

Technology Roadmap Comparisons for TAPE, HDD, and NAND Flash: Implications for Data Storage Applications

Outline

- Business as Usual Areal Density Increase → 40% per Year
- Premise: The annual rate of areal density increases for TAPE will likely exceed the annual rate of areal density increases for NAND and HDD
 - TAPE bit cell is large and paths for scaling to higher bit densities exist
 - NAND bit cells and HDD Patterned Media bit cells are approaching nanoscale issues in minimum feature lithography requirements
 - NAND bit endurance or bit retention and HDD bit stability are approaching kT fluctuation issues driven by the small volume of the bit cells at high areal densities (< 1900 nm² bit cell area)
- Comment: TAPE, NAND, and HDD will continue to offer complementary storage solutions
- Implications for TAPE: TAPE volumetric density will increase, allowing for new tape opportunities in a more cost sensitive storage environment
- A Possible Annual Areal Density Growth Scenarios
 - 20% for HDD
 - 20% to 30% for NAND Flash
 - 40% to 80% for TAPE

Storage Component Landscape

Three Components

- HDD

- ~ 500 GB capacity
- NAND Chip ~ 4 GB capacity
- LTO Tape Cartridge ~ 800 TB capacity

630 million units/yr (large commodity base) 4 billion units/yr (large commodity base) 24 million units/yr (no commodity base)

The Industries

	2010	2011	
HDD Revenue	\$33.5 B	\$33.5 B	.
HDD PB Shipped	330000 PB	330000 PB	
HDD \$/GB Shipped	\$0.10/GB	\$0.10/GB	•
NAND Revenue	\$18.5 B	\$21.5 B	.
NAND PB Shipped	10,400 PB	18,600 PB	
NAND \$/GB	\$1.77/GB	\$1.16/GB	•
TAPE LTO Cartridge Revenue	\$0.7 B	\$0.7B	.
TAPE LTO Cartridge PB Shipped	15,300 PB	17,800 PB	
TAPE LTO Cartridge \$/GB	\$0.046/GB	\$0.038/GB	•

Thailand Floods Industry Consolidation

Transition from 30 nm to 20 nm Lithography

Introduction of LTO5 **Tape Generation**

Areal Density Overview (a moving target -- concentrate on YE 2011 values)

Storage Bit Cells and Extendability

Outline

- Areal density landscape for TAPE, HDD, NAND
- Implications of continued 40% annual areal density increases
- Bit cell landscape and lithography roadmaps
- Volumetric density examples
- TAPE , NAND, HDD landscapes
- Areal density increase scenarios for the next 4 year period
- Conclusions

Storage Device Density Landscape – A History

- HDD
 - 1998 2002 density increases at 100% per year (GMR)
- TAPE
 - Sustained 40% density increases with demos showing potential for greater increases
- NAND
 - 2005 -- transition to 2 bit/cell technology (endurance sacrifice)

7

Bit Cell Implications for 40% Annual Areal Density Increases

TECHNOLOGY METRIC	2010	2014 (40% / Yr)
<u>TAPE</u>		
Areal Density	1.2 Gbit / in ²	4.8 Gbit / in ²
Bit Length	8000 nm	2000 nm
Bit Width	65 nm	65 nm
Minimum Feature	4000 nm	1000 nm
<u>HDD</u>		
Areal Density	635 Gbit / in²	2500 Gbit / in ²
Bit Length	74 nm	19 nm
Bit Width	13.5 nm	13.5 nm
Minimum Feature	37 nm	10 nm
NAND Flash		
Areal Density	330 Gbit / in ²	1300 Gbit / in ²
Bit Length	45 nm	20 nm
Bit Width	45 nm	20 nm
Minimum Feature	25 nm	12 nm

Nano Patterning Landscape

 International Technology Roadmap for Semiconductors (ITRS) Update on Minimum Feature Processing – July 14, 2010

