
Trends in Scalable Storage System
Design and Implementation

17 April 2012
Prof. Matthew O’Keefe
University of Minnesota

and
Storage Systems Architect,

HDS

(Dis)Organization of Talk

 Say’s Law
 Parallel Applications
 Scalable File Systems
◦ Posix-Oriented: OrangeFS, Lustre, GPFS,
◦ Map-Reduce-Oriented: Google FS, HDFS
◦ Relaxed-POSIX: Sorrento, Ceph, Ward Swarms

 Potpourri: Distributed File Systems (NFS,
CIFS), Tape, FLASH

 Questions…

William Faulkner Quote

 “The past is always with us. It isn’t even
past.”

Say’s Law: (Cheaper) Supply Creates
its own Demand (for parallelism)
 Supply on the

hardware side:
◦ FLASH/NVRAM

supplies cheaper IOPS
◦ Faster processors,

more memory
◦ Capacity per drive
◦ Bandwidth per drive
◦ Network bandwidth
◦ Etc.

 Supply on the data
side:
◦ Clickstream logs
◦ Network/server logs
◦ Proliferation of IP-

enabled sensors
◦ Supercomputer output
◦ Supercomputer

checkpoints
◦ Etc.

Building Software for Parallel Systems

 Detecting parallelism in scientific codes,
generating efficient parallel code

 Historically, had been done on loop-by-loop
basis
 Distributed memory parallel computers required more

aggressive optimization
 Parallel programming still a lot like assembly language

programming
 Increasing scope of code to analyze optimize as

parallelism increases
 What’s needed is a way to express the problem solution

at a much higher level from which efficient code can be
generated

 Leverage design patterns and translation
technologies to reduce the semantic gap

Parallel Numerical Simulations

 Time Domain Electromagnetics

 Test simulation for parallel
electromagnetics code
◦ driven by the quest to answer that

most pressing of questions?

◦ what REALLY happens when you
microwave someone’s head?

 Magnetic resonance “birdcage”
design

 256x256x256 grid, 2 Gigabytes, 8
processors

Parallel Numerical Simulations

 Miami Ocean Model — climate simulations extending for centuries

 1500x1500x11 grid points for North Atlantic: ran on 256 processors of Cray
T3D in 1994

Fortran-P Programming Model
 First: don’t try to do everything!
 Find the right design pattern: co-

design application with parallel
system

 Focus on numerical methods that
are inherently local and parallel
◦ Finite difference, finite volume,

high-order compact methods
 The problem should be

structured so that the same
computations are carried out at
each grid point
◦ This allows parallelism through

simple domain decompositions

Fortran-P Design Pattern
 Certain loop indices are used to indicate

parallel loops
 All loops using those indices are parallel
 The loop indices for the array references are of

the form I+a where I is the loop index and a is a
small constant (much smaller than the loop
bounds)

Developing Parallel Numerical
Methods
 Higher order compact numerical

methods are important to efficient
parallel calculations

 These techniques allow fewer grid
points to be used compared to
traditional centered difference
methods (Yee — FDTD)

 PEM — Parallel Electromagnetics
Model
◦ High-order compact method to

solve Maxwell’s equations

◦ Paul Hayes: the developer

◦ Inspired by PPM method of
Woodward developed for fluids

Preparing Input Models: Ocean
Circulation
 3D ocean state at an instant of

time: must be constructed from
data taken at different times

 Requires sophisticated signal
analysis and smoothing

 Some oceanographers spend their
whole careers on this problem

 Tools can be developed by re-using
existing technology for solid
modeling, image processing, and
special effects

Program �Analysis Tool

 Tool for Parallelism using
Additional Zones
(TOPAZ)

 Analyzes data flow among
parallel arrays: used to
extend local computation
into neighboring
processor’s domain

 Yields large amounts of
independent, parallel work
for the parallel machine

Program �Analysis for Fortran-P

 Builds a D-graph from
the Static Single
Assignment def-use
graph of the array
flow

