

the ceph distributed storage system

sage weil
msst – april 17, 2012

outline

● why you should care
● what is it, what it does
● how it works, how you can use it

● architecture
● objects and data placement
● file system

● big data, cloud
● current status, roadmap
● who we are, why we do this

why should you care about another
storage system?

requirements, time, money

storage requirements

● scale
● terabytes, petabytes, exabytes
● heterogeneous hardware
● reliability and fault tolerance

● diverse storage needs
● object storage
● block devices
● shared file system (POSIX, coherent caches)
● structured data

time

● ease of administration
● no manual data migration, load balancing
● painless scaling

● expansion and contraction
● seamless migration

money

● low cost per gigabyte
● no vendor lock-in
● software solution
● commodity hardware
● open source

what is ceph?

unified storage system

● objects
● small or large
● multi-protocol

● block devices
● snapshots, cloning

● files
● cache coherent
● snapshots
● usage accounting

RADOS

radosgw RBD Ceph DFS

HadoopNetflix VM

open source

● LGPLv2
● copyleft
● free to link to proprietary code

● no copyright assignment
● no dual licensing
● no “enterprise-only” feature set

● active community
● commercial support

distributed storage system

● data center (not geo) scale
● 10s to 10,000s of machines
● terabytes to exabytes

● fault tolerant
● no SPoF
● commodity hardware

– ethernet, SATA/SAS, HDD/SSD
– RAID, SAN probably a waste of time, power, and money

architecture

● monitors (ceph-mon)

● 1s-10s, paxos

● lightweight process

● authentication, cluster membership,
critical cluster state

● object storage daemons (ceph-osd)

● 1s-10,000s

● smart, coordinate with peers

● clients (librados, librbd)

● zillions

● authenticate with monitors, talk directly
to ceph-osds

● metadata servers (ceph-mds)

● 1s-10s

● build POSIX file system on top of objects

rados object storage model

● pools
● 1s to 100s
● independent namespaces or object collections
● replication level, placement policy

● objects
● trillions
● blob of data (bytes to gigabytes)
● attributes (e.g., “version=12”; bytes to kilobytes)
● key/value bundle (bytes to gigabytes)

rados object API

● librados.so
● C, C++, Python, Java. shell.

● read/write (extent), truncate, remove; get/set/remove xattr or key
● like a file or .db file

● efficient copy-on-write clone
● atomic compound operations/transactions

● read + getxattr, write + setxattr
● compare xattr value, if match write + setxattr

● classes
● load new code into cluster to implement new methods
● calc sha1, grep/filter, generate thumbnail
● encrypt, increment, rotate image

object storage

● client/server, host/device paradigm doesn't scale
● dumb servers sit idle
● if storage devices don't coordinate, clients must

● ceph-osds are intelligent storage daemons
● coordinate with peers
● sensible, cluster-aware protocols

● flexible deployment
● one per disk, one per host, one per RAID volume

● sit on local file system
● btrfs, xfs, ext4, etc.

data distribution

● all objects are replicated N times
● objects are automatically placed, balanced, migrated

in a dynamic cluster
● must consider physical infrastructure

● ceph-osds on hosts in racks in rows in data centers

● three approaches
● pick a spot; remember where you put it
● pick a spot; write down where you put it
● calculate where to put it, where to find it

CRUSH

● pseudo-random placement algorithm
● uniform, weighted distribution
● fast calculation, no lookup

● placement rules
● in terms of physical infrastructure

– “3 replicas, same row, different racks”

● predictable, bounded migration on changes
● N → N + 1 ceph-osds means a bit over 1/Nth of

data moves

object placement

pool

placement group (PG)

hash(object name) % num_pg = pg

CRUSH(pg, cluster state, rule) = [A, B]

X

replication

● all data replicated N times
● ceph-osd cluster handles replication

● client writes to first replica

● reduce client bandwidth
● “only once” semantics
● cluster maintains strict consistently

recovery

● dynamic cluster
● nodes are added, removed
● nodes reboot, fail, recover

● “recovery” is the norm
● “map” records cluster state at point in time

– ceph-osd node status (up/down, weight, IP)
– CRUSH function specifying desired data distribution

● ceph-osds cooperatively migrate data to achieve that

● any map update potentially triggers data migration
● ceph-osds monitor peers for failure
● new nodes register with monitor
● administrator adjusts weights, mark out old hardware, etc.

librados

rbd – rados block device

● replicated, reliable, high-performance virtual disk
● striped over objects across entire cluster
● thinly provisioned, snapshots
● image cloning (real soon now)

● well integrated
● Linux kernel driver (/dev/rbd0)
● qemu/KVM + librbd
● libvirt, OpenStack

● sever link between virtual machine and host
● fail-over, live migration

kernel

librbd

rbd
ext4 rbd

KVM/Xen

KVM

libradoslibrados librados

librados, radosgw

● librados
● direct parallel access to

cluster
● rich API
● SaaS infrastructure

● radosgw
● RESTful object storage

– S3, Swift APIs
● proxy HTTP to rados
● ACL-based security for the

big bad internet

radosgw

haproxy

HTTP

radosgw

HTTP

your app

ceph distributed file system

● shared cluster-coherent file system
● separate metadata and data paths

● avoid “server” bottleneck inherent in NFS etc

● ceph-mds cluster
● manages file system hierarchy
● redistributes load based on workload
● ultimately stores everything in objects

