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Abstract—Due to its better scalability, Key-Value (KV) store
has superseded traditional relational databases for many appli-
cations, such as data deduplication, on-line multi-player gaming,
and Internet services like Amazon and Facebook. The KV store
efficiently supports two operations (key lookup and KV pair
insertion) through an index structure that maps keys to their
associated values. The KV store is also commonly used to
implement the chunk index in data deduplication, where a chunk
ID (SHA1 value computed based on the chunk’s content) is a
key and its associative chunk metadata (e.g., physical storage
location, stream ID) is the value. For a deduplication system,
typically the number of chunks is too large to store the KV store
solely in RAM. Thus, the KV store maintains a large (hash-table
based) index structure in RAM to index all KV pairs stored on
secondary storage. Hence, its available RAM space limits the
maximum number of KV pairs that can be stored. Moving the
index data structure from RAM to flash can possibly overcome
the space limitation.

In this paper, we propose efficient KV store on flash with
a Bloom Filter based index structure called BloomStore. The
unique features of the BloomStore include (1) no index structure
is required to be stored in RAM so that a small RAM space can
support a large number of KV pairs and (2) both index structure
and KV pairs are stored compactly on flash memory to improve
its performance. Compared with the state-of-the-art KV store
designs, the BloomStore achieves a significantly better key lookup
performance and roughly the same insertion performance with
multiple times less RAM usage based on our experiments with
deduplication workloads.

I. INTRODUCTION

The key-value (KV) store contains a large number of KV
pairs and provides two simple operations: key lookup and
KV pair insertion. These two operations heavily depend on
an internal index structure that maps a key to its associated
value. Recently, many applications, such as data deduplication
[1], on-line multi-player gaming, and Internet services like
Amazon and Facebook [2], etc., have preferred to use the KV
store, rather than the traditional relational database, because of
its simplicity and better scalability. In order to maximize the
KV store performance, we need to carefully provide efficient
index and KV pair accesses based on the characteristics of the
underlying storage media containing the index structure and
the KV pairs.

The performance of the KV store often governs the per-
formance of its applications. The KV store is commonly
used to implement the chunk index in data deduplication,
where a chunk ID (SHA1 value computed based on the
chunk’s content) is the key and its associative chunk metadata
(e.g., physical storage location, stream ID, etc.) is the value.
Chunk lookup searches a given chunk ID from the KV store,
while chunk insertion adds a new chunk ID and its metadata
to the KV store. Zhu et al. [1] pointed out that the key
performance bottleneck for (in-line) data deduplication is its
key (chunk) lookup throughput. In addition, applications that
detect redundant data transfers across WANs and subsequently
send their associated references are recently demanding key
lookup throughputs of no less than 10, 000 operations per
second [3].

To design a high-throughput KV store (> 10, 000 key
lookups/second), a typical method is to keep its index structure
in RAM to rapidly map each key to its KV pair location on
the secondary storage, such as flash or HDD [4]. Also, many
KV store designs rely on an in-RAM large-sized hash table
to index all KV pairs stored on the flash. Nevertheless, the
downside of this approach is that the maximum number of
KV pairs in the KV store can be constrained by the available
RAM space (scalability constraint).

Provided the high throughput and low access latency re-
quirements, the most cost-effective way to scale up the KV
store is to move part of its index structure into the secondary
storage. Recently, flash-memory (particularly in the form of
SSD) has become one of the popular storage alternatives to the
traditional HDD. The flash-memory could persistently store
the index and deliver an access speed 100–1, 000 times faster
than the HDD. Compared to RAM (DRAM), however, the
flash access speed is 100 times slower. As for the unit price
(in terms of $/GB), flash-memory is 10 times cheaper than
RAM, while it is 20 times more expensive than HDDs, thus,
positioning it in the middle of these two storage devices. In
our design, we use a NAND flash-memory based SSD as
the secondary storage. Throughout the rest of this paper, for
simplicity, we refer to the SSD as flash. Accordingly, each
read/write operation on the SSD is in the unit of a flash page.978-1-4673-1747-4/12/$31.00 c© 2013 IEEE



In order to break the scalability constraint (but losing
performance benefits to some extent), the index structure (e.g.,
a large hash table) should be eventually stored in the flash-
memory instead of the RAM. However, many index structures
that involve intensive small random writes become challenging
to be stored on the flash. More specifically, storing a hash-table
based index structure on flash causes a few problems: (1) the
hash table is randomly accessed (inserted); each KV insertion
triggers an expensive random flash page write operation to
modify only one hash table entry of several bytes, which is
much smaller than the size of a flash page; (2) the hash table
is not a garbage-collection friendly data structure, spreading
inserted entries across all flash pages occupied by the hash
table; even a small portion of invalidated entries (e.g., by
update or delete) may lead to excessive in-place updates
scattering a large number of pages, which severely aggravates
flash write and garbage collection overheads; and (3) the hash
table requires a much bigger storage space, as the load factor
of an efficient hash table usually needs to be well below 50%
to keep the lookup time bounded.

In this paper, we aim at designing a flash-based KV
store architecture called BloomStore that not only assures an
extremely low amortized RAM overhead per KV pair (the
consumed RAM space divided by the total number of KV
pairs) to be less than 1 byte/key, but also achieves high
key lookup/insertion throughput. Each physical machine runs
multiple BloomStore instances, each of which is responsible
for a disjoint key range. Each BloomStore instance indexes
its own key-range partition separately with a sequence (chain)
of Bloom Filters (BFs). It associates a BF with a flash page
of KV pairs, where the BF summarizes the keys in the
flash page and has a flash pointer to the flash page. For
high lookup throughput, BloomStore reduces the maximum
number of flash page reads by key-range partitioning. For
high insertion throughput, each BloomStore instance maintains
a dedicated flash page sized KV pair buffer to temporarily
buffer inserted KV pairs. For minimal RAM usage, all other
BFs and associated KV pairs are stored on the flash. Under
two different breeds of data dedup workloads, our experiments
reveal that BloomStore outperforms the state-of-the-art KV
store designs in terms of the RAM usage and key lookup
throughput.