 Performed over a
“parallel region” of
code

 Computes overlaps
required by the
program to achieve
independent parallel
computations

Program �Analysis via D-Graph

 Offset location: location where an
array reference is accessed
◦ x(I-1): -1

 Offset distance: difference between
the offset location on the LHS and
reference on RHS
◦ dm(I) = m(I+1) - m(I-1)

◦ +1 -1

 Dependence Range: sum of offset
distances over all possible data
flow paths between definition and
later reference

Presenter
Presentation Notes
This figure is of the memeq D-graph

Exploiting Problem Structure

Developing Parallel Applications

 For three-dimensional time-dependent solutions, parallelism

is required
 Parallel numerical simulation involves 4 distinct disciplines

[1] The science and engineering of the phenomenon
simulated

[2] The mathematics including the numerical methods used
[3] Software engineering, including code design
[4] Parallel processing, including systems programming

 Amdahl’s Law is a stern taskmaster:

The Challenge of Amdahl’s Law
 Amdahl’s Law can be used to determine how much parallelism a

given application can usefully exploit

◦ let’s plug in some numbers to get some intuition about this
 If an application is 99% parallel and we execute it on a 100-processor

machine, what is the maximum speedup we achieve?
[a] 99
[b] 75
[c] 50

 If an application is 99.9% parallel and we execute it on a 500-
processor machine, what is the maximum speedup achieved?

 [a] 482
 [b] 453
 [c] 333

The Amdahl’s Law Challenge
 Fortunately, most applications have tons of

parallelism
 Why is that? Because at a small enough time scales

all physics is local
◦ in 1.0 nanosecond, light travels about 0.3 meters

 However, though the physical equations are
generally completely parallel
◦ there are many ways that we can lose parallelism

when we implement the equations in software
◦ let us count the ways...

The Amdahl’s Law Challenge
[1] The numerical method can preclude parallelism
[2] The numerical method may be parallel, but its

expression in the actual software may be serial
[3] The compiler may be unable to recognize the

parallelism in the software
◦ poorly written DO loops, aliasing, badly-written code

(this is amazingly easy to do)
[4] It may be impossible to express the parallelism in the

numerical method in the language

The Amdahl’s Law Challenge
[5] Even if the parallelism is recognized by the compiler or expressed

by the programmer in the language, the compiler may do a poor
job of mapping the program parallelism to the machine parallelism

[6] There are very subtle effects that can happen during execution
even when well written parallel code that is efficiently encoded and
mapped to an architecture
◦ load imbalance
 due to the application and data
 due to the machine (network congestion, cache behavior, IO

subsystem)
◦ small data sets and imbalance between computation and

communication
◦ serial bottlenecks
◦ the OS jitter issue popularized by Sandia

Keeping Pace with Parallel Systems
Making Storage Systems Go Faster and
Scale More

Storage System Scalability/Speed
 1990s: Storage interface standards lacked ability to scale

in both speed and connectivity
 Industry responded to this with new standard: Fibre

Channel, SATA, etc.
 Allowed shared disks, but system software like file

systems and volume managers not built to exploit this
 Same old story: software catching up with

hardware
 Parallel/cluster file system development begins in the

1990
◦ And not just shared disk file systems

 Variety of commercial and open source
implementations:
◦ All assumed you had to support POSIX or something close to it
◦ PVFS, GPFS, GFS, StorNext, CXFS, etc.

 Today, acceleration in hardware technologies continues
SSD performance, interface performance, capacities,
network performance, etc.

