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(Dis)Organization of Talk 

 Say’s Law 
 Parallel Applications 
 Scalable File Systems 
◦ Posix-Oriented: OrangeFS, Lustre, GPFS,  
◦ Map-Reduce-Oriented: Google FS, HDFS 
◦ Relaxed-POSIX: Sorrento, Ceph, Ward Swarms 

 Potpourri: Distributed File Systems (NFS, 
CIFS), Tape, FLASH 

 Questions… 
 

 



William Faulkner Quote 

 “The past is always with us. It isn’t even 
past.” 



Say’s Law: (Cheaper) Supply Creates 
its own Demand (for parallelism) 
 Supply on the 

hardware side: 
◦ FLASH/NVRAM 

supplies cheaper IOPS 
◦ Faster processors, 

more memory 
◦ Capacity per drive 
◦ Bandwidth per drive 
◦ Network bandwidth 
◦ Etc. 

 Supply on the data 
side: 
◦ Clickstream logs 
◦ Network/server logs 
◦ Proliferation of IP-

enabled sensors 
◦ Supercomputer output 
◦ Supercomputer 

checkpoints 
◦ Etc. 

 





Building Software for Parallel Systems 

 Detecting parallelism in scientific codes, 
generating efficient parallel code  

 Historically, had been done on loop-by-loop 
basis 
 Distributed memory parallel computers required more 

aggressive optimization 
 Parallel programming still a lot like assembly language 

programming 
 Increasing scope of code to analyze optimize as 

parallelism increases  
 What’s needed is a way to express the problem solution 

at a much higher level from which efficient code can be 
generated  

 Leverage design patterns and translation 
technologies to reduce the semantic gap 

 



Parallel Numerical Simulations  

 Time Domain Electromagnetics 

 Test simulation for parallel 
electromagnetics code 
◦ driven by the quest to answer that 

most pressing of questions? 

◦ what REALLY happens when you 
microwave someone’s head? 

 Magnetic resonance “birdcage” 
design 

 256x256x256 grid, 2 Gigabytes, 8 
processors  



Parallel Numerical Simulations 

 Miami Ocean Model — climate simulations extending for centuries 

 1500x1500x11 grid points for North Atlantic:  ran on 256 processors of Cray 
T3D in 1994  



Fortran-P Programming Model 
 First:  don’t try to do everything! 
 Find the right design pattern: co-

design application with parallel 
system 

 Focus on numerical methods that 
are inherently local and parallel 
◦ Finite difference, finite volume, 

high-order compact methods 
 The problem should be 

structured so that the same 
computations are carried out at 
each grid point 
◦ This allows parallelism through 

simple domain decompositions 
 



Fortran-P Design Pattern 
 Certain loop indices are used to indicate 

parallel loops 
 All loops using those indices are parallel 
 The loop indices for the array references are of 

the form I+a where I is the loop index and a is a 
small constant (much smaller than the loop 
bounds) 



Developing Parallel Numerical 
Methods 
 Higher order compact numerical 

methods are important to efficient 
parallel calculations 

 These techniques allow fewer grid 
points to be used compared to 
traditional centered difference 
methods (Yee — FDTD) 

 PEM — Parallel Electromagnetics 
Model 
◦ High-order compact method to 

solve Maxwell’s equations 

◦ Paul Hayes: the developer 

◦ Inspired by PPM method of 
Woodward developed for fluids 



Preparing Input Models: Ocean 
Circulation 
 3D ocean state at an instant of 

time:  must be constructed from 
data taken at different times 

 Requires sophisticated signal 
analysis and smoothing 

 Some oceanographers spend their 
whole careers on this problem  

 Tools can be developed by re-using 
existing technology for solid 
modeling, image processing, and 
special effects 



Program �Analysis Tool 

 Tool for Parallelism using 
Additional Zones 
(TOPAZ) 

 Analyzes data flow among 
parallel arrays:  used to 
extend local computation 
into neighboring 
processor’s domain 

 Yields large amounts of 
independent, parallel work 
for the parallel machine 



Program �Analysis for Fortran-P 

 Builds a D-graph from 
the Static Single 
Assignment def-use 
graph of the array 
flow 

 Performed over a 
“parallel region” of 
code 

 Computes overlaps 
required by the 
program to achieve 
independent parallel 
computations 



Program �Analysis via D-Graph 

 Offset location:  location where an 
array reference is accessed 
◦ x(I-1):   -1 

  Offset distance:  difference between 
the offset location on the LHS and 
reference on RHS 
◦ dm(I) = m(I+1) - m(I-1) 

◦               +1          -1 

 Dependence Range:  sum of offset 
distances over all possible data 
flow paths between definition and 
later reference 

 

Presenter
Presentation Notes
This figure is of the memeq D-graph



Exploiting Problem Structure 



 
Developing Parallel Applications  
 
 For three-dimensional time-dependent solutions, parallelism 

is required  
 Parallel numerical simulation involves 4 distinct disciplines 

[1]  The science and engineering of the phenomenon 
simulated 

[2]  The mathematics including the numerical methods used 
[3]  Software engineering, including code design  
[4]  Parallel processing, including systems programming 

 Amdahl’s Law is a stern taskmaster: 

 



The Challenge of Amdahl’s Law 
 Amdahl’s Law can be used to determine how much parallelism a 

given application can usefully exploit 

◦ let’s plug in some numbers to get some intuition about this 
 If an application is 99% parallel and we execute it on a 100-processor 

machine, what is the maximum speedup we achieve? 
[a]  99 
[b]  75 
[c]  50 

 If an application is 99.9% parallel and we execute it on a 500-
processor machine, what is the maximum speedup achieved? 

