
ADAPT: Efficient Workload-sensitive
Flash Management Based on Adaptation, Prediction

and Aggregation

Chundong Wang and Weng-Fai Wong
School of Computing, National University of Singapore

Email: {wangc, wongwf}@comp.nus.edu.sg

Abstract—Solid-state drives (SSDs) made of flash memory
are widely utilized in enterprise servers nowadays. Internally,
the management of flash memory resources is done by an
embedded software known as the flash translation layer (FTL).
One important function of the FTL is to map logical addresses
issued by the operating system into physical flash addresses. The
efficiency of this address mapping in the FTL directly impacts
the performance of SSDs. In this paper, we propose a hybrid
mapping FTL scheme, called Aggregated Data movement Aug-
menting Predictive Transfers (ADAPT). ADAPT observes access
behaviors online to handle both sequential and random write
requests efficiently. It also takes advantage of locality revealed
in the history of recent accesses to avoid unnecessary data
movements in the required merge process. More importantly,
by these mechanisms, ADAPT can adapt to various workloads
to achieve good performance. Experimental results show that
ADAPT is as much as 35.4%, 44.2% and 23.5% faster than
a state-of-the-art hybrid mapping scheme, a prevalent page-
based mapping scheme, and a latest workload-adaptive mapping
scheme, respectively, with a small increase in space requirement.

I. INTRODUCTION

The access to secondary storage of enterprise servers varies

significantly. As flash-based solid-state drives (SSDs) start

replacing traditional hard disks, an efficient and adaptive al-

gorithm on flash management that takes advantage of runtime

access behaviors is likely to achieve better performance.

There are two types of flash memory, NOR flash and NAND

flash. The latter has a higher density and is cheaper, making it

more prevalent today. Unlike NOR flash, NAND flash is not

byte addressable. Read and write operations on a NAND flash

chip must be performed in units of pages. Each page has a data
area for storage and a spare area for essential information [16].

However, data in a page cannot be written (“programmed”)
unless the block it is in is first erased [22]. A block is the unit
for an erasure and contains multiple pages [6]. Such out-of-
place data updating is a primary concern on flash management,
especially the logical to physical address mapping.

The management of flash memory is performed by an

embedded software called the flash translation layer (FTL).
The FTL services requests from the upper-level file system

and performs actions at the lower-level flash memory. Its

basic functionalities include address mapping, wear leveling

and bad block management. Among these, the mapping from

logical address to physical address has the most impact on

the performance due to its frequent use, making it an ideal

candidate for optimization.

Existing FTLs, like BAST [8] and FAST [13], target the

address mapping of embedded systems. With the widespread

use of SSDs in enterprise servers, workload characteristics of

general-purpose computing systems have to be considered. For

example, FAST’s successor FASTer [15] focuses on online

transaction processing (OLTP) systems. I/O requests of OLTP

systems are generally random and small with a handful of data

highly accessed.

Besides OLTP, however, there are also other important

classes of I/O workloads. For instance, mail and media servers

serve contents that may be fairly large. These types of work-

loads differ from OLTP in that accesses are less skewed and

generally more data need to be written or read in a request;

sequential and random write requests may mix in different

ratios and form dynamic access patterns, which requires FTLs

to adapt to them efficiently for high access performance.

Several FTLs have been proposed to exploit the access

behaviors of workloads. The above mentioned FASTer targets

OLTP systems. LAST [14] separates sequential and random

writes by the number of pages to be accessed in a request, and

deals with them differently. Both of them are hybrid mapping
scheme [14] [23]. Hybrid mapping is a combination of basic

page mapping and block mapping by dividing all physical
blocks into the data space, log space and free block pool.
Each logical block is block-mapped to a block in data space.

Block mapping is not flexible when updating data to a page

because of the coarse granularity of mapping unit and out-

of-place updating. Therefore, the log space is maintained to

temporarily hold updates using page mapping. Newly-arrived

updates will be put into log pages. When no clean page is left

in the log space, a victim log block will be selected and merged
with corresponding data blocks. After merging, the victim is

erased and returned to the free block pool. Another clean block

will be allocated to replenish the log space. During a merge in

FASTer, a page containing valid data is given a second chance
by being retained inside the log space.

In this paper, we propose a novel hybrid mapping scheme

called Aggregated Data movement Augmenting Predictive
Transfers (ADAPT). It is a workload-dependent adaptation
heuristic that considers access behaviors at runtime in its

maintenance of the log space. The main contributions of this

978-1-4673-1747-4/12/$31.00 ©2013 IEEE

TABLE I
I/O REQUEST SIZE OF VARIOUS WORKLOADS

Trace Small Medium Large

TPC-C 20 99.17% 0.83% 0.00%
SPC1 86.58% 10.63% 2.79%
MSR-hm 0 76.70% 13.72% 9.58%
MSR-mds 0 72.35% 19.79% 7.86%
MSR-prn 0 79.46% 8.88% 11.66%
MSR-prxy 0 87.91% 6.82% 5.27%
MSR-rsrch 0 68.22% 25.04% 6.74%
MSR-stg 0 72.33% 18.62% 9.05%
MSR-ts 0 67.81% 25.87% 6.32%
MSR-web 0 67.50% 23.85% 8.65%

paper, and also main components of ADAPT, are:

• An online algorithm adaptively partitions the log space so
as to efficiently handle requests that are a mix of sequen-

tial and random writes. The log space is usually divided

into a sequential area and a random area for sequential
or random writes respectively. Unlike previous designs

using fixed sizes, ADAPT will monitor the processing

of write requests at runtime and dynamically adjust the

capacities of the two areas.

• A merge-or-move decision procedure based on a predic-
tion mechanism is employed in the random area of the

log space. This mechanism considers the recent history

of writes and will compute the likelihood of a page being

updated in the near future. The basic idea is that during

a merge, if a page is found to have been written recently,

it will be given a second chance to stay in the log space.

Otherwise, it will be directly merged.

• Sometimes, it may turn up that most pages in the log
block to be merged are valid. During the merge, our

aggregated data movement scheme will give the entire
block a second chance instead of processing pages one at

a time, and simply append the block to the end of random

area of the log space.

These features complement each other, and enable ADAPT

to outperform previous designs, as will be shown in our

experiments.

The rest of this paper is organized as follows. Section 2

presents access patterns of various workloads and background

of hybrid mapping. Section 3 describes the details of ADAPT.

Section 4 shows experimental results with Section 5 presenting

some related works. Section 6 will conclude this paper.

II. MOTIVATION AND BACKGROUND

A. Motivation

Workload characteristic is an important factor in the design

of FTL. For instance, FAST paid more attention to random

writes using only one log block for sequential writes [13].

FASTer was designed mainly with OLTP systems in mind [15].

Typical OLTP workloads are dominated by small and random

I/O requests. A high-level access skewness exists on a handful

of pages with other pages rarely touched.