Making Storage Systems Faster and
More Scalable
 GFS (Minnesota Global File System) pioneered

several interesting techniques for cluster (shared
disk) file systems:
◦ no central metadata server
◦ distributed journals for performance, fast recovery
◦ first Distributed Lock Manager for Linux — now used in

other cluster projects in Linux
 Implemented POSIX IO
◦ Assumption at time was: POSIX is all there is, have to

implement that
◦ Kind of naïve, assumed POSIX model was the right one
◦ UNIX/Windows view of files as linear stream of bytes

which can be read/written to anywhere in file by multiple
processors

◦ Large files, small files, millions of files, directory tree
structure, synchronous write/read semantics, etc. all make
POSIX difficult to implement

Why POSIX File Systems Are Hard
 They’re in the kernel and

tightly integrated with
complex kernel
subsystems like virtual
memory

 Byte-granularity,
coherency, randomness

 Users expect them to be
extremely fast, reliable,
and resilient

 Add parallel clients and
large storage networks
(e.g., Lustre or Panassas)
things get even harder

• POSIX IO was the emphasis
for parallel HPC IO (1999
through 2010) until recently
• HPC community re-thinking
this
• Web/cloud has already
moved on

Meanwhile: Google File System and its
Clone (Hadoop) use Co-Design
 Google and others (Hadoop) went a different direction:

change the interface from POSIX IO to something inherently
more scalable

 Users have to write (re-write) applications to exploit the
interface

 All about scalability — using commodity server hardware —
for a specific kind of workload

 Hardware-software co-design: restricted semantics
◦ append-only write semantics from (parallel) producers
◦ mostly write-once, read many times by consumers
◦ explicit contract on performance expectations: small reads and

writes — Fuggedaboutit!
 Very successful, and Hadoop is becoming something of an

industry standard
 Lesson: if solving the problem is really, really hard, look at it a

different way, move interfaces around, change your
assumptions (e.g., as in the parallel programming problem)

Google/Hadoop File Systems
 Google needed a storage system for its web index,

various applications — enormous scale
◦ GFS paper at FAST conference in 2004 led to

development of Hadoop, open source GoogleFS
clone

 Co-designed file system with applications
 Applications use map-reduce paradigm
◦ Streaming (complete) reads of very large

file/datasets, process this data into reduced form
(e.g., an index)
◦ Files access is write-once, append-only, read-many

Map-Reduce
 cat * | grep | sort | unique -c | cat > file
 input | map | shuffle | reduce | output
 Simple model for parallel processing
 Natural for:

– Log processing
– Web search indexing

 – Ad-hoc queries
 Popular at Facebook, Google, Amazon etc. to

determine what ads/products to throw at you
 Hadoop/Map-Reduce starting to replace traditional

enterprise data warehouses with low-cost clusters

Scalable File System Goals

 Build with commodity components that
frequently fail (to keep things cheap)
◦ So design assumes failure is common case

 Nodes incrementally join and leave the
cluster

 Scale to 10s to 100s of Petabytes, headed
towards exabytes; 1000’s to 10s of
10,000s of storage nodes and clients

 Automated administration, simplified
recovery (in theory, not practice)

More Scalable Storage Clusters
 Ceph – Sage Weil, UCSC : POSIX lite
◦ Multiple metadata servers, dynamic workload

balancing
◦ Mathematical hash to map file segments to nodes

 Sorrento – UCSB : POSIX with low write-sharing
◦ Distributed algorithm for capacity and load

balancing, distributed metadata
◦ Lazy consistency semantics

 Ward Swarms – Lee Ward, Sandia
◦ Similar to Sorrento, uses victim cache and storage

tiering, allows parallel writes to any available
storage node for performance (like Hadoop)

Open Questions in Scalable Storage
 Tape’s role:
◦ Accept the fact that its not going away
◦ Tape is still the best technology for the providing

infinite data capacity
 Disk file systems do rude things when they run out

of space
 Parallel Distributed File System API going Forward
◦ pNFS tractions seems limited, but only time will tell
◦ SMB 2.x/3.x making performance strides, but not

parallel currently
◦ POSIX versus Map/Reduce versus ???