The rest of the paper is organized as follows. Section II
provides a detailed survey of existing works. Section III
presents the BloomStore design. Section IV gives an extensive
experimental evaluation of our BloomStore design with two
typical real workloads from data dedup applications. Section V
summarizes our work and draw conclusions.

II. RELATED WORK

MicroHash [5] is an index structure designed for memory-
constrained embedded devices. It mainly emphasized the opti-
mization of energy usage and the memory footprint, not access
latency.

Wu et al. [6] and Nath et al. [7] proposed the on-flash B-
tree and B+ tree (FlashDB) solutions, respectively. However,

they are application-specific and efficient under the following
limited conditions: (1) keys are distributed in a small numerical
range; (2) a small number of leaf-level buckets are active at
any given time; (3) access latencies are not critical.

FAWN [8] and ChunkStash [4] store a checksum and a
pointer into an index entry of an in-RAM hash table that
points to a single KV pair stored in flash. The checksum is
used to avoid (with high probability) triggering flash accesses
to compare keys for every index entry searched in the hash
table during key lookup. The amortized RAM overhead per
KV pair of each design is computed as 6 bytes/key. For these
designs that index all keys with a single hash table maintained
in RAM, the lower-bound RAM overhead is the footprint of
the flash pointers (e.g., 4 bytes/key). The KV store size in flash
is constrained by the flash pointer size and its KV pair size.
For example, the flash space of the KV store with a 4-byte
flash pointer and a 64-byte KV pair length can be 256 GB at
maximum.

In the meantime, three recent KV store designs, BufferHash
[9], SkimpyStash [10] and SILT [11], have reduced the RAM
overhead per key by efficiently placing their index structures
over the RAM and flash. We will look into these three designs
in more detail as follows.

We begin by explaining the properties of a Bloom Filter
(BF) that are widely used to devise the index structures of
many KV store designs.

Bloom Filters [12]: A BF supports space-efficient mem-
bership queries as follows: (1) a set S = {e1, e2, ..., en} of
n keys is represented by a vector v of m bits, initially all
set to 0; (2) a set of k different hash functions h1, ..., hk,
are used to set bits at h1(e), h2(e), ..., hk(e) positions for
each ei in set S; (3) to lookup a key ei, bits at positions
at h1(ei), h2(ei), ..., hk(ei) are checked; (4) if any of these
are 0, then ei is not present in the set for sure; otherwise, it
concludes that the key ei is in the set (an affirmative answer);
(5) false positive errors may exist; e.g., a key that is not in
the set is mapped to k bit positions which are already set
to 1 during insertions of other keys; and (6) a false positive
probability f is affected by the BF parameters: n, m and k,
where f is calculated as (1− ( 1

m )kn)k ≈ (1− e−kn/m)k. The
right-hand-side is minimized for k = ln(2) · mn , indicating that
an optimum k exists for every choice of m and n. The false
positive probability for the optimum k is (0.5)k = (0.6185)

m
n .

BufferHash [9]: It divides the flash space into a number
of logical partitions, as shown in Figure 1. Each partition
maintains a small in-RAM hash table (HT buffer) for the KV
pairs stored in the partition. The BufferHash basically employs
the hash tables to store its index structure and associated KV
pairs. Each hash table is implemented by using the cuckoo
hashing [13] with two hash functions that help to improve the
space utilization efficiency (e.g., to attain 50% load factor)
at the cost of more hash table lookups per key. When the
in-RAM hash table of a partition becomes full (i.e., its load
factor reaches a predefined threshold), it is written to the flash.
Subsequently, a new hash table of the same size is instantiated
in RAM for the incoming KV pair insertions. In this way,



the multiple hash tables of a partition are being chained with
the newest (chronologically) hash table residing in RAM to
accommodate newly inserted KV pairs. Suppose that there are
P partitions, and each partition on average contains C hash
tables. Then, only 1/C fraction of the entire hash tables are
kept in RAM. The BufferHash keeps a BF in RAM for each
hash table stored in either RAM on flash. In order to look
up a key in a partition, the BufferHash identifies a specific
partition where the key resides by using a hash function. Next,
it examines the chain of the BFs linked to the partition in
the reverse order of their creation times. For each of the BFs
where the key is found (note that there could be multiple BFs
that have the key), the BufferHash looks up the key from the
associated hash tables stored either in the HT buffer or on the
flash.

Figure 1. BufferHash architecture: multiple partitions, a hash table buffer
and a chain of BFs in RAM for each partition, and a chain of corresponding
hash tables in flash for each partition

However, the BufferHash consumes considerable RAM
space for the following reasons: (1) hash tables have low load
factors (50% recommended in the BufferHash design); and (2)
all the BFs for all the partitions are kept in RAM.