  [a]  482 
  [b]  453 
  [c]  333 

 



The Amdahl’s Law Challenge 
 Fortunately, most applications have tons of 

parallelism 
 Why is that?  Because at a small enough time scales 

all physics is local 
◦ in 1.0 nanosecond, light travels about 0.3 meters 

 However, though the physical equations are 
generally completely parallel 
◦ there are many ways that we can lose parallelism 

when we implement the equations in software 
◦ let us count the ways... 



The Amdahl’s Law Challenge 
[1] The numerical method can preclude parallelism 
[2] The numerical method may be parallel, but its 

expression in the actual software may be serial 
[3] The compiler may be unable to recognize the 

parallelism in the software  
◦ poorly written DO loops, aliasing, badly-written code 

(this is amazingly easy to do) 
[4] It may be impossible to express the parallelism in the 

numerical method in the language  



The Amdahl’s Law Challenge 
[5] Even if the parallelism is recognized by the compiler or expressed 

by the programmer in the language, the compiler may do a poor 
job of mapping the program parallelism to the machine parallelism  

[6] There are very subtle effects that can happen during execution 
even when well written parallel code that is efficiently encoded and 
mapped to an architecture 
◦ load imbalance 
 due to the application and data 
 due to the machine (network congestion, cache behavior, IO 

subsystem) 
◦ small data sets and imbalance between computation and 

communication 
◦ serial bottlenecks 
◦ the OS jitter issue popularized by Sandia 



Keeping Pace with Parallel Systems 
Making Storage Systems Go Faster and 
Scale More 



Storage System Scalability/Speed 
 1990s: Storage interface standards lacked ability to scale 

in both speed and connectivity 
 Industry responded to this with new standard: Fibre 

Channel, SATA, etc. 
 Allowed shared disks, but system software like file 

systems and volume managers not built to exploit this 
 Same old story: software catching up with 

hardware 
 Parallel/cluster file system development begins in the 

1990 
◦ And not just shared disk file systems 

 Variety of commercial and open source 
implementations: 
◦ All assumed you had to support POSIX or something close to it 
◦ PVFS, GPFS, GFS, StorNext, CXFS, etc. 

 Today, acceleration in hardware technologies continues 
SSD performance, interface performance, capacities, 
network performance, etc. 

 



Making Storage Systems Faster and 
More Scalable 
 GFS (Minnesota Global File System) pioneered 

several interesting techniques for cluster (shared 
disk) file systems: 
◦ no central metadata server 
◦ distributed journals for performance, fast recovery 
◦ first Distributed Lock Manager for Linux — now used in 

other cluster projects in Linux 
 Implemented POSIX IO 
◦ Assumption at time was: POSIX is all there is, have to 

implement that 
◦ Kind of naïve, assumed POSIX model was the right one 
◦ UNIX/Windows view of files as linear stream of bytes 

which can be read/written to anywhere in file by multiple 
processors 

◦ Large files, small files, millions of files, directory tree 
structure, synchronous write/read semantics,  etc. all make 
POSIX difficult to implement 
 



Why POSIX File Systems Are Hard 
 They’re in the kernel and 

tightly integrated with 
complex kernel 
subsystems like virtual 
memory 

 Byte-granularity, 
coherency, randomness 

 Users expect them to be 
extremely fast, reliable, 
and resilient 

 Add parallel clients and 
large storage networks 
(e.g., Lustre or Panassas) 
things get even harder 

• POSIX IO was the emphasis 
for parallel HPC IO (1999 
through 2010) until recently 
• HPC community re-thinking 
this 
• Web/cloud has already 
moved on 



Meanwhile: Google File System and its 
Clone (Hadoop) use Co-Design 
 Google and others (Hadoop) went a different direction: 

change the interface from POSIX IO to something inherently 
more scalable 

 Users have to write (re-write) applications to exploit the 
interface 

 All about scalability — using commodity server hardware — 
for a specific kind of workload 

 Hardware-software co-design: restricted semantics 
◦ append-only write semantics from (parallel) producers 
◦ mostly write-once, read many times by consumers 
◦ explicit contract on performance expectations: small reads and 

writes — Fuggedaboutit!  
 Very successful, and Hadoop is becoming something of an 

industry standard  
 Lesson: if solving the problem is really, really hard, look at it a 

different way, move interfaces around, change your 
assumptions (e.g., as in the parallel programming problem) 
 