 Extreme scalability (e.g., exascale) or Federated Designs
 Ahmdahl’s Law and storage systems

Issues in Scaling Parallel File System
Workloads
 Disk drive and disk array performance

characteristics
◦ bit error recovery, vibration tolerance, …
◦ basic randomness of seek operation

 File system and operating system software
bottlenecks
◦ Caching (or not), fs fragmentation, virtual

memory randomness, etc.
 Application issues
◦ level of parallelism in IO

 Amdahl’s Law effects in large-scale parallel IO

Aggregate IO Load Imbalance

 LI = (Tmax – Tavg)/Tavg where Tmax is the
maximum time to complete an IO
request across n nodes, and Tavg is the
average time to complete the IO requests
for the n nodes

 Speedup = n/(LI+1)
 If one node’s IO request takes 2 seconds

(Tmax), while the remaining 999 node’s IO
request time (Tavg) averages 1.5, then the
speedup over the 1000 processors is reduced
to 750

Software-Hardware Co-Design of First
Tier Storage Node
 New hardware

technologies (SSD, hybrid
DRAM) pushing the
limits of OS
storage/networking
stack

 Question: Is it possible
to co-design custom
hardware and software
for first-tier storage
node?

 Example: File system in
VLSI: Hitachi HNAS
◦ design FPGA for specific

performance goal

Using FLASH in NAS Devices
 SpecSFS Benchmark #1: standard 15k FC disk setup, 224

drives, two NTAP 3160 filers.
◦ Result was about 60k IOPS, ORT of 2.18 msec.

 SpecSFS Benchmark #2: basically the same setup, but
replace those 15k drives with 7200rpm SATA + PAM
cards. 96 drives in this case, and two PAM cards of
256GB each.
◦ The result is nearly identical at 60k IOPS and ORT of 2.18 msec

as well.

 Replaced lots of expensive 15k drives with fewer (and
cheaper) 7200rpm drives if you just add a little bit of
flash memory for metadata processing.

Nibbler: Co-Design Hardware and
Software
 Accelerates

memcached and first-
tier storage node
performance via
SSD’s and hybrid
DRAM
◦ Hardware-software

codesign
◦ e.g., BlueArc/HDS puts

file system in VLSI

 Large, somewhat volatile
memory

 Performance first, but also
power and density

 First-tier storage node will
drive ultimate performance
achievable by this design

Questions?

	Trends in Scalable Storage System Design and Implementation
	(Dis)Organization of Talk
	William Faulkner Quote
	Say’s Law: (Cheaper) Supply Creates its own Demand (for parallelism)
	Slide Number 5
	Building Software for Parallel Systems
	Parallel Numerical Simulations
	Parallel Numerical Simulations
	Fortran-P Programming Model
	Fortran-P Design Pattern
	Developing Parallel Numerical Methods
	Preparing Input Models: Ocean Circulation
	Program �Analysis Tool
	Program �Analysis for Fortran-P
	Program �Analysis via D-Graph
	Exploiting Problem Structure
	�Developing Parallel Applications �
	The Challenge of Amdahl’s Law
	The Amdahl’s Law Challenge
	The Amdahl’s Law Challenge
	The Amdahl’s Law Challenge
	Keeping Pace with Parallel Systems Making Storage Systems Go Faster and Scale More
	Storage System Scalability/Speed
	Making Storage Systems Faster and More Scalable
	Why POSIX File Systems Are Hard
	Meanwhile: Google File System and its Clone (Hadoop) use Co-Design
	Google/Hadoop File Systems
	Map-Reduce
	Scalable File System Goals
	More Scalable Storage Clusters
	Open Questions in Scalable Storage
	Issues in Scaling Parallel File System Workloads
	Aggregate IO Load Imbalance
	Software-Hardware Co-Design of First Tier Storage Node
	Using FLASH in NAS Devices
	Nibbler: Co-Design Hardware and Software
	Questions?