However, besides OLTP, there are other types of server

workloads. Table I shows that the variation in I/O request

sizes is significant. Traces in Table I are from [20], [24]

and [18], collected in various environments. Here we define

a small request as one that is 4KB (2 pages with 2KB per
page), or less. This same definition was used by previous

works [14] [15]. A medium request is one whose size is smaller
than 16KB (8 pages), and any request that is larger is classified

as large. For preliminary analysis, we roughly deem large

requests to be sequential, which agrees with LAST [14]. TPC-

C 20 in Table I is a typical OLTP workload which hardly

has sequential writes but is almost full of random requests

in all 7.7 million write records. Comparatively, MSR-prxy 0,

one that was taken in a proxy server and also has a large

amount of small writes, contains a lot of large requests. For

non-OLTP workloads in Table I, sequential writes compose

about 3% to 12% of all requests. If these requests are handled,

for example, with one log block as in FAST, there will be high

capacity misses that can badly degrade the performance. For

small random requests, since they are frequent and interpose

with sequential writes, how to satisfy them is always attractive

in the development of FTLs. One key insight of our design

is that the FTL should use an intelligent strategy to deal with

workloads that are mixed with sequential and random writes.

Logical Block Number Page Number Page Offset

Page Mapping Table

Physical Block Number Page Number Page Offset

Logical Block Number Page Number Page Offset

Block Mapping Table

Physical Block Number Page Number Page Offset

(a) Page Mapping

(b) Block Mapping

Fig. 1. Page mapping and block mapping

B. Background

Hybrid mapping is the preferred mechanism in FTL design.

While the logical-to-physical block mapping is used as the ba-

sis, page mapping is employed to manage temporary updates.

Fig. 1 sketches the two basic mapping schemes.

Typically, the log space is about 3% of all space [12] [15].

It is usually partitioned into a sequential area for sequential

writes and a random area for random writes. FAST uses one

log block for its sequential area while LAST has a fixed

number of blocks. They also have methods to decide whether a

request is sequential or random. When a write request arrives,

the FTL first checks whether the page in the mapped data block

is clean. If not, a log page will be allocated to accept the data.

The old copy will be invalidated. The relationship between

the logical page and the log page is recorded in the log page

mapping table. Fig. 2 is adopted from [14]. In Fig. 2 a square

0 1 2 3 0 1 2 3

0 1 2 3

Write requests
0, 1, 2, 3

Log block L0

change

erase

Write requests
0, 1, 2

Data block L0

Data block D0 Free block D0

0 1 2
change

Log block L1

Data block D1

0 1 2 3

copy

erase

0 1 2 3
Data block L1

Free block D1

(a) Switch Merge (b) Partial Merge
Write requests
4; 0; 5;1; 4; 2; 5; 4

4 0 5 1 4 42 5
Log block L2 Log block L3

erase

0 1 2 3

(c) Full Merge

4 5 6 7

Free block F0

Data block D2 Data block D3

0 1 2 3
Data block F0

copy

copy

Log block L3

4 42 5
Log block L4

4 5 6 7
Data block D3

Free block L2 Free block D2Free block L2 Free block D2

Fig. 2. Three types of merge

is a page and a rectangle of four squares represents a physical

block. The number in each square is the logical page number

that it maps to. Data in a shaded page are invalid. In Fig. 2(c),

logical page 2 is mapped to data block D2 but cannot be
rewritten directly. A page in log block L3 has to be allocated.
Successive updates can be handled by more log pages, and

mapping entries are changed accordingly. In Fig. 2(c), three

log pages in L2 and L3 are used for logical page 4. If all
pages of log space are exhausted, a merge procedure must be

performed to make space.

Fig. 2 shows three types of merge in FAST. Switch and
partial merge have lower overheads, and are expected in the
sequential area. For a switch merge (shown in Fig 2(a)), the

log block contains contiguous valid data from the same logical

block. It can therefore be simply switched to data space. In

a partial merge, the log block will also replace its relevant

data block but some valid data in current data block have

to transferred to it first, as shown in Fig 2(b). Full merge is
more complicated. FAST is a fully associative hybrid mapping
scheme, which means a log block in the random area is not

bound to any one data block like BAST but shared by all.

Thus, a full merge is costly because each page with valid data

in the log block must be (potentially) merged with a different

data block. This requires many writes and erasures. FAST and

FASTer organize the random area in a FIFO queue (that they

called “round-robin”), and the victim for the full merge will

be the one at the head of the random area.

A recent proposal, WAFTL [25], considers the issue of

workload adaptation. It also combines two basic mapping

schemes, but differs from hybrid mapping in its management

on buffer space and data blocks. It has a page-mapping buffer
zone like the log space to hold updates, and data blocks are
partitioned into Block-level Mapping Blocks (BMB) and Page-

level Mapping Blocks (PMB). When the buffer zone is full, a

data migration procedure will be called to transfer the data out.
WAFTL claims to be workload-adaptive by sending buffered

data to either BMB or PMB upon their access frequencies:

highly accessed will be sent to PMB and others will be put in

BMB. Unlike merging a log block, data migration will flush

all data in buffer zone and completely reconstruct the space.

It is quite costly to move so many data at a time.

III. OUR PROPOSED FTL SCHEME: ADAPT

A. Overview of ADAPT

In this section, we will describe ADAPT. It is a fully-

associative hybrid mapping FTL that also utilizes log space

to temporarily hold updates. However, ADAPT manages log

space in a novel way to adapt to various workloads. Essen-

tially, it adjusts the partitioning of the log space in response to

sequential and random write requests met during runtime. By

observing online access behavior, ADAPT also avoid prema-

ture merges by predicting the likelihood of future references.

B. Online Adaptive Partitioning of the Log Space

How to efficiently handle sequential writes and random

writes is an important issue in FTL design. As mentioned

before, the log space is partitioned into the sequential and

random areas. Hybrid mapping schemes always expect sequen-

tial writes to cause switch or partial merge. FAST utilizes one

log block as the sequential area [13] while LAST considers

multi-tasking environments and employs a fixed number of log

blocks to handle sequential requests [14]. On one hand, using

one log block tends to result in block thrashing. On the other

hand, since the system workload changes from time to time,

it is also not optimal to reserve a fixed number of blocks.

Before presenting our design, let us first revisit the issue

of identifying sequential writes. FAST uses two conditions

to direct a write request to the sequential log block: (1) if

its page number is zero within the logical block (data that

the log block holds at present will be merged), or (2) the

logical block number of the write request is the same to that

of the sequential log block and the pages to be written can

be simply appended in the log block. The first condition is

likely to incorrectly label a random request beginning from

page zero to be a sequential one, and may result in frequent

merges. In LAST, besides using more blocks for sequential

writes to avoid such merges, it also takes into account the size

of a write request: if a request writes data to a number of

pages, it will be a sequential request. LAST was implemented

in PCs of Windows XP operating system, so its threshold was

set to be 4KB (2 pages) [14]. For ADAPT, however, we do

not use an absolute number of pages accessed in a request

to determine whether it is sequential or random. Instead, we

will adaptively change the threshold. How this is done will be

described below.

We shall now present our area partitioning scheme of

ADAPT. Unlike FAST or LAST, the sizes of the sequential

and random area are adjusted dynamically. The key idea is

that, at runtime, if performance suffers from having insufficient

sequential log blocks, blocks will be transferred from the

random area to the sequential area, and vice versa. To do these,

ADAPT maintains two variables in a time interval. The first

is the switch and partial merge ratio,

δ =
count of switch and partial merges

count of sequential log block allocation
.