SkimpyStash [10]: It stores all the KV pairs in flash,
while maintaining an in-RAM hash table (called the hash
table directory) to map keys to their locations in flash, as
illustrated in Figure 2. Unlike the BufferHash, SkimpyStash
stores a flash pointer instead of the actual KV pair in the hash
table. The SkimpyStash regards the flash as an append-log. It
appends the inserted KV pairs to the log sequentially. It also
maintains the single in-RAM data buffer of a flash page size
to temporarily hold new KV pairs. When the buffer becomes
full, SkimpyStash flushes the KV pairs in the buffer to the
flash through an append operation. This has been proven to
be an efficient way to maximize the write performance of the
flash-memory [14]. To further minimize the RAM usage, it
hashes multiple keys into the same bucket in the hash table.
It then resolves any collisions with the linear chaining, where
the KV pairs in the same bucket are chained in a linked list
and stored in the flash. The in-RAM hash table consists of
a set of buckets that contains a BF and a flash pointer. Each
flash pointer points to the tail (the most recently inserted KV
pair) of the corresponding linked list. Each KV pair on the
flash contains a flash pointer pointing to its predecessor (the
previously inserted KV pair in the same bucket) in addition

to its KV pair. Each bucket also keeps a BF in RAM to
memorize the inserted keys in that bucket. This BF helps
to decide whether the searched key exists in a bucket before
blindly following the pointer to search the key from the chain
of KV pairs in the flash. The use of the BF is crucial for
the SkimpyStash design to reduce flash page reads for key
lookups. Otherwise, it has to always traverse the entire linked
list to conclude the non-existence of a searched key.

SkimpyStash may incur multiple flash page reads for a key
lookup to determine the demanded key from the chained KV
pairs. Suppose that the average chain length per bucket is l,
then each key lookup needs to have 0.5l flash page reads
on average. Considering the desirable uniformity of a key
distribution into the buckets, the chance becomes extremely
small that a series of new keys colliding with the same bucket
are stored in the same flash page. Thus, the average number
of flash page reads for each key lookup is proportional to the
number of keys hashed into a bucket.

A formula (1 + 4
average bucket length ) is provided to calcu-

late the amortized RAM overhead per key stored with the
SkimpyStash design. For an average bucket length of 10, it
pays a 1.4 byte RAM footprint for each KV pair stored in the
flash.

Figure 2. SkimpyStash architecture: a hash table directory and a single data
buffer in RAM, and linked-listed KV pairs in flash

SILT [11]: it is constituted by a series of basic KV stores,
each of which is optimized for a different purpose. KV pairs
are inserted into a write-optimized store, called LogStore,
and gradually migrated to increasingly more memory-efficient
stores. The LogStore sequentially writes the inserted KV pairs
into on-flash data log. The KV pairs are ordered by their
insertion time. The LogStore indexes the data log by an in-
RAM hash table. To improve the RAM space utilization, the
hash table is built with cuckoo hashing [13]. To make it
more compact, the hash table does not store the full key but
only a tag of the actual key. Moreover, SILT boosts the hash
table occupancy to about 93% by increasing the associativity
of the hash table (i.e., having more candidate victims that
could be “kicked out” once neither bucket is available). Each
hash table entry consumes 6 bytes, consisting of a 15-bit



tag, a single valid bit, and a 4-byte offset pointer. Once a
LogStore fills up, SILT freezes the LogStore and begins to
convert it into a more memory-efficient, static data structure,
called SortedStore. The SortedStore maintains KV pairs in
a sorted key order on flash and indexes them with a very
compact in-RAM index representation, called entropy-coded
tries. In contrast to the 6 bytes/key RAM indexing overhead
of LogStore, SortedStore achieves sub-byte range (e.g., 0.4
bytes/key) RAM indexing overhead. The entropy-coded tries,
however, does not allow insertions or deletions. Therefore, to
merge LogStore entries into the SortedStore, SILT must create
a new SortedStore. Hence, directly sorting a relatively small
LogStore and merging it into the much larger SortedStore
requires rewriting the entire SortedStore. To amortize the
cost of rewriting the entire SortedStore, SILT first converts
the LogStore to an intermediate KV store called HashStore
with higher memory efficiency (4 bytes/key RAM indexing
overhead). Once SILT accumulates a sufficient number of
HashStores, it performs merge operation in bacth mode to
incorporate these HashStores into the SortedStore. In this way,
the immutable HashStores essentially serves as the input buffer
for SortedStore. Most KV pairs are stored in SortedStore (e.g.,
> 80%) to make the average index cost per key low.

Although SILT is suitable for lookup-intensive workloads
(i.e., the major portion of workloads are key lookups), it
pays even higher insertion overhead than either BufferHash
or SkimpyStash. There are a few significant disadvantages of
SILT design, preventing it from being a suitable candidate
KV store for inline data deduplication systems. Firstly, the
SILT design involves complicated and repeated conversion and
merge operations running in backgrond. Each conversion op-
eration requires reordering KV pairs of the LogStore on flash.
Each merge operation requires sorting all merging keys and
rewriting the entire SortedStore. Both background operations
compete for a significant amount of I/O resources, making it
unable to meet the high key insertion throughput demanded
by typical in-line data deduplication systems. For example,
the middle-end EMC Inline Deduplication System [15] pro-
vides near 10 TB/hour data backup throughput, demanding
a stable key insertion rate over 300, 000 requests/second, far
beyond the 36, 000 requests/second achieved by SILT [11].
Secondly, indexing chunks using SILT would require sorting
a major fraction (e.g., > 80%) of all chunk-ids, competing
for a significantly large amount of computational resources.
Within typical real deduplication systems like EMC Inline
Deduplication Storage Systems series, there is aleady a number
of computational intensive tasks, such as chunking, garbage
collection, and even replication, running. Sorting a major frac-
tion of all chunk-ids (i.e., the keys) would add a prohibitively
expensive computational overhead for a deduplicaiton system
of billions of unique data chunks. Thirdly, SILT might fail
to work (e.g., overflowing the flash space) once the number
of update/delete operations increases beyond even a fairly
low threshold, for the following reason: each update/delete
operation to an immutable HashStore will be translated into
an insert operation to a new HashStore instance. Owing to the

significantly high merging overhead, the invoking frequency
of the merge operation has to be limited to avoid significant
foreground lookup/insert throughput degradation. Within a
certain period of time, if the number of update/delete operation
is high, more HashStore instances would be created than the
number of instances merged to the new SortedStore. Thus,
these pending-to-merge HashStore instances would eventually
overflow the flash space. On the other hand, if we allow only
a limited number of HashStores instances to be created at the
same time (e.g., 31 HashStores per SILT instance, as presented
in the paper), SILT may not be able to cope with the desired
troughput.

