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why should you care about another
storage system?

requirements, time, money



  

storage requirements

● scale
● terabytes, petabytes, exabytes
● heterogeneous hardware
● reliability and fault tolerance

● diverse storage needs
● object storage
● block devices
● shared file system (POSIX, coherent caches)
● structured data



  

time

● ease of administration
● no manual data migration, load balancing
● painless scaling

● expansion and contraction
● seamless migration



  

money

● low cost per gigabyte
● no vendor lock-in
● software solution
● commodity hardware
● open source



  

what is ceph?



  

unified storage system

● objects
● small or large
● multi-protocol

● block devices
● snapshots, cloning

● files
● cache coherent
● snapshots
● usage accounting

RADOS

radosgw RBD Ceph DFS

HadoopNetflix VM



  

open source

● LGPLv2
● copyleft
● free to link to proprietary code

● no copyright assignment
● no dual licensing
● no “enterprise-only” feature set

● active community
● commercial support



  

distributed storage system

● data center (not geo) scale
● 10s to 10,000s of machines
● terabytes to exabytes

● fault tolerant
● no SPoF
● commodity hardware

– ethernet, SATA/SAS, HDD/SSD
– RAID, SAN probably a waste of time, power, and money



  

architecture

● monitors (ceph-mon)

● 1s-10s, paxos

● lightweight process

● authentication, cluster membership, 
critical cluster state

● object storage daemons (ceph-osd)

● 1s-10,000s

● smart, coordinate with peers

● clients (librados, librbd)

● zillions

● authenticate with monitors, talk directly 
to ceph-osds

● metadata servers (ceph-mds)

● 1s-10s

● build POSIX file system on top of objects



  

rados object storage model

● pools
● 1s to 100s
● independent namespaces or object collections
● replication level, placement policy

● objects
● trillions
● blob of data (bytes to gigabytes)
● attributes (e.g., “version=12”; bytes to kilobytes)
● key/value bundle (bytes to gigabytes)



  

rados object API

● librados.so
● C, C++, Python, Java.  shell.

● read/write (extent), truncate, remove; get/set/remove xattr or key
● like a file or .db file

● efficient copy-on-write clone
● atomic compound operations/transactions

● read + getxattr, write + setxattr
● compare xattr value, if match write + setxattr

● classes
● load new code into cluster to implement new methods
● calc sha1, grep/filter, generate thumbnail
● encrypt, increment, rotate image



  

object storage

● client/server, host/device paradigm doesn't scale
● dumb servers sit idle
● if storage devices don't coordinate, clients must

● ceph-osds are intelligent storage daemons
● coordinate with peers
● sensible, cluster-aware protocols

● flexible deployment
● one per disk, one per host, one per RAID volume

● sit on local file system
● btrfs, xfs, ext4, etc.



  

data distribution

● all objects are replicated N times
● objects are automatically placed, balanced, migrated 

in a dynamic cluster
● must consider physical infrastructure

● ceph-osds on hosts in racks in rows in data centers

● three approaches
● pick a spot; remember where you put it
● pick a spot; write down where you put it
● calculate where to put it, where to find it



  

CRUSH

● pseudo-random placement algorithm
● uniform, weighted distribution
● fast calculation, no lookup

● placement rules
● in terms of physical infrastructure

– “3 replicas, same row, different racks”

● predictable, bounded migration on changes
● N → N + 1 ceph-osds means a bit over 1/Nth of 

data moves



  

object placement

pool

placement group (PG)

hash(object name) % num_pg = pg

CRUSH(pg, cluster state, rule) = [A, B]

X



  

replication

● all data replicated N times
● ceph-osd cluster handles replication

● client writes to first replica

● reduce client bandwidth
● “only once” semantics
● cluster maintains strict consistently



  

recovery

● dynamic cluster
● nodes are added, removed
● nodes reboot, fail, recover

● “recovery” is the norm
● “map” records cluster state at point in time

– ceph-osd node status (up/down, weight, IP)
– CRUSH function specifying desired data distribution

● ceph-osds cooperatively migrate data to achieve that

● any map update potentially triggers data migration
● ceph-osds monitor peers for failure
● new nodes register with monitor
● administrator adjusts weights, mark out old hardware, etc.



  

librados

rbd – rados block device

● replicated, reliable, high-performance virtual disk
● striped over objects across entire cluster
● thinly provisioned, snapshots
● image cloning (real soon now)

● well integrated
● Linux kernel driver (/dev/rbd0)
● qemu/KVM + librbd
● libvirt, OpenStack

● sever link between virtual machine and host
● fail-over, live migration

kernel

librbd

rbd
ext4 rbd

KVM/Xen

KVM



  

libradoslibrados librados

librados, radosgw

● librados
● direct parallel access to 

cluster
● rich API
● SaaS infrastructure

● radosgw
● RESTful object storage

– S3, Swift APIs
● proxy HTTP to rados
● ACL-based security for the 

big bad internet

radosgw

haproxy

HTTP

radosgw

HTTP

your app



  

ceph distributed file system

● shared cluster-coherent file system
● separate metadata and data paths

● avoid “server” bottleneck inherent in NFS etc

● ceph-mds cluster
● manages file system hierarchy
● redistributes load based on workload
● ultimately stores everything in objects

● highly stateful client sessions
● lots of caching, prefetching, locks and leases