This is the count of switch and partial merges over all block

allocations from the sequential area. Another one is the full
merge ratio,

ϕ =
count of merged pages in full merges

count of full merge
.

This is the average number of merged pages in the full merges

occurring in the random area.

Algorithm 1: Adjustment of Log Space in ADAPT
1 begin
2 reqst count ++;
3 if (reqst count < INTERVAL) then
4 return;
5 end
6 else
7 reqst count := 0;
8 if (δ > 0.4) then
9 victim := GetHeadofRandArea(void);

10 Merge(victim, RW);
11 f ree blk := AllocFreeBlock(void);
12 AddtoSeqArea(f ree blk);
13 end
14 else if (ϕ ≥ BLOCK SIZE

2) then
15 victim := GetVictimofSeqArea(void);
16 Merge(victim, SW);
17 f ree blk := AllocFreeBlock(void);
18 AddtoRandArea(f ree blk);
19 end
20 return;
21 end
22 end

δ and ϕ represent the situations of recent write requests

in a certain period inside the sequential and random areas,

respectively. δ varies from 0 to 1. A larger δ means a higher hit
rate of block allocation in sequential area. Evidently enlarging

the capacity of sequential area is likely to be profitable. Based

on our empirical observations, if δ > 0.4 we will do so. On the
other hand, a smaller δ implies more requests were incorrectly
treated as sequential, and hence the need for sequential log

blocks is not high. ϕ is an integer between 0 and the number

of pages in a block, typically 64 [6]. A larger ϕ means that

on average a full merge has to process more valid pages.

So having more blocks in the random area may alleviate

the pressure. Experiments show that it is time to enlarge the

random area when ϕ ≥ 32, which means on average more than
half a block have to be processed in a full merge. A smaller

ϕ implies random requests are handled well by the current

random area size, and possibly some blocks can be transferred

to sequential area. By measuring δ and ϕ , ADAPT can adjust
the utilization of blocks in both areas. To avoid significant

fluctuation on performance, ADAPT will transfer one block

every time between two areas. If δ suggests increasing the

sequential area, ADAPT will select a victim block in the

random area, merge it with its relevant data blocks and reclaim

it. A clean block will be allocated to be a sequential log block

then. The random area can be adjusted likewise.

In ADAPT, the enlargement of the sequential area has

a higher priority than that of the random area. That is to

say, ADAPT will consider δ before ϕ . There are several
reasons for this. Firstly, switch and partial merges are less

expensive. Secondly, sequential log blocks are managed using

block mapping, which consumes less RAM space. Thirdly,

the utilization of random log blocks can be optimized with

ADAPT’s predictive transfer and aggregated movement com-

ponents, which will be covered in next few subsections.

Unlike LAST’s predefined 4KB threshold, the threshold of

ADAPT to direct a request to the sequential or random area is

also adaptive. In a recent interval, a very small δ , say less than
0.1, means that the sequential area was not very effective. This

will cause the threshold to be changed. From our observation

on enterprise workloads, over a long period of time, sequential

writes tend to access a similar number of pages, either a

handful (around 2 pages) or a large number (about 32 pages).

Thus, if the threshold is very low, ADAPT will increase it

to a large value. Otherwise, the threshold will be decreased.

This simple adjustment is quite easy to implement. From our

experiments, however, we saw that a latency might be needed

to gradually adapt to a specific workload.

Algorithm 1 shows main steps in adjusting the log space.

The adjustment is activated every INTERVAL requests (line
2 to 5). The impact of the interval length will be discussed

in Section 4. We check δ first at line 8. If it is not positive,
we will check ϕ at line 14. The partitions are then adjusted

as described above. A victim block is picked from one area

and merged with its data blocks (line 9 to 10 or line 15 to

16). A free block will be allocated from the free block pool

to replenish the other area (line 11 to 12 or line 17 to 18).

The way to select a victim in the random area is the same as

a common merge procedure. ADAPT organizes the random

area as a FIFO queue like FAST and FASTer, and the head

will be the victim each time (line 9). For the sequential area,

however, it is better to find a block that will make a full merge

or partial merge, which is computed by the function at line 15.

Note that our adaptation is different from previous

works [19] [10]. They adapt by changing the degree of

associativity between the random log space and the data space.

In other words, a log block may be changed from being

shared by many data blocks to being bound to one. ADAPT’s

adaptivity focuses on the partitioning of log space to service

either type of write request efficiently. ADAPT also differs

from WAFTL whose adaptation is in the transfer of data from

the buffer zone to either the page or block mapping areas of

the data space.

C. Predictive Transfers

The second chance scheme is the main feature of FASTer.

FASTer gives valid data in the victim log block a second

chance thereby preventing premature merges. With the sec-

ond chance scheme, valid data from the head block of the

random area will be moved to the block at the rear of the

queue. FASTer performs well for OLTP systems because

they frequently access little data from some very hot logical

pages and not too many data would be left in the victim log

block for movement. For other classes of workloads, however,

such movements seem wasteful. While the second chance

scheme can reduce the number of erasures, it may significantly

increase the amount of data copying. Table II shows typical

latencies of write and erasure of NAND flash [6]. It can be

deduced that moving five pages will reverse the gain of an

avoidance of an erasure. This is especially detrimental if a

page given a second chance turn out not to be accessed during

the time it is in the log space. This leads to the idea that if we

can predict the likelihood whether a page in the random area

will be used, we can make a better decision on whether to

delay merging this page or not. In general, a page at the front

of the random area that is likely to be accessed again should

be given a second chance in a merge process. Otherwise, if it

is unlikely to be updated in the near future, then it should be

directly merged.
TABLE II

LATENCIES OF LARGE-BLOCK SLC NAND FLASH

Read Write Erase

130.9 μs 405.9 μs 2 ms
(2KB) (2KB) (128KB)

As with most forms of prediction, the principle of temporal

locality can be applied here. Particularly, a page that has been

written recently is most likely to be updated again. We utilize

the historical write information of a page to predict its future

access possibility. Hence, on deciding if a page should be

given a second chance, we shall examine whether its data were

recently updated.

The data structure for prediction of ADAPT is the historical
access table (HAT). HAT records a history of recent writes to
logical pages at runtime. It is a hashed queue maintained in

RAM. The key used for hashing is the logical base address

in a write request, i.e., the concatenation of the logical block

and page numbers. Each entry consists of the key and the

number of pages that was written within a historical request.

Hashing allows for queries about the existence of an entry

to be answered quickly. Entries in the HAT are updated

dynamically and managed via a queue discipline. On a coming

write request, if its logical base address and the size to be

accessed are already cached in the HAT, it will be moved to

the rear; otherwise, a new entry will be enqueued in the HAT.

If the HAT is already full, the entry at the head of the queue

(the least recent one) will be deleted to make room for the new

entry. In this way, we maintain a history of the most recent

writes for the purpose of prediction.

The overhead of HAT is not significant. It is resident in

RAM together with address mapping tables, thus having a

much shorter access latency than flash memory. The HAT does

not need to be persistently stored since access behaviors are

always changing and not correlated over a long time. The HAT

is also small. As shown in Fig. 3, each entry of the HAT has

two fields, the base page number (4 bytes), and the number

of pages accessed (2 bytes). Thus, 1KByte of RAM can hold

about 170 requests. Our experiments actually showed that a

1KByte HAT could perform well. More discussions of the size

of HAT will be given in Section 4 with various configurations.