III. BLOOMSTORE DESIGN

Our KV store design is driven by the goal to deliver high
key lookup/insertion throughput to meet the demands of the
recent KV store applications at the minimum RAM space
usage. We use the following performance metrics to evaluate
the effectiveness of our design:

• Amortized RAM overhead per KV pair: It measures
how frugal the RAM space usage is that a KV store
design can achieve. It is defined as the consumed RAM
space (by the KV store) divided by the total number
of KV pairs in the store. This metric can be further
decomposed into two parts: (1) the amortized RAM
overhead to index the key; and (2) the amortized RAM
overhead to buffer the key in the data buffer. The rationale
behind this metric is as follows. The RAM size imposes a
big scalability challenge to the existing KV store designs.
As the growth rate of the flash-memory capacity is
nonlinearly faster than that of the RAM capacity (e.g.,
while the RAM capacity is still in the ten or tens of GBs
level, a 1, 024GB SSD is already in market), it becomes
impractical for a KV store design to use an amount of
RAM space proportional to the overall flash space in
the store. Our KV store design overcomes the limitation
by partitioning the overall key-range and placing the
index structures corresponding to each key-range partition
on the flash. With this design choice, our design uses
extremely frugal RAM space (e.g., < 1 byte/key) for the
index and data buffers. As a byproduct of this design,
when an unexpected event like a power failure occurs, our
design is expected to experience a much shorter service
outage than those designs that store index structures in
the RAM. This is because the latter ones need to scan
and reprocess all stored KV pairs for reconstructing the
index structure in the RAM.

• KV lookup/insertion throughput: These two metrics
measure the performance of the basic KV store op-
erations, crucial in order to meet the demands of the
recent KV store applications. Our design should be able
to deliver high lookup and insertion throughputs to be
comparable to the state-of-the-art design (SkimpStash)
with the same amount of RAM space.



Figure 3. BloomStore architecture: P BloomStore instances, corresponding
the same number of key-range partitions, where each instance contains a KV
pair write buffer (flash page size), a BF buffer, a chain of BFs, and their
associated data (KV pairs) pages in flash

A. Overall Architecture

Figure 3 shows the overall architecture of our KV store in-
stance called BloomStore. Each BloomStore instance consists
of the following four components: a KV pair write buffer, a BF
buffer, a BF chain, and a number of data pages. To minimize
the amortized RAM space overhead per KV pair, BloomStore
only maintains a flash-page sized data (KV pairs) buffer
and a very small sized BF buffer in RAM. To achieve high
lookup/insertion throughput, BloomStore reduces the number
of flash page reads and writes in the following ways: (1) it runs
multiple BloomStore instances, each of which is responsible
for a disjoint key range. This key-range partitioning scheme
would reduce the maximum number of flash page reads for
key lookups; (2) It treats the flash-memory as an append-log.
For the KV pair insertion, it maintains a dedicated KV pair
write buffer to temporarily buffer the inserted KV pairs and
appends the KV pairs in a single flash page sequentially to
the end of the log on flash.

Hereafter, we will describe each of the BloomStore compo-
nents in more detail. To begin with, each BF in BloomStore
consists of a flash pointer (4 bytes) and a bit vector for the
normal BF operation. The flash pointer points to the address
(in the form of a LBA, short for “Logical-Block-Address”,
which is commonly supported by the block interface of most
flash-memory devices) of its associated page of KV pairs on
flash.

KV Pair Write Buffer: Each BloomStore instance has a
dedicated fixed-sized in-RAM data buffer to log incoming
KV pair insertions (called a KV pair write buffer). Its size is
equal to the underlying flash page size. This buffer is flushed
(written) into the flash only when it is filled up with the
inserted KV pairs. Data pages written by different BloomStore
instances would be interleaved in the append-log on flash.
Thus, the number of flash page writes can be reduced. If more
stringent durability is required, a configurable timeout interval
(e.g., 1 ms) can be used to ensure that a flash write occurs in
the interval.

BF Buffer: Each BloomStore instance only keeps a very
small sized active BF in the BF buffer while storing all the
other BFs in the flash. The BloomStore uses a single BF to
summarize up to the maximum number of KV pairs stored in

a flash page. The active BF in the BF buffer represents the
membership of the keys stored in the KV pair write buffer.
Thus, when the KV pair write buffer is written into the flash,
the active BF (in the BF buffer) is also flushed into the flash.
At this time, the flash pointer of the active BF is updated
with a valid LBA of the flash page. This BF buffer flush
operation involves a number of flash page accesses: (1) read
the flash pages containing a chain of other BFs (so called the
remainder of the BF chain) in this instance into an temporary
in-RAM buffer; (2) move the active BF into this temporary
buffer; (3) append the buffer into the flash; and (4) update
the in-RAM pointer with the beginning address of the flash
pages storing the newly written remainder of the BF chain.
Each BloomStore instance maintains an in-RAM pointer (not
shown in Figure 3) pointing to the valid beginning address of
the flash pages storing the remainder of the BF chain.

The minimum RAM usage of a BloomStore instance in-
cludes a BF size of a BF buffer and a flash page size of a
KV pair write buffer. Then, the minimum RAM usage can
be computed by multiplying the per-instance minimum RAM
usage with the number of allocated BloomStore instances.