	2010	2011	2013	2016
NAND	32 nm¹	28 nm	23 nm	16 nm
DRAM	45 nm	40 nm	32 nm	23 nm
MPU/ASIC	45 nm	38 nm	27 nm	19 nm

1. Intel/Micron reports 25 nm 2Q 2010

 International Technology Roadmap for Semiconductors (ITRS) Update on Minimum Feature Processing – July 13, 2011

	2011	2013	2016
NAND	22 nm²	18 nm	15 nm
DRAM	36 nm	28 nm	20 nm
MPU/ASIC	38 nm	27 nm	19 nm

2. Intel/Micron reports 20 nm 2Q 2011

Lithography Roadmaps

- Minimum feature typically reduced by 12% per year
- Intel/Micron has consistently exceeded ITRS goals

NAND and HAMR Optics -- Today

- NAND uses 193 nm wavelength light to resolve 20 nm features
 - Phase shift masking

 - Immersion lithography Double exposure at 2X line pitch _
 - Chemically amplified resists
- HAMR uses ~ 500 nm wavelength light to resolve 100 nm features today and 35 nm features for 2 Tbit/in² in the 2014 time frame
 - Waveguide propagation
 - Waveguide termination with aperture feature (minimum feature)
 - Near field thermal effects
 - Media layer heat sinking

Local Volumetric Density Comparisons for 2010

- Packaging and Media Thickness and Substrate Thickness
- Tape

-1.2 Gb/in²

- -5 um tape thickness
- -Local Volumetric Density = 6.0 Tb/in³

Disk

- -635 Gb/in²
- $-\frac{1}{2}$ disk thickness = 400 um
- -Slider thickness = 250 um
- Disk to disk separation = 2000 um
 Local Volumetric Density = 15.8 Tb/in³

NAND

- -330 Gb/in²
- Thinned substrate thickness = 200 um
- Stacking spacing = 200 um
- -Local Volumetric Density = 20.1 Tb/in³

Volumetrics – True Component Level Comparisons

• YE 2010

	SSD (FLASH) Drive	HDD (DISK) Drive	LTO5 (TAPE) Cartridge
Capacity	0.5 TB	3.0 TB	1.5 TB
Price	\$1500	\$200	\$50
\$/GB	\$3.00	\$0.07	\$0.03
Components	128 166 mm² 4GB chips	4-5 87 mm disk platters	1 tape cartridge (12.5 mm x 820 m)
Device Volume	4.2 in ³	24.2 in ³	14.8 in ³
Storage Density	120 GB/in ³	120 GB/in ³	101 GB/in ³

• MY 2011

	SSD (FLASH) Drive	HDD (DISK) Drive	LTO5 (TAPE) Cartridge
Capacity	0.5 TB	3.0 TB	1.5 TB
Price	\$1000	\$150	\$50
\$/GB	\$2.00	\$0.05	\$0.03
Components	<mark>64</mark> 166 mm² 8GB chips	<mark>3-4</mark> 87 mm disk platters	1 tape cartridge (12.5 mm x 820 m)
Device Volume	4.2 in ³	24.2 in ³	14.8 in ³
Storage Density	120 GB/in ³	120 GB/in ³	101 GB/in ³

TAPE Landscape – 1.5 TB LTO-5 Tape Cartridge

- Tape data storage capacity achieved using 840 m tape length, 12.8 mm wide, and 6.4 um thick
 - Tape surface area in a cartridge (10.5 x 10⁶ mm²) is equivalent to 148 12" Si wafers or 1736 3.5" disk surfaces
 - Some surface area utilized for edge guards, servo tracks, leading and trailing tape end lengths leading to surface storage efficiencies of $\sim 65\%$

1.5 TB LTO-5 Cartridge Details

- Areal Density (Maximum)
- Areal Density (Average) → 0.72 Gbit/in²
- Memory Cell Area _
- Total Tracks
- Trackwidth
- Bit Length
- Bit Aspect Ratio
- TPI, BPI
- Read Width/Minimum Feature $\rightarrow \sim \frac{1}{2}$ Trackwidth, ~ 4.0 um
- Memory Cell Area (F²)

- → 1.2 Gbit/in²
- → 520000 nm² or 0.52 um²
- → 1280
 - → 8100 nm or 8.1 um
 - → 65 nm
 - → ~ 125 !!!
 - → 3.1 KTPI, 385 KBPI

 - → ~ 0.03F² !!!