…
…
…X

9

17

X

5

6

X

X

11 25

7

14

15X

…
…
…

5

6

X

X

11 25

7

14

15X

9

Head Rear Head Rear

(L0) (L1) (L2) (Ln�1) (L1) (L2) (Ln�1) (Ln)

Predictive Transfer

Base Page No. Size

9 1

5 2

Historical Access Table (HAT)

hit

To be merged

miss

…
…
…X

9

17

X

5

6

X

X

11 25

7

14

15X

Head Rear

(L0) (L1) (L2) (Ln�1)

…
…
…

5

6

X

X

11 25

7

14

15X

9

Head Rear

(L1) (L2) (Ln�1) (Ln)

Random Area

14 2

… …

X

X X

X

Random Area

Fig. 3. Predictive transfer with historical access table

Fig. 3 gives an instance of merging with prediction. A

rectangle is a physical block, and each has four squares for

four pages. The number in a physical page represents the

mapped logical page. An ‘X’ means invalid data that will be

skipped in merging. Suppose the random area space runs out

of free pages. A merge procedure will be performed. Firstly,

a new block (Ln) will be allocated from the free block pool,

and enqueued to the rear of the random area. In return, block

L0 will be removed and examined. In Fig. 3, there are two
valid pages in block L0, namely page 0 and page 3. Page 3
corresponds to logical page 9. Its access record exists in the

HAT, and so it is given a second chance, i.e., it will be copied

into block Ln. However, the record for page 0 (which maps to

logical page 17) cannot be found in the HAT, and it will be

merged immediately with its relevant data block.

ADAPT’s predictive transfer is different from the adaptive
merge of a recently proposed hybrid mapping FTL named
MAST [23]. MAST uses 2D-striping to access data. When a

merge has to be performed, MAST will also migrate valid log

pages to other log blocks. However, in merging or migrating

a log page, MAST will consider the logical block it is related

to. If that logical block is cold, and its total number of related

log pages is bigger than a predefined threshold, the log page

will be merged. Otherwise it will be migrated. In other words,

MAST’s criterion is the number of log pages that a logical

block is using, while ADAPT utilizes the recent access history

of the logical page of the corresponding log page.

D. Aggregated Data Movement
As we have observed in our experiments, with the workloads

from media and file servers, the victim log block to be merged

may still have a lot of valid pages. I/O requests of non-OLTP

systems may not be that small, as is shown in Section 2.

Especially in multi-tasking environments, the access to storage

may be switched to other applications frequently, thereby

leaving many log pages valid even when they are to be merged.

It is inefficient to process these pages one at a time. Therefore,

we propose an aggregated data movement scheme to solve the
problem. The example in Fig. 4 will be used to explain this

scheme. When the random area runs out of free pages, the

merge procedure will be called. Unlike before, we shall first

examine the two blocks at the head of the random area, i.e.,

L0 and L1 in Fig. 4. If the number of valid pages in L0 does
not exceed an aggregated move threshold, τ , or if both L0
and L1 exceed τ , we will just merge L0 with its relevant data
blocks using the predictive transfer described above, i.e., a

situation similar to Fig. 3. The only remaining case is when

L0 exceeds τ , but L1 does not. Then we will instead merge
L1, but move L0 to the back of the log space, just ahead of
the newly allocated block that is resulted from the merging of

L1, as shown in Fig. 4.

…
…
…

13

9

17

5

6

X

X

11 25

7

14

15X

…
…
…

11 25

7

14

15X

Head Rear

(L0)(L1) (L2) (Ln�1) (L2) (Ln�1) (Ln)

Aggregated Movement (� =�3)

18

13

9

17

(L0)

18

To be merged

Head Rear

…
…
…

5

6

X

X

11 25

7

14

15X

(L1) (L2) (Ln�1)

13

9

17

(L0)

18

Headad Rear

13

9

17

…
…
…

11 25

7

14

15X

Head Rear

(L0)(L2) (Ln�1) (Ln)

18

Random Area

X

X X

X

Random Area

Fig. 4. Aggregated data movement

Here we only consider two blocks at the front of random

area. It is because scanning too many blocks will cause

performance degradation. Another reason is that we do not

want to change too much the FIFO manner of random area.

…
…
…

X

X

X

X

11 25

X

…
…
…

11 25

X

Rear

(L1) (L2) (Ln�1) (L2) (Ln�1) (Lx)

X

9

17

(L0)

X

Head Rear

X

9

17

(L0)

X

Head

To be reclaimed

Newly allocated

…
…
…

X

X

X

X

11 25

X

(L1) (L2) (Ln�1)

X

9

17

(L0)

X

Head Rear

…
…
…

11 25

X

Rear

(L2) (Ln�1) (Lx)

X

9

17

(L0)

X

Head

Random Area

X

X

X

X

Random Area

Fig. 5. Early reuse of log blocks

Now that most pages in a log block can be valid, it is also

possible that all pages in a block become invalid even though

it has not reached the head. FAST and FASTer leave such

blocks there until they are merged. To merge a block without

valid pages is trivial: erase it and allocate a clean one.

Unlike previous hybrid mapping, ADAPT proposes to early
reuse the space of blocks that are full of invalid pages. Note

that each log block’s number of valid pages is recorded. If this

number of a block decreases to zero, ADAPT will immediately

remove it from log space and allocate another clean one to the

random area. Fig. 5 gives an example. L1 is detached and Lx is

appended to bring in more free space. The performance then

benefits from the early reuse of log blocks (ERL), because

merging the current head like L0 in Fig. 5 can be delayed
since free space has been made by Lx. Yet the time for blocks

behind L1 to be merged is not affected by the removal of
L1. Take, for example, L2, which would be merged when two
blocks that are allocated for merging L0 and L1 are exhausted
at the rear. Now it only waits for L0’s replenishing block to
be used, but Lx has been introduced for L1. Thus, L2 still has
to wait for two blocks’ exhaustion to be merged. However,

the effect of ERL cannot be very significant. The first reason

is that switch among multi-tasks will scatter data across log

space and there is little chance to find a block without any

valid data. Secondly, one log block of pages help marginally

to satisfy continuous allocation requests.

To support ADAPT’s aggregated data movement and ERL

modules, we need to know the number of valid pages in each

log block. We assume that this is also stored in a table in

RAM. It is possible to store this information in the spare area

of blocks, but the access latency will be longer. The space

requirement for such a table is also comparatively low. A block

typically comprises of 64 pages, and one byte is sufficient

to store the total number of valid pages. Since log blocks

typically take up 3% of the overall capacity, an xGBytes flash
SSD with the standard 128KBytes large block configuration,

will require a total of 0.24xKBytes of RAM to store the per-

block valid page counts. A 64GBytes SSD, for instance, will

require a table of less than 16KBytes. This is quite small

compared to the main block mapping table which is about

2MBytes (assuming each entry has a 3-byte physical block

number and one byte for mapping status).

The ADAPT FTL scheme that we propose consists of the

online adaptive partitioning of log space, the predictive trans-

fer, the aggregated data movement, and ERL described above.