BF Chain: The BloomStore instance indexes a number of
data pages independently with a sequence of BFs (briefly a
BF chain), each of which memorizes the inserted KV values
in one flash page. The associated BF chain is decomposed into
two parts: (1) the active BF that is most recently instantiated
in the chain and is always stored in RAM (the BF buffer); and
(2) the remainder of the BF chain that consists of the rest of
BFs in the chain and is stored in the flash. For example, in the
first BloomStore instance of Figure 3, the active BF is the ith

BF. The remainder of the BF chain is a list of BFs including
the 1st BF through the i − 1th BF. The BF chain length is
defined as the number of BFs in the BF chain.

Figure 4. Illustration of checking multiple bloom filters in parallel

Bloom Filter Parallel Lookup: To look up a key ei, our
BloomStore design first uses a hash function to locate an



associated key-range partition, followed by checking the key
ei in its BF chain. Initially, a BF chain contains only an active
BF in the BF buffer, i.e., no BFs are stored in the flash.
Thus, simply one BF lookup operation with the active BF
is enough to check the key. Assume that x flash pages of
KV pairs in the instance have been written to the flash. It
implies that there is a BF chain of x BFs. With the minimum
BF buffer size, only the active BF is in the BF buffer, while
the rest of the BF chain (containing other x − 1 BFs) is in
the flash. Thus, we need to read the (x − 1) BFs from the
flash to an (temporary) in-RAM buffer and then check the
key in each of the x BFs. Note that the temporary buffer to
hold the BFs can be shared by all the BloomStore instances
(causing negligible RAM space overhead). Simply, each of x
BFs should be checked separately, requiring x separate BF
lookup operations.

However, BloomStore design adopts the parallel BF check-
ing scheme proposed in the SegmentedHash [16] to check the
buffered BFs in parallel. Figure 4 illustrates an example of
checking x BFs in parallel. Each m-bit BF (represented as a
column) consists of a bit vector and a flash pointer pointing to
a flash page of KV pairs. All x BFs use the same group of k
different hash functions. Thus, for a given key ei, the same bit
positions are checked in each BF. As such, a row of bits can
be composed of one bit from each of the x BFs, as illustrated
in the Figure 4. To look up a key ei in x BFs, k different bit
positions are selected from a column using k different hash
functions h1, ..., hk. For each of the k bit positions selected,
it accesses a row of the length of x bits and executes bit-wise
AND operations on k rows. The 1’s position in the resultant
row of bits indicates the BF where the key was found. If the
resultant row of bits is all zero, according to the BF property,
the key ei is not present in any of the x BFs. However, if the
resultant row has a single 1, the flash page associated with
the BF of the 1’s position should be read to search the key
from the set of KV pairs contained in the flash page. As an
example, Figure 4 shows that the key ei is found in BF 2. Still,
a chance exists that no KV pairs have the key (called false
positive error). Possibly, the resultant row can have multiple
1’s, requiring to read and check more than one flash page (from
the largest BF label, implying the most recently written BFs)
to find the key. Note that as the BF chain length increases, the
number of false positive errors increases as well.

It is worth noting that the key lookup operation bearing such
parallel lookup scheme is bottlenecked by the read throughput
of the SSD, as the entire remainder of a BF chain (e.g., x− 1
BFs of a BF chain containing x BFs ) may need to be read
from flash-memory for a parallel lookup. If the value x goes
beyond the number of internal data channels/buses of the SSD,
one possible way to boost the key lookup performance is to
pipeline the BF chain retrieval process with the parallel lookup
process. In the future, we plan to expand our BloomStore
design with this feature.

Figure 5. Flowchart of BloomStore operations: key lookup and KV pair
insertion

B. KV Store Operations

To help to understand the relationship of different com-
ponents in BloomStore, we demonstrate the operations of
key lookup and KV pair insertion for a single BloomStore
instance (see Figure 5). In the flowchart, we assume the
same data deduplication application logic as in our KV store
application; i.e., if a key (e.g., a chunk ID) lookup is answered
negatively, a successive KV insertion will be triggered to add
a corresponding KV pair (e.g., chunk metadata) to the store.

Key Lookup: To look up a key, (1) BloomStore instance
looks up the key at the active BF (held in the BF buffer)
in the associated BF chain; (2) if the key is not found in
the active BF, it follows the in-RAM flash pointer to retrieve
the remainder of the BF chain and performs the BFs parallel
lookup; (3) if the key is found in the active BF, BloomStore
proceeds to check the key in the KV pair write buffer; (4) if
the key is in the write buffer, the key lookup operation returns
an affirmative value; (5) if the key is not found in the write
buffer, BloomStore retrieves the remainder of the BF chain
and performs the BFs parallel lookup on all fetched BFs; (6)
if a key is not found in any of the BFs in the BF chain, the key
is considered new; (7) for each BF in the BF chain where the
key was found, a flash pointer will be extracted and followed
to search the key in its corresponding flash page containing
the KV pairs; in the case where more than one flash page
needs to be searched, BloomStore searches the pages by the
reverse order of their write times (from the largest BF label);
BloomStore then stops its lookup and returns affirmatively
upon finding the first KV pair whose key matches the searched
one; (8) if the key is found, the lookup operation returns an
affirmative value; and (9) if the key is not found, the lookup
operation returns a negative value.

KV Pair Insertion: This operation inserts/updates a KV
pair into its KV pair write buffer and inserts its key to the



active BF associated with a BloomStore instance. When the
KV pair write buffer becomes full, all KV pairs in the buffer
are written to flash with a flash page write. In addition, the
BloomStore instance updates its BF chain with aforementioned
BF buffer flush operation to move (append) the currently active
BF to the remainder of the BF chain and instantiate a new
active BF in the BF buffer. This update operation requires the
BloomStore instance to fetch the remainder of the BF chain
from flash into RAM, append the active BF to the remainder,
and write back the updated remainder to the flash. Moreover,
if this insertion corresponds to an update operation on an
earlier inserted key, the most recent value of the key will be
(correctly) retrieved during a key lookup operation as the older
value was stored closer to the head in the append-log.