1.5 TB LTO-5 Tape Head

• The Head

- 2 16 element read/write modules
- Write on one module, read verify on other module

Tape Landscape – Anticipated Density Increases

- Media:
 - Recording demonstrations suggest that tape areal densities in excess of 25 Gb/in² can be supported (20X)
 - SNR is the issue
- Head:
 - The recent transition to GMR based sensors provides paths for maintaining amplitude as trackwidth decreases
 - Present Trackwidths and MR widths in the 4 um range are 200X larger than present IC minimum features (20 nm to 25 nm) so lithography limits are non issues

Bit Cell:

- Tape uses HDD BPI values of 5 years ago with HDD TPI values of 12+ years ago so utilizing HDD head expertise will allow for TPI intensive areal density increases
- The volume and the surface area of the bit cell are large so kT fluctuations are minimized

BUT

- Flexible media and track following
- Large "head tape" spacing (i.e. recession changes during head lifetime)

17 April 18, 2012 IBM Tape Head Development RFontana GDecad SHetzler

Track Following and the MR Width

- The read width in a tape head is designed to be smaller (~ 4um for an 8 um track pitch) than the written track width (write wide read narrow) in order to accommodate variations in the ability of the sensor to "track" the written track of interest
- Some of these variations do not readily scale with trackwidth!!!
- Tracking Categories
 - Head Positioning (signal processing opportunities)
 - Position error signal
 - Write head incursion on adjacent track
 - Tape Dimensional Stability (TDS)
 - Not an issue for HDD
 - Environmental (temp and humidity) in ppm
 - Tension
 - If TDS is 500 ppm then tracks on tape written by adjacent elements could move by 0.09 um and tape tracks written by element 1 and element 16 could move by 1.35 um!!
 - Head Wafer Parameters (good scaling)
 - Data writer and reader width control
 - Servo reader alignment to data writer and data reader

Head Recession Issues

Head to Tape (Media) Spacing

- Head structures recede (i.e. wear) from edges of closure and substrate during tape cycles
- This recession can be > 10 nm
 (A significant departure from HDD environment)
- The tape media is thick > 50 nm
- Scaling to higher BPI densities requires reducing media thickness and reducing recession, i.e.
 Control of the head to tape spacing!!

Intel Micron 8 GB NAND Chip (2 bit per cell)

- Chip Area
 - Active Memory Area
 - Minimum Feature (F)
 - Memory Cell Area
 - Memory Cell Area
 - Local Areal Density

- →167 mm² (16.5 mm x 10.1 mm)
- →122 mm² (73% efficiency)
- → 25 nm
 - →1906 nm²
- → 3 F² (not 2 F² !!!)
- → 330 Gb/in²

<u>8 GB 20 nm IM Flash</u>

16.5 mm -

8 GB 25 nm IM Flash

- Chip Area
- Active Memory Area
- Minimum Feature (F)
- Memory Cell Area
- Memory Cell Area
- Local Areal Density

- →118 mm² (12.5 mm x 9.5 mm)
- →71 mm² (63% efficiency)
- → 20 nm
 - →1109 nm²
 - → 2.8 F² (not 2 F² !!!)
 - → 560 Gb/in²

NAND Landscape – Areal Density and Cost

 Use Intel Micron 8GB NAND device as a benchmark, assume \$1500 for 300 mm wafer processing