We shall now give more details about the implementation of

ADAPT, especially during the full merge to make decisions.

E. Merge or Move Decision Procedure

Algorithm 2 outlines the decision making procedure that is

executed in the merge procedure in ADAPT. It first locates

the victim log block to be merged, the new head and rear

of random area, as well as the numbers of valid pages of the

victim and the head block (line 2 to line 6). At line 7, it checks

whether aggregated movement needs to be performed. If so,

it will append the block to the rear of the random area (line

9), set the corresponding flag (line 8), and attempt to merge

the next block to create the space (line 10 to 11).

If the condition for aggregated movement is not met, each

valid page of the log block will be checked (line 14 to 28). At

line 19, the HAT is queried to see whether the page has been

Algorithm 2: Merge decision procedure in ADAPT
1 begin
2 victim := GetHeadofRandArea(void);
3 head log blk := RenewRandAreaHead(void);
4 rear log blk := GetRearofRandArea(void);
5 vp no vic := GetValidPageNo(victim);
6 vp no hd := GetValidPageNo(head log blk);
7 if ((vp no vic ≥ τ) && (vp no hd < τ)) then
8 AG MOV := true;
9 Insert(rear log blk, victim);

10 new head := RenewRandAreaHead(void);
11 MergeBlock(head log blk, AG MOV);
12 return;
13 end
14 else
15 page no := 0;
16 while (page no < BLOCK SIZE) do
17 state := GetPageState(victim, page no);
18 if (state == VALID) then
19 f lag := IsHATHit(victim, page no);
20 if (f lag == true) then
21 MoveData(victim, page no,

rear log blk);
22 end
23 else
24 MergePage(victim, page no);
25 end
26 end
27 page no++;
28 end
29 end
30 return;
31 end

accessed recently. If so, it will be moved to the block at the

rear (line 21). Otherwise, it will be merged with corresponding

data block (line 24).

Note that in the implementation, we have two levels of

merges, one at the block level (line 11) and another at the page

level (line 24). This adds flexibility to resource management

at runtime.

IV. EXPERIMENTS

A. Configurations and Assumptions

In this section we will evaluate the effectiveness of ADAPT

using a number of workloads. The experiments were con-

ducted using the FlashSim [9] simulator. We implemented

FASTer, DFTL [4], WAFTL and ADAPT in FlashSim for

comparison. DFTL is a demand-based page mapping scheme.

All the parameters of the NAND flash, including the latencies

of read, write and erasure which are shown in Table II, were

obtained from [6].

To assess ADAPT’s performance on various workloads, we

utilized 10 traces from three sources. SPC1 is a trace that was

collected at a large financial institution [20]. Another trace is a

typical OLTP trace from the TPC-C database benchmark [24],

TPC-C 20. The other traces are the MSR-series from Mi-

crosoft’s data centers [18]. The I/O characteristics of these

traces have been presented in Table I. We believe these traces

are representative of various workload scenarios. The number

of write requests in these traces is at least a million. We did

not use other shorter traces found in some previous works.

There are also several assumptions in our experiments.

Firstly, as with earlier works [15], we assume that the FTL has

sufficient DRAM buffer to hold all mapping tables required by

FASTer. DFTL and WAFTL were configured to have the same

capacity of RAM as FASTer. ADAPT needs less RAM space

than FASTer for mapping tables because more log blocks are

managed using block mapping for sequential writes. Secondly,

the traces used were collected from different machines. There-

fore, we had to assigned a capacity configuration to each one

based on their access patterns and lengths so that they are of

more or less the same scale.

We evaluated each scheme by the elapsed time to complete

the simulation in FlashSim, together with counts of write

and erasure. FlashSim has a module that accumulates the

time caused by reads, writes and erasures as well as bus

competitions on the chip. However, because the absolute value

varies significantly with each trace, we chose to present the

results in a normalized form. For ADAPT, the HAT size was

set to 1KB and the aggregated move threshold τ was 56 by
default. The length of the interval to measure δ and ϕ was

4000 write requests. There will be more discussions about the

values of τ , δ and ϕ later. As with previous works, log space
was set to be 3% of the overall data capacity [13][15]. The

buffer zone of WAFTL also took up 3% of data capacity as

originally proposed [25]. Since FAST used one block [13] and

LAST used 1/16 of the log space [14] for the sequential area,

the lower and upper limits of ADAPT’s dynamic sequential

area were one block and 1/16 of all log blocks by default,

respectively.

0.5

0.75

1

1.25

1.5

DFTL WAFTL ADAPT

Trace

Elapsed Time (normalized
against FASTer)

Fig. 6. Normalized performance (elapsed time)

B. Performance Evaluation

Fig. 6 shows the elapsed time for simulating each trace

under DFTL, WAFTL and our proposed ADAPT, normalized

against that of FASTer. Fig. 7 and Fig. 8 show the erase and

0

0.2

0.4

0.6

0.8

1

1.2

WAFTL ADAPT

Trace

Erase count (normalized
against FASTer)

Fig. 7. Normalized erasure counts

0

0.2

0.4

0.6

0.8

1

1.2

WAFTL

ADAPT

Trace

Write count (normalized
against FASTer)

Fig. 8. Normalized write counts

write counts, respectively, of WAFTL and ADAPT normalized

against those of FASTer. FASTer, WAFTL and ADAPT com-

bine page mapping and block mapping in a similar way, and

utilize parts of flash blocks for buffering. On the other hand,

DFTL does page-level mapping, and its overheads include

loading and evicting mapping between flash and RAM. Thus

our comparisons using write and erase counts exclude DFTL.

The rightmost bars in the three figures represent the sum of

ten traces’ results normalized against the total for FASTer.

Let us first compare ADAPT with FASTer and WAFTL since

they share similar designs on flash management. It is evident

from Fig. 6 that ADAPT outperforms them, consuming 35.4%

less time than FASTer at best for the SPC1 workload, and

23.5% less than WAFTL for MSR-rsrch 0 workload. In all,

ADAPT is 20.7% and 15.3% on average faster than FASTer

and WAFTL respectively.

There is an interesting phenomenon in the case of the TPC-

C 20 trace. FASTer was developed for OLTP applications.

Even so, from Fig. 6, we can see that for the TPC-C 20

trace, ADAPT is still marginally better than FASTer. Since

I/O requests are predominantly random and small in this

OLTP workload, with access severely skewed, there is little

opportunity for ADAPT’s mechanisms to exact its maximum

impact.

Fig. 7 and Fig. 8 are the results for write and erase counts,

respectively. From the two figures we can see that in every

trace, ADAPT performs less writes and erasures than FASTer

and WAFTL. However, there is something interesting to note

in the results. In Fig. 7 we can see that for MSR-mds 0,

FASTer needs four times more erasures than ADAPT, but the

results in Fig. 6 show FASTer is merely 13.9% slower than

ADAPT. This is because the performance is mainly dominated

by the number of write operations at runtime. For MSR-mds 0

in Fig. 8, ADAPT has only 7.4% less writes than FASTer.

Consequently, the overall improvement of performance is not

as significant as the reduction on erase counts would suggest.