 



Google/Hadoop File Systems 
 Google needed a storage system for its web index, 

various applications — enormous scale 
◦ GFS paper at FAST conference in 2004 led to 

development of Hadoop, open source GoogleFS 
clone 

 Co-designed file system with applications 
 Applications use map-reduce paradigm 
◦ Streaming (complete) reads of very large 

file/datasets, process this data into reduced form 
(e.g., an index) 
◦ Files access is write-once, append-only, read-many  

 



Map-Reduce 
 cat * | grep | sort | unique -c | cat > file 
 input | map | shuffle | reduce | output 
 Simple model for parallel processing 
 Natural for: 

– Log processing 
– Web search indexing 

  – Ad-hoc queries  
 Popular at Facebook, Google, Amazon etc. to 

determine what ads/products to throw at you 
 Hadoop/Map-Reduce starting to replace traditional 

enterprise data warehouses with low-cost clusters 
 



Scalable File System Goals 

 Build with commodity components that 
frequently fail (to keep things cheap) 
◦ So design assumes failure is common case 

 Nodes incrementally join and leave the 
cluster 

 Scale to 10s to 100s of Petabytes, headed 
towards exabytes; 1000’s to 10s of 
10,000s of storage nodes and clients 

 Automated administration, simplified 
recovery (in theory, not practice) 
 



More Scalable Storage Clusters 
 Ceph – Sage Weil, UCSC : POSIX lite 
◦ Multiple metadata servers, dynamic workload 

balancing 
◦ Mathematical hash to map file segments to nodes 

 Sorrento – UCSB : POSIX with low write-sharing 
◦ Distributed algorithm for capacity and load 

balancing, distributed metadata 
◦ Lazy consistency semantics 

 Ward Swarms – Lee Ward, Sandia 
◦ Similar to Sorrento, uses victim cache and storage 

tiering, allows parallel writes to any available 
storage node for performance (like Hadoop) 



Open Questions in Scalable Storage 
 Tape’s role: 
◦ Accept the fact that its not going away 
◦ Tape is still the best technology for the providing 

infinite data capacity 
 Disk file systems do rude things when they run out 

of space 
 Parallel Distributed File System API going Forward 
◦ pNFS tractions seems limited, but only time will tell 
◦ SMB 2.x/3.x making performance strides, but not 

parallel currently 
◦ POSIX versus Map/Reduce versus ??? 

 Extreme scalability (e.g., exascale) or Federated Designs 
 Ahmdahl’s Law and storage systems 

 



Issues in Scaling Parallel File System 
Workloads 
 Disk drive and disk array performance 

characteristics 
◦ bit error recovery, vibration tolerance, … 
◦ basic randomness of seek operation   

 File system and operating system software 
bottlenecks  
◦ Caching (or not), fs fragmentation, virtual 

memory randomness, etc. 
 Application issues  
◦ level of parallelism in IO 

 Amdahl’s Law effects in large-scale parallel IO  



Aggregate IO Load Imbalance 

 LI = (Tmax – Tavg)/Tavg where Tmax is the 
maximum time to complete an IO 
request across n nodes, and Tavg is the 
average time to complete the IO requests 
for the n nodes  

  Speedup = n/(LI+1)  
 If one node’s IO request takes 2 seconds 

(Tmax), while the remaining 999 node’s IO 
request time (Tavg) averages 1.5, then the 
speedup over the 1000 processors is reduced 
to 750 

 



Software-Hardware Co-Design of First 
Tier Storage Node 
 New hardware 

technologies (SSD, hybrid 
DRAM) pushing the 
limits of OS 
storage/networking 
stack 

 Question: Is it possible 
to co-design custom 
hardware and software 
for first-tier storage 
node? 

 Example: File system in 
VLSI: Hitachi  HNAS 
◦ design FPGA for specific 

performance goal  



Using FLASH in NAS Devices 
 SpecSFS Benchmark #1: standard 15k FC disk setup, 224 

drives, two NTAP 3160 filers.   
◦ Result was about 60k IOPS, ORT of 2.18 msec. 

 SpecSFS Benchmark #2: basically the same setup, but 
replace those 15k drives with 7200rpm SATA + PAM 
cards.  96 drives in this case, and two PAM cards of 
256GB each.   
◦ The result is nearly identical at 60k IOPS and ORT of 2.18 msec 

as well. 

 Replaced lots of expensive 15k drives with fewer (and 
cheaper) 7200rpm drives if you just add a little bit of 
flash memory for metadata processing. 



Nibbler: Co-Design Hardware and 
Software 
 Accelerates 

memcached and first-
tier storage node 
performance via 
SSD’s and hybrid 
DRAM 
◦ Hardware-software 

codesign 
◦ e.g., BlueArc/HDS puts 

file system in VLSI 

 Large, somewhat volatile 
memory 

 Performance first, but also 
power and density 

 First-tier storage node will 
drive ultimate performance 
achievable by this design 



Questions? 
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