● highly stateful client sessions
● lots of caching, prefetching, locks and leases

dynamic subtree partitioning
Root

ceph-mds

● scalable
● arbitrarily partition metadata

● adaptive
● move work from busy to idle

servers
● replicate hot metadata

● efficient
● hierarchical partition preserve

locality

● dynamic
● daemons can join/leave
● take over for failed nodes

slick mds features

$ ls -alSh | head
total 0
drwxr-xr-x 1 root root 9.7T 2011-02-04 15:51 .
drwxr-xr-x 1 root root 9.7T 2010-12-16 15:06 ..
drwxr-xr-x 1 pomceph pg4194980 9.6T 2011-02-24 08:25 pomceph
drwxr-xr-x 1 mcg_test1 pg2419992 23G 2011-02-02 08:57 mcg_test1
drwx--x--- 1 luko adm 19G 2011-01-21 12:17 luko
drwx--x--- 1 eest adm 14G 2011-02-04 16:29 eest
drwxr-xr-x 1 mcg_test2 pg2419992 3.0G 2011-02-02 09:34 mcg_test2
drwx--x--- 1 fuzyceph adm 1.5G 2011-01-18 10:46 fuzyceph
drwxr-xr-x 1 dallasceph pg275 596M 2011-01-14 10:06 dallasceph

● ceph-mds tracks recursive directory stats
● file sizes, counts, ctime
● efficient

snapshots

● volume or subvolume snapshots unusable at petabyte scale
● snapshot arbitrary subdirectories

● simple interface
● hidden '.snap' directory
● no special tools

$ mkdir foo/.snap/one # create snapshot
$ ls foo/.snap
one
$ ls foo/bar/.snap
_one_1099511627776 # parent's snap name is mangled
$ rm foo/myfile
$ ls -F foo
bar/
$ ls -F foo/.snap/one
myfile bar/
$ rmdir foo/.snap/one # remove snapshot

multiple protocols, implementations

● Linux kernel client
● mount -t ceph 1.2.3.4:/ /mnt
● export (NFS), Samba (CIFS)

● ceph-fuse
● libcephfs.so

● your app
● Samba (CIFS)
● Ganesha (NFS)
● Hadoop (map/reduce) kernel

libcephfs

ceph fuse
ceph-fuse

your app

libcephfs
Samba

libcephfs
Ganesha

NFS SMB/CIFS

libcephfs
Hadoop

hadoop

● seamless integration
● Java libcephfs wrapper
● Hadoop CephFileSystem
● drop-in replacement for HDFS

● locality
● exposes data layout
● reads from local replica
● first write does not go to local

node

● can interact “normally” with
Hadoop data
● kernel mount
● ceph-fuse
● NFS/CIFS

● can colocate Hadoop with
“normal” storage
● avoid staging/destaging

distributed computation models

● object classes
● tightly couple

computation with data
● carefully sandboxed
● part of I/O pipeline
● atomic transactions
● rich data abstraction

– blob of bytes (file)
– xattrs
– key/value bundle

● map/reduce
● colocation of

computation and data is
optimization only

● more loosely sandboxed
● orchestrated data flow

between files, nodes
● job scheduling
● limited storage

abstraction

size vs (intra-object) smarts
ob

je
ct

 s
iz

e

object smarts

S3

hbase redis
riak

HDFS

RADOS

cassandra

RADOS object

cloud infrastructure

● compute
● KVM, Xen

● scratch storage
● can't migrate

● persistent block storage
● EBS, RBD

● object storage
● librados, or RESTful

● POSIX file system
● NFS, Gluster, Ceph, etc.

● key/value (NoSQL)
● Cassandra, riak, etc.
● RADOS

● RDBMS
● MySQL, Postgres, etc.

● distributed computation
● Hadoop
● RADOS classes
● new hybrids

can I deploy it already?

● rados object store is stable
● librados
● radosgw (RESTful APIs)
● rbd rados block device
● commercial support

● file system is almost ready
● feature complete
● suitable for testing, PoC, benchmarking
● needs testing, deliberate qa effort for production

roadmap

● RADOS performance
and stability

● RBD caching and
cloning

● radosgw
● additional protocols

(Google, CDMI)
● versioning
● snapshots

● Ceph DFS
● QA
● fine-grained security

(better multi-tenancy)
● fsck and online repair
● robust NFS reexport

● async replication

community efforts

● openstack and RBD
● volume manager improvements

● CloudStack and RBD
● based on improved libvirt support

● Samba
● plug libcephfs into Samba VFS

● Ganesha
● libcephfs-base FSAL
● pNFS

● Hadoop
● Java wrappers

● Chef, Juju
● RDMA

why we do this

● limited options for scalable open source storage
● orangefs, lustre
● glusterfs
● HDFS

● proprietary solutions
● marry hardware and software
● expensive
● don't scale (well or out)

● industry needs to change

who we are

● created at UC Santa Cruz (2007)
● supported by DreamHost (2008-2011)
● spun off as NewCo (2012)

● downtown Los Angeles, downtown San Francisco

● growing user and developer community
● Linux distros
● cloud computing stacks
● OEMs

● we are hiring
● C/C++/Python developers
● devops, testing, proserv engineers

http://ceph.com/

why we like btrfs

● pervasive checksumming
● snapshots, copy-on-write
● efficient metadata (xattrs)
● inline data for small files
● transparent compression
● integrated volume management

● software RAID, mirroring, error recovery
● SSD-aware

● online fsck
● active development community

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37