The situation is also the same for WAFTL and ADAPT

executing MSR-ts 0. WAFTL has less erasures, but slightly

more writes making it worse than ADAPT. Moveover, WAFTL

was designed to flush all data in the buffer zone because it

wants to take advantage of the integration of logical blocks

that are buffered. However, to move all data is not trivial, and

it will take too many writes and erasures. On the other hand,

ADAPT attempts to leave data in the buffer for a longer time

to avoid unnecessary movements.

We also implemented a state-of-the-art page mapping

scheme. Since lazyFTL was said to have a similar performance

to DFTL [17], we have selected DFTL for comparison. The

results are also presented in Fig. 6, normalized against those

of FASTer. From the figure, we can see ADAPT is faster

than DFTL by as much as 44.2% for the case of MSR-prn 0.

Unlike FASTer or WAFTL that considers characteristics of

one or more types of workload, DFTL merely loads page-

mapping entries to RAM on demand, and handles sequential

and random writes in the same way. For MSR-prn 0, 9.46% of

its requests would write more than 64KB (32 pages) at a time.

ADAPT could respond well to such access patterns. However,

these continual large writes from multi-tasks would cause

DFTL to reclaim blocks frequently for clean pages as well

as load and evict mapping entries, thereby badly degrading

overall performance.

TABLE III
PREDICTION HIT RATES AND AGGREGATED MOVES

Trace Prediction Hit Rate Aggregated Moves

SPC1 79.50% 132
TPC-C 20 100.00% 0
MSR-hm 0 95.68% 233561
MSR-mds 0 96.49% 1727
MSR-prn 0 99.93% 124608
MSR-prxy 0 99.72% 8323
MSR-rsrch 0 98.75% 2050
MSR-stg 0 93.24% 1045
MSR-ts 0 95.16% 1165
MSR-web 0 96.99% 5408

Table III shows the prediction hit rates and the number of

aggregated move for each trace. The hit rate is high for most

traces. For SPC1, even with a relatively lower hit rate, good

performance can still be achieved by the cooperation of all

modules in ADAPT. From Table III, we can also see there is

no aggregated movement for the OLTP TPC-C 20 trace, and

the prediction hit rate is 100%. This agrees with our earlier

analysis in Section 2.

Aggregated movement and predictive transfer affect each

other. If an aggregated move is performed on a block, then

its pages will stay longer in the log space. This will result in

the block at the rear of the random area having many valid

pages. If the heuristics are correct, many of the pages will

be accessed again soon, leaving the remaining pages to be

processed by predictive transfer when this block again reaches

the head of the random area. Therefore, aggregated movement

and predictive transfer complement each other.

C. Effects of Log Space Capacity

The impact of the log space capacity was also investigated.

We performed experiments where the log space was provi-

sioned as 3%, 5% and 10% of the overall capacity. The results

are shown in Fig. 9. We normalize the results for provisioning

5% and 10% of space as log space against that for 3%. It can

be seen that generally performance improves with larger log

spaces. However, the extent of effect varies. For some traces,

the impact on performance is significant, but for others, such as

TPC-C 20, it is not. We believe this is particularly noteworthy

for SSD users to utilize resources.

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05
5% 10%

Trace

Elapsed Time (normalized
against 3%)

Fig. 9. Effects of different log space capacities

D. Effects of Log Space Partitioning

We also did experiments to verify the effects of adaptively

adjusting the partitioning of the log space. In Fig. 10, ADAPT

and ADAPT-sw had the same configuration including predic-

tive transfer and aggregated movement except that ADAPT-

sw used only one log block for sequential writes, which is

the same as FAST and FASTer. All results are normalized to

those of ADAPT-sw. From Fig. 10 we can see ADAPT can

be faster by as much as 31.9% in the case of SPC1. However,

TPC-C 20 is still special because it has almost no sequential

writes as shown in Table I.

Fig. 11 shows the result for different thresholds used in the

identification of sequential writes. We used three configura-

tions. The first, ADAPT-2, has a threshold of 2 pages (4KB)

which is the same as LAST. The threshold of the second,

ADAPT-32, is 32 pages (64KB). The last one is the full

version of ADAPT that adaptively adjust the threshold based

on δ . The lower and upper bounds of ADAPT are set to 2
and 32, respectively. Results of the ADAPT-32 and ADAPT

are normalized against those of ADAPT-2 and presented in

Fig. 11. From Fig. 11 we can see that ADAPT is faster

than ADAPT-2 and ADAPT-32 most of the time. But with

some workload like MSR-ts 0, ADAPT had to spend 12.7%

more time to finish the trace. We analyzed MSR-ts 0, and

0

0.2

0.4

0.6

0.8

1

1.2

ADAPT

Elapsed Time (normalized
against ADAPT-sw)

Trace

Fig. 10. Performance impact of log space partitioning

0

0.2

0.4

0.6

0.8

1

1.2

1.4

ADAPT-32 ADAPT

Elapsed Time (normalized
against ADAPT-2)

Trace

Fig. 11. Impact of different sequential write identification thresholds

found that the feedback in current interval does not accurately

reflect the access behaviors. The results in next subsection will

address this by showing how performance can be significantly

improved with longer intervals.

5000

7000

9000

11000

13000

15000

17000

2000 3000 4000 5000 6000

SPC1

TPC-C_20

MSR-hm_0

MSR-prn_0

MSR-prxy_0

Elapsed time
(unit: second)

Interval length
(unit: request)

Fig. 12. The effects of the interval length (A)

E. Effects of the Interval Length on Adaptation

ADAPT needs to observe and calculate δ and ϕ in an

interval. By default, we used an interval of 4000 requests

in the experiments. We also experimented with intervals of

2000, 3000, 5000 and 6000 requests. Their results are shown

in Fig. 12 and Fig. 13. From the results, we can see that in most

cases, the length of the interval hardly affects the performance.

For MSR-stg 0 and MSR-ts 0, however, their results may

fluctuate a little more. That means current configuration is

too short to reflect the online behaviors. By prolonging the

1500

2500

3500

4500

5500

2000 3000 4000 5000 6000

MSR-mds_0

MSR-rsrch_0

MSR-stg_0

MSR-ts_0

MSR-web_0

Elapsed time
(unit: second)

Interval length
(unit: request)

Fig. 13. The effects of the interval length (B)

interval, better performance can be achieved, as shown in

Fig. 13. This agrees with results in Fig. 11.

F. Effects of HAT Size

The HAT is an important data structure for ADAPT. Fig. 14

presents four results of each trace when the size of HAT was

configured to be 512, 1024 (1K), 1,536 and 2,048 (2K) bytes.

The results for 512 bytes are used to normalize the other cases.

It can be concluded from these results that the optimal size

of the HAT depends on the workload. Recall that the HAT is

used to record the recent write history which is then used for

prediction. Obviously, keeping too long or too short a history

may result in wrong predictions. If the HAT is too big, it would

store outdated access records, causing pages that should be

merged immediately to stay too long in log space. If the HAT

is too small, the prediction would not get a full view of the

locality, and unnecessary merges may be performed.

0.85

0.9

0.95

1

1.05

1.1

1.15

1024

1536

2048

Trace

Elapsed Time (normalized against
results with HAT size of 512B)

Fig. 14. Effects of different HAT sizes

The performance of ADAPT on TPC-C 20 trace changes

slightly with different HAT sizes. This can also be attributed

to its access patterns. Due to the skewness of the accesses in

the OLTP workload, a small HAT suffices. It therefore makes

little difference in enlarging the HAT. The results also suggest

that due to the differences in locality, the size of the HAT

should be tuned for each workload.