KV Pair Deletion: A delete operation on a KV pair is
supported by inserting a null value for the key (becoming
a garbage KV pair). When the flash usage or a fraction of
garbage KV pairs in the flash exceeds a predefined threshold,
a garbage collection procedure (different from the garbage
collection inside the flash-memory) begins to reclaim the flash
space in a way similar to that in the log-structured file systems
[17]. The garbage collection starts scanning the KV pairs from
the earliest written flash pages (the head of the flash append-
log). It discards the garbage KV pairs as well as the BFs and
copy-forwards the valid ones (from the head to the tail of the
flash log); the garbage collection stops when the fraction of
garbage KV pairs decreases under a certain threshold value.

C. Design Enhancements:

Having enough RAM space larger than the minimum RAM
usage, our design employs the additional RAM space (the
available RAM space minus the minimum RAM usage) to
enhance the efficiency of the BloomStore design.

Multi-BF buffering: For each BloomStore instance, its BF
buffer can hold the active BF plus a number of BFs whose
data flash pages of KV pairs have been already written into the
flash. By buffering more than one BF in RAM, we can expect
performance benefits for key lookup and insertion operations
by reducing the number of flash page reads to fetch the
associated BFs into the RAM and by decreasing the number
of the BF buffer flushes into the flash.

Prefilter: A key lookup operation, as indicated in the
flowchart of Figure 5, may generate unnecessary flash page
reads caused by loading a BF chain and its associated KV
pair data pages from flash when searching the keys that do
not exist in the KV store (briefly non-existent keys). Upon a
key lookup miss in the BF buffer, the remainder of the BF
chain will be read into RAM to check for the key. Many real
applications frequently issue lookup operations on the non-
existent keys. For example, primary file system deduplicaiton
(refer to the property of the Vx workload in Section IV) usually
finds many new chunk IDs through the deduplication process.
Microsoft LIVE Primetime on-line multi-player game [18]
frequently looks up non-existent keys to implement the game
logic [19]. These cause many unnecessary flash page reads
because BloomStore reads the remainder of the BF chain and

its associated data KV pair pages from the flash to look up
the non-existent keys.

Therefore, for workloads that search many non-existent
keys from the KV store, BloomStore maintains a fixed sized
prefilter in RAM that may filter out many lookups for the non-
existent keys before reading a BF chain from the flash. The
rationale behind using a Bloom Filter structure as our prefilter
is as follows: (1) the BF has a unique characteristic that it is
free of false negative errors (i.e., if a key is not found in a
BF, it is for sure a non-existent one), regardless of the size of
the BF. Hence, we could freely adjust the size of the pre-filter
according to the available RAM space without worrying about
missing any keys; and (2) with a fairly small RAM footprint
(e.g., 4 bits/key), the BF is able to identify and filter out a
significant amount of the non-existent keys observed in the
key lookup and insertion process.

Obviously, employing a bigger prefilter will filter out a
larger portion of lookups for the non-existent keys, owing to
the less incurred false positive errors.

More RAM space consumed by the prefilter implies that
less RAM space can be used for the Multi-BF buffering. This
will make potentially more BF chains be retrieved. Therefore,
BloomStore has to choose the prefilter size carefully in order
to optimize the lookup throughput.

IV. PERFORMANCE EVALUATION

We compare our BloomStore with BufferHash and
SkimpyStash by using realistic workloads obtained from the
data deduplication applications in terms of the following
performance metrics: (1) amortized RAM overhead per KV
pair and (2) key lookup/insertion throughput.

A. Experiment Setup

Table I
PROPERTIES OF TWO DATA DEDUPLICATION WORKLOADS

Workload
name

Lookup &
insert

operations #

Lookup:insert
ratio

Key/value size
(byte)

Linux 12, 427, 697 4.1 : 1 20/44
vx 14, 628, 873 1.6 : 1 20/44

The BufferHash is excluded from throughput comparisons,
because the RAM overhead analysis shows that its amortized
RAM overhead per KV pair is ten times higher than the others.
We also rule out SILT from our comparison, since it is not a
suitable KV store design to meet the high insertion/update
throughput of in-line data deduplication.

We implement BloomStore and SkimpyStash by using
Python. MurmurHash [20] is adopted to realize the hash
functions used in our BF implementation (with different seeds)
and to compute a hash table index entry in SkimpyStash. Both
BloomStore and SkimpyStash are built on top of a raw block
device interface, implying there are no file-system related
effects, such as buffering, caching, and prefetch.

We run the implemented BloomStore and SkimpyStash on
a typical server having Intel Xeon L5530 Quad Core 2.4GHz



and Linux kernel 2.6.32 (ubuntu 10.04). The server is also
attached with a prototype Micro 1TB NAND flash based
SSD through a high-speed PCIe interface. The physical flash
page size of the SSD is 4KB. In addition, to study the
performance of our design on a SATA interfaced SSD, we
run both BloomStore and SkimpyStash with an INTEL X25E
32GB SATA interfaced NAND flash based SSD.