	2010	2011	2012-2013	2014 (?)
Device Capacity	8 GB	8 GB	16 GB	32 GB
Minimum F	25 nm	20 nm	16 nm	12.5 nm
Areal Density	330 Gbit/in ²	550 Gbit/in ²	660 Gbit/in ²	1330 Gbit/in ²
Devices / 300 mm Wafer	364	522	364	364
TB on 300 mm Wafer	2.9 TB	4.2 TB	5.8 TB	11.2 TB
\$ / GB at Wafer Level	\$0.52	\$0.36	\$0.26	\$0.13

- What could change? Transition to 3 bit per cell (8 voltage states) design.
 There is a reason why Intel Micron did not do this at the 25 nm node
- A comment \$/GB in this table
 - It is a "raw" component cost before sawing, thinning, packaging
 - A good HDD comparison is to use \$3 / head and \$3 / disk so a raw component cost to support a 1 TB platter is \$9 or \$0.01 /GB

HDD Landscape – 750 GB Platter (3.5" disc, 2 surfaces)

- Data storage capacity (GB) for a 3.5"platter ~ 1.2 (moving to 1.4) X Maximum Areal Density (Gb/in²) of the system → 635 Gbit/in² areal density supports 750 GB platter
 - The "Maximum Areal Density" on the disk surface is at the inner tracks of a band
 - Surface area of a 3.5" platter ~ 17.5 in² → Average Areal Density on the platter is ~ 50% of the Maximum Areal Density
 - Overhead for edge exclusions, slider width, coding format,

750 GB platter details

- Areal Density (Maximum)
- Areal Density (Average)
- Memory Cell Area
- Bit Aspect Ratio = 5.5 Scenario
 - Minimum Feature F
 - Memory Cell Area
 - MRw, Track Pitch, Bit Length
 - TPI, BPI
- Bit Aspect Ratio = 1.0 Scenario
 - Minimum Feature F
 - Memory Cell Area
 - MRw, Track Pitch, Bit Length
 - TPI, BPI

- → 635 Gbit/in²
- → 360 Gbit/in² (60% efficiency)
- → 1000 nm²
- → 37 nm (MR sensor width)
- → 0.73 F²
- → 37 nm, 74 nm, 13.5 nm
- → 338 KTPI, 1850 KBPI
- → 16 nm (MR sensor width)
- → 4.00 F²
- → 16 nm, 32 nm, 16 nm
- ➔ 790 KTPI, 790 KBPI

HDD Landscape

- Continued 40% annual areal density increases will eventually require minimum features sizes for the MR sensor with smaller dimensions than semiconductor roadmap projections. *Fortunately MR sensors are isolated* <u>structures.</u>
- The decrease in bit aspect ratio (BAR) results in lithography driven areal density strategies, e.g. pattern media
- Media patterning strategies rely on introduction of imprint technology, a semiconductor roadmap strategy for 2014
 - E-beam lithography at 1X for master stencils
 - Patterning/Planarization/Stencil development and infrastructure → COST and TIME
- Energy assisted strategies must define trackwidths, ~ 2X MRw, using heat, by adding additional components onto the head slider
- Any new technology must be sustainable in the 2.5 Tbit/in² environment

M. Re, "Has HAMR reached a critical mass", The Information

Storage Bit Cells and Extendability

Patterned Media

Areal Density Scenarios relative to 2014

HDD

- <u>Conservative</u>: 20% density increases achievable
- Aggressive: 30% density increases are challenging

NAND Flash

- <u>Conservative</u>: 20% density increases are achievable given the lithography roadmap strategies project reducing feature size 10% annually
- <u>Aggressive</u>: Sustained 30% density increases are difficult given the conventional understanding of lithography roadmaps and time driven optical processing tooling strategies. However, INTEL-MICRON has demonstrated a 40% areal density improvement from 2010 to 2011.