G. Tuning of Aggregation Threshold

The threshold τ to trigger aggregated data movement is an
important parameter in ADAPT. For ease of reading, we have

separated the results as Fig. 15, Fig. 16 and Fig. 17.

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

1.02

32 40 48 56 64

MSR-hm_0

MSR-stg_0

MSR-ts_0

MSR-web_0

Threshold

Elapsed Time (normalized against
results with threshold of 32)

Fig. 15. Performance of aggregated movement (A)

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

1.02

32 40 48 56 64

SPC1

MSR-prn_0

MSR-rsrch_0

Threshold

Elapsed Time (normalized against
results with threshold of 32)

Fig. 16. Performance of aggregated movement (B)

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

1.02

32 40 48 56 64

TPC-C_20

MSR-mds_0

MSR-prxy_0

Threshold

Elapsed Time (normalized against
results with threshold of 32)

Fig. 17. Performance of aggregated movement (C)

In accordance with [6], each block has 64 pages in our

simulations. In general, when the number of valid pages in

the block to be merged reaches the aggregated move threshold,

i.e., τ , the block would be moved, and the one next to it will
be merged instead. If τ equals to 32, aggregated move will be
performed if 50% or more pages of the block are valid. If it is

64, all the pages in a block will have to be valid in order for

an aggregated move to be activated. Fig. 15, 16 and 17 show

the impacts of various values of τ on performance.

We know that TPC-C 20 has no aggregated movements

from Table III. For other traces, we can see from the figures

that for some of them, including MSR-ts 0, MSR-web 0,

MSR hm, and MSR-prn 0, the results are better with a higher

τ . For others, such as SPC1, MSR-rsrch 0, MSR-mds 0 and
MSR-stg 0, τ does not affect performance. However, for

the MSR-prxy 0 trace, performance degraded with larger τ .
Again, we attribute this to the access patterns of the traces.

Traces in the first category generally have more valid pages

in the log block to be merged than others. Hence, a higher τ
improves the performance. For traces in the second category,

the number of valid pages is moderate and stays fairly constant

throughout the execution, and different thresholds showed little

impact.

We analyzed MSR-prxy 0, and found out more about its

access behaviors. As discussed in Section 2, requests with 2

pages (4KB) are considered to be small. But in MSR-prxy 0,

there is a huge number of requests that are even smaller. 77.8%

of the requests in MSR-prxy 0 only write to one page and

data in these pages are frequently updated and scattered. Thus

the log block to be merged may have dozens of valid pages.

However, a higher τ gives aggregated movement little chance
to show off its advantage, leaving valid pages to be processed

by predictive transfer. A larger log window would absorb more

small requests. From Fig. 9 we can see it is MSR-prxy 0 that

improves the most with larger log space.

H. Impact of Early Reuse of Log Blocks

We also investigated the impact of the early reuse of log

blocks. Experiments were conducted with the ERL module

enabled or disabled, respectively. When it is disabled, if a

log block has no valid data at runtime, it would be left in

the log space until it reaches the head of the log space.

Fig. 18 shows the results. ADAPT-nd is the configuration

without ERL module. The results agree with our expectation

in Section 3 that ERL may help marginally. Compared to

ADAPT-nd, ADAPT could require less time to finish each

trace, at most 4.3% with the case of MSR-web 0.

0.9

0.92

0.94

0.96

0.98

1

1.02

ADAPT

Elapsed Time (normalized
against ADAPT-nd)

Trace

Fig. 18. The impact of early reuse of log blocks

V. RELATED WORKS

Page mapping and block mapping are two basic mapping

schemes. The mapping table used for page mapping is signif-

icantly larger. To alleviate this issue, DFTL [4] was proposed

by caching parts of entire table that are in use in RAM.

This RAM space can be managed using Least-Recently-Used

(LRU) eviction. DFTL achieved better performance compared

to FAST and LAST. The latest LazyFTL [17] is similar in

design and performance as DFTL, but its focus is on data

reliability.

Block mapping lacks flexibility due to its coarse granularity.

Write requests to a page will cause block-level copying

because of out-of-place updating. Recently, an improved block

mapping scheme, DAC [21], was proposed. It is similar to

DFTL, and caches mapping entries and pages on-demand in

RAM in two levels.

Mapping schemes based on other granularities have also

been developed. One example is a set-based mapping strat-

egy [3]. Each set contains multiple blocks. Logical sets are

mapped to physical sets with another table used to store the

mapping of logical block to physical block in a set. There are

also other schemes that try to strike a balance between page

mapping and block mapping, such as Janus-FTL [11].

There are many hybrid mapping schemes. The log space

can be viewed as a cache of data blocks. FAST, FASTer and

ADAPT are fully associative, and BAST is block associative.

More complicated N-way associative schemes of log blocks

have also been designed. Physical blocks are grouped together,

and they are associated to a set of log blocks where the size of

the set may be dynamically changed at runtime [19][10]. Other

mapping schemes, such as the superblock [7] and KAST [2],

give more considerations to garbage collection and real-time

systems, respectively.

Recently, content-aware FTLs that attempt to reduce du-

plicate writes have been proposed too. Examples include

CAFTL [1] and CA-SSD [5]. They can potentially benefit from

improvements in content detection and reduction.

VI. CONCLUSION

Address mapping of the flash translation layer is central

to the performance of flash-based devices. In this paper,

we proposed Aggregated Data movement Augmenting Pre-
dictive Transfers (ADAPT), a hybrid mapping FTL scheme
that adjusts to various workloads by exploiting their access

behaviors and temporal locality. ADAPT can handle both

sequential and random writes efficiently by dynamically tuning

the partitioning of the two areas of log space that process the

respective types of writes. To do so, ADAPT collects statistics

on how log blocks in the sequential and random area are

used, and then utilizes these statistics to adjust its parameters.

ADAPT also explores the locality to reduce unnecessary data

movements in full merges. It employs a prediction mechanism

to decide whether a log page should be merged, or given

a second chance. In addition, ADAPT records the number

of valid pages in each random log block at runtime. If a

block to be merged has more than a certain threshold of

valid pages, the entire block would be kept in the log space.

However, if a block is found to have no valid page, it will

be immediately reclaimed and replaced even if it has not

got its turn for merging. Our experiments show that ADAPT

can outperform FASTer by as much as 35.4% with a modest

additional RAM space requirement of less than 16KBytes for a

64GBytes SSD. ADAPT is also faster than DFTL and WAFTL

by as much as 44.2% and 23.5% respectively. We believe by

being adaptive to various workloads, ADAPT will enhance the

general performance of SSDs.

