
Integrating Flash-based SSDs into the Storage
Stack

Raja Appuswamy, David C. van Moolenbroek,
Andrew S. Tanenbaum

Vrije Universiteit, Amsterdam

April 19, 2012



Introduction: Hardware Landscape

$/GB of flash SSDs is still much higher than HDDs

Flash-only installations are prohibitively expensive

Hybrid Storage Architectures (HSA) - a viable alternative

Use high-performance SSDs in concert with high-density HDDs

Caching HSAs

Extends the two-level RAM/HDD memory hierarchy
SSDs used as intermediate caches

Dynamic Storage Tiering HSAs

Establishes tiers of devices based on performance
SSDs used for primary data storage



Introduction: Complex Workloads

The duality of storage workloads

Isolated: well-defined app-specific access patterns
Virtualized: disjoint I/O requests blended into a single stream

Two fundamental questions need to be answered

How do DST/Caching systems fare under such workloads?
Is the “one-architecture-per-installation” approach correct?

We need a modular, flexible hybrid storage framework

Perform side-by-side comparison of various architectures
Understand the impact of design alternatives



The Loris Storage Stack - Layers and Interfaces

File-based interface between layers

Each file has a unique file identifier
Each file has a set of attributes

File-oriented requests:

create truncate
delete getattr
read setattr
write sync



Loris - Division of Labor

Physical

Naming

Cache

Logical

POSIX call processing
Directory handling

Data caching

File-level RAID

Parental checksums

Metadata caching

On-disk layout



Loris: A Hybrid Storage Framework

Functionalities required to support DST/Caching

Collecting access statistics to classify data
Transparent background migration

We extended the Logical Layer

Exploiting the logical file abstraction
Access statistics reflect “real” storage workload

Flexible, modular plugin-based realization

Data collection plugin gathers statistics
Migration plugin handles transparent migration



Loris: Data Collection Plugin

Several access statistics proposed by prior research

Extent-level IOPS and bandwidth statistics (EDT-DST)
Block-level access frequency (Azor-Caching)

Our current implementation is based on Inverse Bitmaps

Compute a bitmap value for each read/write operation

b = 26−blog2(N)c (1)

Bitmap value added to a per-file, in-memory counter
Counter value indicates “hotness” of each file

Prioritizes small, random I/Os over large, sequential ones



Loris-based Hybrid Systems

All Loris-based hybrid systems are file based

Migration/Caching at whole-file granularities
File granularity is only a limitation of the current prototype

Inverse Bitmaps used for “hot” data identification

Data collection techniques are architecture neutral

All hybrid systems share the SSD cleaner implementation
Cleaning is triggered reactively

Side effect of writes that encounter a lack of space
Both foreground and background writes trigger cleaning



Loris-based Conventional Hybrid Systems

Popular DST/Caching variants
Interval-driven Hot-DST

Migrates “hot” files to SSD tier periodically
Migration interval is an important design parameter

On-demand Write-through Caching

Caches “hot” files in SSD tier as a side effect of read operation
Updates both copies on writes



Loris-based Unconventional Hybrid Systems

On-demand Hot-DST

Migrate “hot” files as a side-effect of read operation
Absence of a data copy in contrast to Caching

Interval-driven Write-through Caching

Periodically cache “hot” files in SSD
Low-overhead SSD cleanup in contrast to DST

On-demand Cold-DST

Initially allocate all files in SSD
SSD cleaner evicts “cold” files to accommodate new files
Migrate back once-cold, but now-hot files from HDD



Benchmarks and Workload Generators: Quirks

Used variety of benchmarks/workload generators

File Server, Web Server, and Mail Server workload types
Parameters: file size, dir depth, r/w ratio, etc.

Benchmarks lack locality by default
Uniform/random access pattern
Grossly underestimates effectiveness of DST/Caching
Need to extract workload properties from file system traces

Beware of transaction-bound benchmarks
PostMark unlike FileBench is transaction bound
Interval-based systems might fail to reach equilibrium



Results: Caching vs Hot-DST

Caching excels in read-heavy workloads (WebServer)

Interval-driven/on-demand Caching faster than DST
Cheap SSD cleanup by cached copy invalidation

Hot-DST excels in write-heavy workloads (FileServer)

Interval-driven/on-demand DST faster than Caching
No expensive synchronization of cached copy

Is write-back caching worth the complexity?

Complicates consistency/availability maintenance
But offers Cache-like read and DST-like write performance



Results: Caching vs Hot-DST (2)

On-demand migration/caching systems outperform their
interval-driven counterparts

Quick responsiveness in read-heavy workloads
But why is this the case in write-heavy workloads?

“Append-Read”–Inverse Bitmap interaction

An append operation first reads last file block
A single block read results in high increment to access counter
Actual write buffered in OS cache
On-demand migration migrates/caches file to/in SSD
SSD services the write operation at a later time

Need for semantic awareness

In the long run, append reads fill SSD with write-only logs
Being file aware, Loris can isolate append reads



Results: Cold-DST

Cold-DST outperforms rest under most workloads

Buffering allocation writes in the SSD tier boosts performance
Scan-resistant Inverse Bitmaps retains hot files in the SSD tier
Scales better as it avoids unnecessary background migration
Configuration free unlike Interval-driven systems

Workload patterns also favor Cold-DST architecture

90% of newly created files are opened less than 5 times
Proactive cold migration can exploit SSD parallelism to
improve performance



Results: Cold-DST (2)

Cold-DST systems share several advantages with write-back
caching without their disadvantages

No synchronization overhead for maintaining consistency
Efficient space utilization
Admitting allocation writes and sieving “cold” data writes

However, more research is required to address
Accelerated SSD wear due to excessive writes

Are recent SW/HW reliability techniques sufficient?

Performance deterioration caused by using all SSD capacity

Can over provisioning solve this problem?

Performance deterioration caused by high-cost random writes

Is random write performance still an issue with modern SSDs?



Conclusion

Hybrid storage systems are effective and efficient

No one architecture fits all workloads - Not yet!

Can Cold-DST be the last word in hybrid architectures?
How does Cold-DST stack up wrt write-back caching?

Pairing workloads with ideal architectures

Preliminary results under virtualized workloads are encouraging

More results/details in the paper