TAPE

- <u>Conservative</u>: 40% density increases achievable with anticipation of following the LTO Roadmap presently at Generation 5
- <u>Aggressive</u>: 80% density increases are possible since the needed transducer technology presently exists in the HDD environment but "mechanical" issues related to positioning, wear, and tape stability
 <u>Eight-Generation Roadmap</u>
 <u>must be addressed – not NANOSCALE issues</u>

Note: Compressed capacities for generations 1-5 assume 2:1: compression. Compression capacities for generations 0-6 assume 2:5:1 compression (achieved with larger comp Source: The LTO Program. The LTO Ultrium readmap is subject to change without notice and represents goals and objectives only. Linear Tape-Open, UTO, the LTO Boy, Ultrium, and the Ultrium log are registered trademarks of HP, IBM and Quantum in the US and other countries.

narios for 2014	Historical	Conservative	Tape Aggressive
Areal Density Growth (Specifics)	40%/yrTAPE 40%/yrHDD 40%/yrNAND	40%/yrTAPE 20%/yrHDD 20%/yrNAND	80%/yrTAPE 20%/yrHDD 20%/yrNAND
<u>TAPE</u>			
Areal Density	4.8 Gbit/in ²	4.8 Gbit/in ²	12.0 Gbit/in ²
Minimum Feature	1.0 um	1.0 um	0.4 um
Cartridge Capacity	6.0 TB	6.0 TB	15.0 TB
Volumetric Density	404 GB/in ³	404 GB/in³ 🔆	1000 GB/in ³ 🔆
HDD		1	1
Areal Density	2500 Gbit/in ²	1300 Gbit/in ²	1300 Gbit/in ²
Minimum Feature	0.010 um	0.018 um	0.018 um
HDD Capacity ¹	12.0 TB	6.0 TB	6.0 TB
Volumetric Density	480 GB/in ³	240 GB/in³ 🔆	240 GB/in³ 🔆
NAND Flash		1	t t
Areal Density	1300 Gbit/in ²	700 Gbit/in ²	700 Gbit/in ²
Minimum Feature	0.012 um	0.016 um	0.016 um
Chip Capacity	32 GB	24 GB	24 GB
SSD Capacity ²	2 TB	1.2 TB	1.2 TB
Volumetric Density	480 GB/in ³	300 GB/in ³ 🔆	300 GB/in ³

Annual Areal Density Growth Rate Scenarios

- HDD 20% to 25% Transition to New Technology, Sensor Output, Lithography
- NAND Flash 25% to 30% Lithography and Endurance
- TAPE 40% to 80% -- No Lithography Issues, Mechanical Realities

Summary

Similarities: TAPE relative to NAND and HDD

- Device volumetric densities comparable in 1 TB capacity range
- Areal efficiencies at the media surface area are comparable at ~ 65%

Differences: TAPE relative to NAND and HDD

- Area of bit cell ~200X larger, Media thickness ~200X thinner
- No thermal kT fluctuations that impact endurance or bit cell stability
- Lithography requirements not dependent on semiconductor roadmap innovations

Realities

- TAPE areal density increases will come from existing technology presently practiced by HDD, i.e. evolutionary.
- HDD areal density increases will come from "revolutionary" technology
- NAND areal density increases are driven by lithography (evolutionary), by multi bit cell designs (revolutionary).

Numbers

- Today's lithographic features are **20 nm**; achieving **16 nm** is difficult for NAND and HDD
- Areal Densities: HDD ~ 700 Gbit/in², NAND ~ 500 Gbit/in², TAPE ~ 2 Gbit/in²
- NAND cost is **10X** greater than HDD cost. HDD cost is **2.5X** greater than TAPE cost
- Moore's Law, i.e. capacity doubling per unit area every two years (40% per year), will change for NAND and TAPE

Storage Device Density Landscape – A Summary

- HDD → 20% to 25% annual density increases
- NAND → 25% to 30% annual density increases
 - \rightarrow 40% annual areal density increases; likely greater (80%??)

YEAR

TAPE

AREAL DENSITY (Gbit/in²)