REFERENCES

[1] F. Chen, T. Luo, and X. Zhang, “CAFTL: a content-aware flash
translation layer enhancing the lifespan of flash memory based
solid state drives,” in Proceedings of the 9th USENIX conference
on File and stroage technologies, ser. FAST’11. Berkeley, CA,
USA: USENIX Association, 2011, pp. 6–6. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1960475.1960481

[2] H. Cho, D. Shin, and Y. I. Eom, “KAST: K-associative sector translation
for NAND flash memory in real-time systems,” in Proceedings of
the Conference on Design, Automation and Test in Europe, ser.
DATE ’09. 3001 Leuven, Belgium, Belgium: European Design
and Automation Association, 2009, pp. 507–512. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1874620.1874745

[3] Y.-S. Chu, J.-W. Hsieh, Y.-H. Chang, and T.-W. Kuo, “A set-
based mapping strategy for flash-memory reliability enhancement,” in
Proceedings of the Conference on Design, Automation and Test in
Europe, ser. DATE ’09. 3001 Leuven, Belgium, Belgium: European
Design and Automation Association, 2009, pp. 405–410. [Online].
Available: http://portal.acm.org/citation.cfm?id=1874620.1874717

[4] A. Gupta, Y. Kim, and B. Urgaonkar, “DFTL: a flash translation layer
employing demand-based selective caching of page-level address map-
pings,” in ASPLOS ’09: Proceeding of the 14th international conference
on Architectural support for programming languages and operating
systems. New York, NY, USA: ACM, 2009, pp. 229–240.

[5] A. Gupta, R. Pisolkar, B. Urgaonkar, and A. Sivasubramaniam,
“Leveraging value locality in optimizing NAND flash-based SSDs,”
in Proceedings of the 9th USENIX conference on File and stroage
technologies, ser. FAST’11. Berkeley, CA, USA: USENIX Association,
2011, pp. 7–7. [Online]. Available: http://dl.acm.org/citation.cfm?id=
1960475.1960482

[6] M. T. Inc., “Small-block vs. large-block nand flash devices. technical
report (tn-29-07): Small-block vs. large-block NAND flash devices.”
Tech. Rep., May 2007.

[7] J.-U. Kang, H. Jo, J.-S. Kim, and J. Lee, “A superblock-based flash
translation layer for NAND flash memory,” in EMSOFT ’06: Proceed-
ings of the 6th ACM & IEEE International conference on Embedded
software. New York, NY, USA: ACM, 2006, pp. 161–170.

[8] J. Kim, J. M. Kim, S. H. Noh, S. L. Min, and Y. Cho, “A space-efficient
flash translation layer for compactflash systems,” IEEE Transactions on
Consumer Electronics, vol. 48, pp. 366–375, 2002.

[9] Y. Kim, B. Tauras, A. Gupta, and B. Urgaonkar, “Flashsim: A simulator
for NAND flash-based solid-state drives,” in SIMUL ’09: Proceedings
of the 2009 First International Conference on Advances in System
Simulation. Washington, DC, USA: IEEE Computer Society, 2009,
pp. 125–131.

[10] D. Koo and D. Shin, “Adaptive log block mapping scheme for log buffer-
based FTL (flash translation layer),” in IWSSPS 2009: International
Workshop on Software Support for Portable Storage, 2009.

[11] H. Kwon, E. Kim, J. Choi, D. Lee, and S. H. Noh, “Janus-
FTL: finding the optimal point on the spectrum between page
and block mapping schemes,” in Proceedings of the tenth ACM
international conference on Embedded software, ser. EMSOFT ’10.
New York, NY, USA: ACM, 2010, pp. 169–178. [Online]. Available:
http://doi.acm.org/10.1145/1879021.1879044

[12] S.-W. Lee, B. Moon, and C. Park, “Advances in flash memory SSD
technology for enterprise database applications,” in Proceedings of the
35th SIGMOD international conference on Management of data, ser.
SIGMOD ’09. New York, NY, USA: ACM, 2009, pp. 863–870.
[Online]. Available: http://doi.acm.org/10.1145/1559845.1559937

[13] S.-W. Lee, D.-J. Park, T.-S. Chung, D.-H. Lee, S. Park, and H.-J. Song,
“A log buffer-based flash translation layer using fully-associative sector
translation,” ACM Trans. Embed. Comput. Syst., vol. 6, no. 3, p. 18,
2007.

[14] S. Lee, D. Shin, Y.-J. Kim, and J. Kim, “LAST: locality-aware sector
translation for NAND flash memory-based storage systems,” SIGOPS
Oper. Syst. Rev., vol. 42, no. 6, pp. 36–42, 2008.

[15] S.-P. Lim, S.-W. Lee, and B. Moon, “FASTer FTL for enterprise-class
flash memory SSDs,” Storage Network Architecture and Parallel I/Os,
IEEE International Workshop on, vol. 0, pp. 3–12, 2010.

[16] S. E. C. Ltd, “NAND flash spare area assignment standard,” Tech. Rep.,
April 2005.

[17] D. Ma, J. Feng, and G. Li, “LazyFTL: a page-level flash translation
layer optimized for NAND flash memory,” in Proceedings of the 2011
international conference on Management of data, ser. SIGMOD ’11.
New York, NY, USA: ACM, 2011, pp. 1–12. [Online]. Available:
http://doi.acm.org/10.1145/1989323.1989325

[18] D. Narayanan, A. Donnelly, and A. Rowstron, “Write off-loading:
Practical power management for enterprise storage,” Trans. Storage,
vol. 4, pp. 10:1–10:23, November 2008. [Online]. Available: http:
//doi.acm.org/10.1145/1416944.1416949

[19] C. Park, W. Cheon, J. Kang, K. Roh, W. Cho, and J.-S. Kim, “A
reconfigurable FTL (flash translation layer) architecture for NAND flash-
based applications,” ACM Trans. Embed. Comput. Syst., vol. 7, no. 4,
pp. 1–23, 2008.

[20] S. Performance Council, “Storage Performance Council (SPC) storage
traces,” http://traces.cs.umass.edu/, December 2009. [Online]. Available:
http://traces.cs.umass.edu/

[21] Z. Qin, Y. Wang, D. Liu, and Z. Shao, “Demand-based block-level
address mapping in large-scale nand flash storage systems,” in
Proceedings of the eighth IEEE/ACM/IFIP international conference on
Hardware/software codesign and system synthesis, ser. CODES/ISSS
’10. New York, NY, USA: ACM, 2010, pp. 173–182. [Online].
Available: http://doi.acm.org/10.1145/1878961.1878991

[22] M. Sanvido, F. R. Chu, A. Kulkarni, and R. Selinger, “NAND flash
memory and its role in storage architectures,” vol. 96, no. 11, pp. 1864–
1874, Nov. 2008.

[23] G. Shim, Y. Park, and K. H. Park, “A hybrid flash translation layer
with adaptive merge for SSDs,” Trans. Storage, vol. 6, no. 4, pp.
15:1–15:27, Jun. 2011. [Online]. Available: http://doi.acm.org/10.1145/
1970338.1970339

[24] B. trace distribution center, “TPC-C database benchmark traces,”
http://tds.cs.byu.edu/tds/, 2001. [Online]. Available: http://tds.cs.byu.
edu/tds/

[25] Q. Wei, B. Gong, S. Pathak, B. Veeravalli, L. Zeng, and K. Okada,
“WAFTL: A workload adaptive flash translation layer with data parti-
tion,” Mass Storage Systems and Technologies, IEEE / NASA Goddard
Conference on, vol. 0, pp. 1–12, 2011.