We use two real-world data deduplication workloads: Linux
and Vx workloads. Linux is a typical data dedup workload
collected from a data backup environment. This workload was
obtained from the Linux kernel source backups which consist
of 20 different versions of the Linux kernel source distri-
butions (Linux-2.6.30.1 – Linux-2.6.30.10, Linux-2.6.35.1 –
Linux-2.6.35.8, Linux-2.6.36.1, and Linux-2.6.36.2). As with
typical data backup streams, this workload contains many
duplicates that will exhibit a higher lookup/insertion ratio.
The Vx stands for another breed of data dedup workload that
was obtained from a primary file system environment. We
investigate BloomStore performance on Vx, because the data
deduplication on the primary file systems has recently drawn
increasing attention from the data storage community. For
example, Meyer et al. [21] studied the data dedup performance
on a collection of 857 file systems running Windows at
Microsoft. The Vx workload was collected by crawling a
networked primary file system shared by a group of software
engineers. Below are the statistics for the two workloads: (1)
the Linux workload contains 10, 000, 000 total chunks and
2, 427, 697 unique chunks, while the Vx workload contains
9, 000, 000 total chunks and 5, 628, 873 unique chunks; and
(2) the ratios of the key lookup operations to KV pair insertion
operations in the Linux and Vx workloads are 4.1:1 and
1.6:1, respectively. The Linux workload has a higher key
lookup/insertion ratio than the Vx workload. In addition, the
Vx workload looks up many non-existent keys in the KV
store, while the Linux workload searches many already existent
keys due to its high data duplication. The properties of the
two workloads are summarized in Table I. In these dedup
applications, each key is a 20-byte SHA-1 hash value of
the corresponding data chunk, while the value is a 44-byte
metadata for the chunk. Thus, the size of each KV pair for
the two workloads is 64 bytes.

B. Amortized RAM Overhead

We analyze the amortized RAM overhead per KV pair for
BufferHash, SkimpyStash, and BloomStore. For this analysis,
we assume that the flash page size is 4KB and adopt the
commonly used 64-bytes KV pair length for data deduplication
applications [4], [10], [22]. The 64-byte KV pair combines a
20-byte key (a SHA1 hash as a chunk ID) and a 44-byte value
(chunk metadata for encoding chunk location, chunk size and
chunk offset, etc.).

BufferHash (10 bytes/key): With a 16-byte KV pair length
and a maximum number of 16 hash tables per partition,
BufferHash consumes a 4-byte amortized RAM overhead per
KV pair [9]. The amortized RAM overhead grows linearly
as the KV pair length increases; i.e., the 64-byte KV pair
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Figure 6. Amortized RAM overhead per KV pair for BloomStore as the
number of BFs per key-range partition (BF chain length) increases

length increases the amortized RAM overhead per KV to 10
bytes/key.

SkimpyStash (practical range: (1, 4] bytes/key): To mitigate
the impact of false positive errors on key lookup throughput,
SkimpyStash pays a relatively high RAM overhead; i.e., 1-byte
RAM footprint per key represented in a BF. The amortized
RAM overhead per KV pair can be computed as follows:
1 + pointer size

average bucket length , where the pointer size is set to 4
bytes [10]. Its smallest amortized RAM overhead per KV pair
in theory approaches 1 byte/key, as the average bucket length
becomes extremely large. In our experiments, the smallest
amortized RAM overhead was 1.2 bytes/key.

BloomStore (practical range: [0.5, 1]): BloomStore design
utilizes the RAM space for two purposes: (1) buffering the
inserted KV pairs and (2) buffering the BFs for the key
insertions. The amortized RAM overhead for the first is
usually several times bigger than that for the second. With the
(maximum) BF chain length per BloomStore instance of 96,
each BloomStore instance could store up to 4,096

64 ×96 = 6144
KV pairs. Then, the amortized RAM space overhead of the
write buffer per KV pair becomes 4, 096/6, 144 = 0.667
byte/key in a fully filled BloomStore instance. The amortized
RAM overhead of the BF buffer per KV pair can be safely
omitted (assuming the minimum size case, where there is only
one active BF buffered in RAM for each instance and the BF
size is of 64 bytes) because it is tens of times smaller than
that of the KV pair write buffer (e.g., assuming a minimum
BF size of 64 bytes and only one active BF buffered in RAM
for each instance: 64

64×96 = 0.01 byte/key vs. 0.667 byte/key).
Figure 6 illustrates that as the H (BF chain length) increases,
the amortized RAM space overhead per KV pair decreases
non-linearly. Notice that with H = 128, the amortized RAM
space overhead becomes 0.5 bytes/key.

A larger BF chain length H increases the number of KV
pairs stored in each instance. This result in a smaller number
of BloomStore instances. It eventually helps to reduce the
RAM usage consumed by the KV pair write buffers for
all instances. However, as H increases linearly, the number
of false positive errors increases dramatically. Each of false



positive errors may trigger an extra flash data page read. In
our experiments, we vary the BF chain length H to 64, 96,
and 128 BFs to study its effect on the performance. Based on
the results of both workloads Linux and Vx, we observe that
BloomStore configured with H = 96 yields the highest key
lookup throughput.

With the obtained BF chain length (H = 96), we further
investigate the impact of BF size m. We find out that the best
BF size is 64 bytes for Vx workload and 128 bytes for Linux
workload.

C. Effectiveness of Prefilter

Table II
Linux WORKLOAD: RAM USAGE (KB) DECOMPOSITION FOR DIFFERENT

CONFIGURATIONS

RAM usage
decomposition

BF buffer prefilter
overhead

KV pair
write buffer

base 1, 302 0 1, 648
base+prefilter 807 495 1, 648

Table III
Vx WORKLOAD: RAM USAGE (KB) DECOMPOSITION FOR DIFFERENT

CONFIGURATIONS

RAM usage
decomposition

BF buffer prefilter
overhead

KV pair
write buffer

base 3, 066 0 3, 840
base+prefilter 186 2, 880 3, 840

Either base or base+prefilter configuration enables multi-
BF buffering. For fairness in comparing the BloomFilter (base)
and the BloomFilter with the prefilter (base+prefilter), the
base+prefilter configuration is given a smaller amount of
BF buffer space to compensate for the prefilter RAM usage.
Table II and III present the RAM usage decomposition of
different components (BF buffer and prefilter) with respect
to the two different configurations for both workloads. For the
two workloads, the amortized RAM overhead per KV pair is
1.2 bytes. Figure 7 and 8 illustrate the key lookup throughputs
for the Vx and Linux workloads, respectively. In the figures,
each group of three bars represents the number of the BF
chain reads that represents how many times the remainder of
the BF chain in the flash is fetched into RAM (the lower the
better), the number of the (KV pair) data page reads (the lower
the better), and the key lookup throughput (the higher the
better). We omit presenting the insertion throughput, because
the prefilter enhancement is only for improving the key lookup
throughput. Notice that the improvement contributed by the
prefilter is remarkable in the Vx workload. The reason is that
a major fraction of the lookup operations is used to check
non-existent keys in the workload, which could be avoided by
the prefilter. On the other hand, for the Linux workload, the
prefilter does not help significantly because a major portion of
the lookup operations is spent to check those already-existent
inserted keys.
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Figure 7. Linux workload: Impact of prefiltering on key lookup throughput
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D. Key Lookup & Insertion Throughput