  

dynamic subtree partitioning
Root

ceph-mds

● scalable
● arbitrarily partition metadata

● adaptive
● move work from busy to idle 

servers
● replicate hot metadata

● efficient
● hierarchical partition preserve 

locality

● dynamic
● daemons can join/leave
● take over for failed nodes



  

slick mds features

$ ls -alSh | head
total 0
drwxr-xr-x 1 root            root      9.7T 2011-02-04 15:51 .
drwxr-xr-x 1 root            root      9.7T 2010-12-16 15:06 ..
drwxr-xr-x 1 pomceph         pg4194980 9.6T 2011-02-24 08:25 pomceph
drwxr-xr-x 1 mcg_test1       pg2419992  23G 2011-02-02 08:57 mcg_test1
drwx--x--- 1 luko            adm        19G 2011-01-21 12:17 luko
drwx--x--- 1 eest            adm        14G 2011-02-04 16:29 eest
drwxr-xr-x 1 mcg_test2       pg2419992 3.0G 2011-02-02 09:34 mcg_test2
drwx--x--- 1 fuzyceph        adm       1.5G 2011-01-18 10:46 fuzyceph
drwxr-xr-x 1 dallasceph      pg275     596M 2011-01-14 10:06 dallasceph

● ceph-mds tracks recursive directory stats
● file sizes, counts, ctime
● efficient



  

snapshots

● volume or subvolume snapshots unusable at petabyte scale
● snapshot arbitrary subdirectories

● simple interface
● hidden '.snap' directory
● no special tools

$ mkdir foo/.snap/one    # create snapshot
$ ls foo/.snap
one
$ ls foo/bar/.snap
_one_1099511627776       # parent's snap name is mangled
$ rm foo/myfile
$ ls -F foo
bar/
$ ls -F foo/.snap/one
myfile  bar/
$ rmdir foo/.snap/one    # remove snapshot



  

multiple protocols, implementations

● Linux kernel client
● mount -t ceph 1.2.3.4:/ /mnt
● export (NFS), Samba (CIFS)

● ceph-fuse
● libcephfs.so

● your app
● Samba (CIFS)
● Ganesha (NFS)
● Hadoop (map/reduce) kernel

libcephfs

ceph fuse
ceph-fuse

your app

libcephfs
Samba

libcephfs
Ganesha

NFS SMB/CIFS

libcephfs
Hadoop



  

hadoop

● seamless integration
● Java libcephfs wrapper
● Hadoop CephFileSystem
● drop-in replacement for HDFS

● locality
● exposes data layout
● reads from local replica
● first write does not go to local 

node

● can interact “normally” with 
Hadoop data
● kernel mount
● ceph-fuse
● NFS/CIFS

● can colocate Hadoop with 
“normal” storage
● avoid staging/destaging

 



  

distributed computation models

● object classes
● tightly couple 

computation with data
● carefully sandboxed
● part of I/O pipeline
● atomic transactions
● rich data abstraction

– blob of bytes (file)
– xattrs
– key/value bundle

● map/reduce
● colocation of 

computation and data is 
optimization only

● more loosely sandboxed
● orchestrated data flow 

between files, nodes
● job scheduling
● limited storage 

abstraction



  

size vs (intra-object) smarts
ob

je
ct
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object smarts

S3

hbase redis
riak

HDFS

RADOS

cassandra

RADOS object



  

cloud infrastructure

● compute
● KVM, Xen

● scratch storage
● can't migrate

● persistent block storage
● EBS, RBD

● object storage
● librados, or RESTful

● POSIX file system
● NFS, Gluster, Ceph, etc.

● key/value (NoSQL)
● Cassandra, riak, etc.
● RADOS

● RDBMS
● MySQL, Postgres, etc.

● distributed computation
● Hadoop
● RADOS classes
● new hybrids



  

can I deploy it already?

● rados object store is stable
● librados
● radosgw (RESTful APIs)
● rbd rados block device
● commercial support

● file system is almost ready
● feature complete
● suitable for testing, PoC, benchmarking
● needs testing, deliberate qa effort for production



  

roadmap

● RADOS performance 
and stability

● RBD caching and 
cloning

● radosgw
● additional protocols 

(Google, CDMI)
● versioning
● snapshots

● Ceph DFS
● QA
● fine-grained security 

(better multi-tenancy)
● fsck and online repair
● robust NFS reexport

● async replication



  

community efforts

● openstack and RBD
● volume manager improvements

● CloudStack and RBD
● based on improved libvirt support

● Samba
● plug libcephfs into Samba VFS

● Ganesha
● libcephfs-base FSAL
● pNFS

● Hadoop
● Java wrappers

● Chef, Juju
● RDMA



  

why we do this

● limited options for scalable open source storage 
● orangefs, lustre
● glusterfs
● HDFS

● proprietary solutions
● marry hardware and software
● expensive
● don't scale (well or out)

● industry needs to change



  

who we are

● created at UC Santa Cruz (2007)
● supported by DreamHost (2008-2011)
● spun off as NewCo (2012)

● downtown Los Angeles, downtown San Francisco

● growing user and developer community
● Linux distros
● cloud computing stacks
● OEMs

● we are hiring
● C/C++/Python developers
● devops, testing, proserv engineers

http://ceph.com/



  



  

why we like btrfs

● pervasive checksumming
● snapshots, copy-on-write
● efficient metadata (xattrs)
● inline data for small files
● transparent compression
● integrated volume management

● software RAID, mirroring, error recovery
● SSD-aware

● online fsck
● active development community
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