Integrating Flash-based SSDs into the Storage

Stack

Raja Appuswamy, David C. van Moolenbroek,
Andrew S. Tanenbaum

Vrije Universiteit, Amsterdam

April 19, 2012



Introduction: Hardware Landscape

$/GB of flash SSDs is still much higher than HDDs

e Flash-only installations are prohibitively expensive

Hybrid Storage Architectures (HSA) - a viable alternative
e Use high-performance SSDs in concert with high-density HDDs

Caching HSAs

o Extends the two-level RAM/HDD memory hierarchy
e SSDs used as intermediate caches

@ Dynamic Storage Tiering HSAs

o Establishes tiers of devices based on performance
e SSDs used for primary data storage



Introduction: Complex Workloads

@ The duality of storage workloads

o lIsolated: well-defined app-specific access patterns
o Virtualized: disjoint /O requests blended into a single stream

@ Two fundamental questions need to be answered

e How do DST/Caching systems fare under such workloads?
o Is the “one-architecture-per-installation” approach correct?

@ We need a modular, flexible hybrid storage framework

e Perform side-by-side comparison of various architectures
e Understand the impact of design alternatives



The Loris Storage Stack - Layers and Interfaces
o File-based interface between layers

e Each file has a unique file identifier Naming

e Each file has a set of attributes

. . L I
o File-oriented requests:
Create truncate

delete getattr Disk
read setattr driver

write sync




Loris - Division of Labor

: POSIX call processing
Namlng —a Directory handling

Cache / Data caching

Logical e File-level RAID
; —=m Metadata caching
PhySICal = Pgrental checksums

On-disk layout



Loris: A Hybrid Storage Framework

VFS

e Functionalities required to support DST /Caching

o Collecting access statistics to classify data .
o Transparent background migration
@ We extended the Logical Layer
ogical

o Exploiting the logical file abstraction .
o Access statistics reflect “real” storage workload PhyS|c

Disk
driver

o Flexible, modular plugin-based realization

o Data collection plugin gathers statistics
o Migration plugin handles transparent migration




Loris: Data Collection Plugin

@ Several access statistics proposed by prior research

o Extent-level IOPS and bandwidth statistics (EDT-DST)
o Block-level access frequency (Azor-Caching)

@ Our current implementation is based on Inverse Bitmaps
e Compute a bitmap value for each read/write operation
b = 26— Lleg:(N)] (1)

e Bitmap value added to a per-file, in-memory counter
o Counter value indicates “hotness” of each file

@ Prioritizes small, random 1/Os over large, sequential ones



Loris-based Hybrid Systems

@ All Loris-based hybrid systems are file based

o Migration/Caching at whole-file granularities
o File granularity is only a limitation of the current prototype

@ Inverse Bitmaps used for “hot" data identification
e Data collection techniques are architecture neutral

@ All hybrid systems share the SSD cleaner implementation
o Cleaning is triggered reactively

o Side effect of writes that encounter a lack of space
e Both foreground and background writes trigger cleaning



Loris-based Conventional Hybrid Systems

e Popular DST/Caching variants
e Interval-driven Hot-DST

o Migrates “hot” files to SSD tier periodically
o Migration interval is an important design parameter

e On-demand Write-through Caching

o Caches "hot” files in SSD tier as a side effect of read operation
e Updates both copies on writes



Loris-based Unconventional Hybrid Systems

@ On-demand Hot-DST

o Migrate “hot" files as a side-effect of read operation
o Absence of a data copy in contrast to Caching

o Interval-driven Write-through Caching

e Periodically cache “hot” files in SSD
o Low-overhead SSD cleanup in contrast to DST

@ On-demand Cold-DST
o Initially allocate all files in SSD
e SSD cleaner evicts “cold” files to accommodate new files
e Migrate back once-cold, but now-hot files from HDD



Benchmarks and Workload Generators: Quirks

@ Used variety of benchmarks/workload generators

o File Server, Web Server, and Mail Server workload types
o Parameters: file size, dir depth, r/w ratio, etc.

@ Benchmarks lack locality by default

o Uniform/random access pattern
o Grossly underestimates effectiveness of DST/Caching
o Need to extract workload properties from file system traces

@ Beware of transaction-bound benchmarks

e PostMark unlike FileBench is transaction bound
o Interval-based systems might fail to reach equilibrium



Results: Caching vs Hot-DST

o Caching excels in read-heavy workloads (WebServer)

o Interval-driven/on-demand Caching faster than DST
o Cheap SSD cleanup by cached copy invalidation

@ Hot-DST excels in write-heavy workloads (FileServer)

o Interval-driven/on-demand DST faster than Caching
o No expensive synchronization of cached copy

@ Is write-back caching worth the complexity?

o Complicates consistency/availability maintenance
o But offers Cache-like read and DST-like write performance



Results: Caching vs Hot-DST (2)

@ On-demand migration/caching systems outperform their
interval-driven counterparts
e Quick responsiveness in read-heavy workloads
e But why is this the case in write-heavy workloads?

o "“Append-Read"”—Inverse Bitmap interaction
e An append operation first reads last file block
A single block read results in high increment to access counter
Actual write buffered in OS cache
On-demand migration migrates/caches file to/in SSD
SSD services the write operation at a later time

@ Need for semantic awareness

o In the long run, append reads fill SSD with write-only logs
e Being file aware, Loris can isolate append reads



Results: Cold-DST

@ Cold-DST outperforms rest under most workloads

Buffering allocation writes in the SSD tier boosts performance
Scan-resistant Inverse Bitmaps retains hot files in the SSD tier
Scales better as it avoids unnecessary background migration
Configuration free unlike Interval-driven systems

@ Workload patterns also favor Cold-DST architecture
e 90% of newly created files are opened less than 5 times
e Proactive cold migration can exploit SSD parallelism to
improve performance



Results: Cold-DST (2)

@ Cold-DST systems share several advantages with write-back
caching without their disadvantages
e No synchronization overhead for maintaining consistency
o Efficient space utilization
e Admitting allocation writes and sieving “cold” data writes

@ However, more research is required to address
o Accelerated SSD wear due to excessive writes
o Are recent SW/HW reliability techniques sufficient?
o Performance deterioration caused by using all SSD capacity
o Can over provisioning solve this problem?
e Performance deterioration caused by high-cost random writes
o Is random write performance still an issue with modern SSDs?



Conclusion

Hybrid storage systems are effective and efficient

No one architecture fits all workloads - Not yet!

e Can Cold-DST be the last word in hybrid architectures?
e How does Cold-DST stack up wrt write-back caching?

Pairing workloads with ideal architectures
e Preliminary results under virtualized workloads are encouraging

More results/details in the paper



