USENIX Association, 2005, pp. 23–23.

[11] A. Molano, K. Juvva, and R. Rajkumar, “Real-time filesystems. Guar-
anteeing timing constraints for disk accesses in RT-Mach,” in The 18th

IEEE Real-Time Systems Symposium, December 1997, pp. 155–165.
[12] A. Povzner, T. Kaldewey, S. Brandt, R. Golding, T. M. Wong, and

C. Maltzahn, “Efficient guaranteed disk request scheduling with fahrrad,”
in Eurosys ’08: Proceedings of the 3rd ACM SIGOPS/EuroSys European

Conference on Computer Systems 2008. New York, NY, USA: ACM,
2008, pp. 13–25.

[13] A. Povzner, D. Sawyer, and S. Brandt, “Horizon: efficient deadline-
driven disk i/o management for distributed storage systems,” in
Proceedings of the 19th ACM International Symposium on High

Performance Distributed Computing, ser. HPDC ’10. New York,
NY, USA: ACM, 2010, pp. 1–12. [Online]. Available: http:
//doi.acm.org.oca.ucsc.edu/10.1145/1851476.1851478

[14] A. Rajasekar, S. Lu, R. Moore, F. Vernon, J. Orcutt, and K. Lindquist,
“Accessing sensor data using meta data: a virtual object ring buffer
framework,” in DMSN ’05: Proceedings of the 2nd international work-

shop on data management for sensor networks. New York, NY, USA:
ACM, 2005, pp. 35–42.

[15] L. Reuther and M. Pohlack, “Rotational-position-aware real-time disk
scheduling using a dynamic active subset (DAS),” in Real-Time Systems

Symposium, 2003. RTSS 2003. 24th IEEE, dec. 2003, pp. 374 – 385.
[16] C. A. N. Soules and G. R. Ganger, “Connections: using context

to enhance file search,” in Proceedings of the twentieth ACM

symposium on operating systems principles, ser. SOSP ’05. New
York, NY, USA: ACM, 2005, pp. 119–132. [Online]. Available:
http://doi.acm.org.oca.ucsc.edu/10.1145/1095810.1095822

[17] S. Tilak, P. Hubbard, M. Miller, and T. Fountain, “The Ring Buffer
Network Bus (RBNB) DataTurbine Streaming Data Middleware for
Environmental Observing Systems,” in e-Science, Bangalore, India,
10/12/2007.

[18] C. A. Waldspurger and W. E. Weihl, “Lottery scheduling: Flexible
proportional-share resource management,” in Proceedings of the First

Symposium on Operating Systems Design and Implementation, Novem-
ber 1994.

[19] J. Wu and S. Brandt, “Providing quality of service support in object-
based file system,” in 24th IEEE Conference on Mass Storage Systems

and Technologies, September 2007, pp. 157–170.