Figure 9 and 10 present the throughput comparisons for
BloomStore and SkimpyStash over the Linux and Vx work-
loads, respectively. The available RAM space is the same for
both designs. For fairness, the additional RAM space required
by the extra feature of BloomStore (prefilter) is consumed in
the given RAM space. In particular, Figure 9 illustrates the
results on two different types of SSDs: the upper two curves
plot the results obtained from the Micro PCIe SSD, while the
lower two curves plot the results obtained from the INTEL
SATA SSD. We omit the results of both designs with the
INTEL 32GB X25E on the Vx workload because they follow
the same trend. The BloomStore is configured for the two
different workloads as follows: (1) for the Linux workload,
H = 96, m = 128, and no prefilter (the unused space is used
for more BF buffering); (2) for the Vx workload, H = 96,
m = 64, and with a prefilter.

The following observations are made from the figures.
First, both BloomStore and SkimpyStash achieve significantly
higher key lookup throughput on the Vx workload than on the
Linux workload. One reason behind this is that the lookup ratio
in the Linux is much higher than that in the Vx (4.1 vs. 1.6,
a factor of 2.56 times higher). Secondly, BloomStore delivers
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Figure 10. Vx workload: Key lookup throughput (ops/sec) comparisons
between BloomStore and SkimpyStash as the amortized RAM overhead per
KV pair varies

a higher key lookup throughput than SkimpyStash. Thirdly,
as the available RAM space declines, the lookup throughput
drops in both designs. However, the lookup throughput of
SkimpyStash drops slightly faster than that of BloomStore.
In particular, on the Linux workload, as the amortized RAM
overhead per KV pair decreases from 1.8 bytes to 1.2 bytes,
the lookup throughput of SkimpyStash descends by 2.9 times,
which is much steeper than BloomStore. It is worth noting
that as the amortized RAM overhead per KV pair grows, the
lookup throughput for BloomStore increases monotonically
and saturates after reaching a 2.8-byte amortized RAM over-
head per KV pair (see Figure 9). The reason behind this is
that from this point, all the BF chains are completely buffered
in the RAM. Only the number of data page reads affects the
lookup throughput. In fact, for the Linux workload, if more
RAM space is allowed beyond the 2.8 bytes/key, one approach
to further improve the lookup throughput is to increase the
BF size, so as to minimize the wasted flash page reads. To
minimize the impact of false positive errors on the key lookup
throughput, SkimpyStash pays relatively high RAM overhead

for maintaining BFs for each bucket in RAM, e.g., 1-byte
RAM footprint per key. Therefore, there are no results obtained
from SkimpyStash corresponding to the ≤ 1 amortized RAM
overhead per KV pair. On the contrary, BloomStore could
easily achieve reasonably a good lookup throughput with the
sub-byte range RAM usage per KV pair. As shown in Figure 9,
even with 0.72-byte amortized RAM overhead per KV pair,
BloomStore is still able to deliver 78, 879 ops/second key
lookup throughput, only 22.5% lower than what is achieved
by the doubled (1.44 bytes) amortized RAM overhead.

As for the insertion performance with the two workloads,
BloomStore performs slightly lower (1.5% and 1.4% for Linux
and Vx than SkimpyStash, which can be explained by the extra
overhead of the periodical BF buffer flush operations (i.e.,
updating the respective chain of BFs on the flash by appending
all buffered BFs to the existing BF chain in flash) performed
in BloomStore.

Similarly, with the INTEL SATA SSD, BloomStore achieves
a uniformly higher key lookup throughput than SkimpyStash
for all amortized RAM overheads per KV pair. The lookup
throughput results for both BloomStore and SkimpyStash are
universally higher on the Micro PCIe SSD than on the INTEL
SATA SSD. For example, on the Linux workload, BloomStore
achieves approximately 2.6–2.8 times higher lookup through-
put, while SkimpyStash accomplishes 2.25–4 times higher
lookup throughput on the Micro PCIe SSD than on the INTEL
SATA SSD.

V. CONCLUSIONS

In this paper, we designed a flash-based KV store archi-
tecture called BloomStore that not only assures an extremely
low amortized RAM overhead per KV pair (by keeping
a flash-page sized data buffer and a very small sized BF
buffer per BloomStore instance in RAM), but also achieves
a high lookup/insertion throughput (by reducing the maxi-
mum number of flash page reads with key-range partition-
ing; by buffering multiple BFs per BloomStore instance in
RAM to reduce the BF-containing flash page reads and
writes). BloomStore design also employs a prefilter to avoid
many unnecessary flash page reads for looking up the non-
existent keys. Throughput comparisons on the two real-world
workloads in data deduplication applications illustrated that
BloomStore design achieved a significantly better key lookup
throughput and roughly the same insertion performance with
much lower RAM usage – BloomStore provides the same
lookup throughput (78, 879 ops/second in the Linux workload),
while consuming 22.5% lower amortized RAM overhead per
KV pair, as compared with SkimpyStash.
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