
Mercury: Host-side
Flash Caching
for the Data Center

April 20, 2012 28th IEEE Conference on Mass Storage Systems and Technologies (MSST)

Steve Byan James Lentini

Anshul Madan Luis Pabón

Michael Condict Jeff Kimmel

Steve Kleiman Christopher Small

Mark Storer

Advanced Technology Group

NetApp

Data Center with Flash SSDs

28th IEEE Conference on Mass Storage Systems and Technologies (MSST) 2

FCoE/iSCSI/NFS/CIFS

How do we make effective use of flash SSDs while

preserving the benefits of shared storage?

Shared Compute Shared Storage

Outline

Part I: Architecture

Part II: Design and Implementation

Part III: Evaluation

28th IEEE Conference on Mass Storage Systems and Technologies (MSST) 3

Part I. Architecture

28th IEEE Conference on Mass Storage Systems and Technologies (MSST) 4

Four Architectural Goals

 Consistently High Performance

 Highly Available

 Correct and Consistent

 Simple Management Integration

5 28th IEEE Conference on Mass Storage Systems and Technologies (MSST)

Consistently High Performance

Goals

 Realize the low latency access

 Meet Service Level Objective (SLO) after

restart

Consequences

 Direct-attached to host

 Persistent, preferably durable

6 28th IEEE Conference on Mass Storage Systems and Technologies (MSST)

Highly Available

Goal

 Never lose data in any situation

Consequence

 Write-through

7 28th IEEE Conference on Mass Storage Systems and Technologies (MSST)

Correct and Consistent

Consequences

 Cache non-shared

objects

 Invalidate on migration,

restore, etc.

Goals

 Consistency with

storage array

 Consistent with peers

28th IEEE Conference on Mass Storage Systems and Technologies (MSST) 8

Simple Management Integration

Goal

 Simple and transparent management

Consequence

 Hypervisor integration

9 28th IEEE Conference on Mass Storage Systems and Technologies (MSST)

Part II. Design and Implementation

28th IEEE Conference on Mass Storage Systems and Technologies (MSST) 10

Implementation Overview

11 28th IEEE Conference on Mass Storage Systems and Technologies (MSST)

Guest VM

Local

Flash

QEMU

network

FCoE/iSCSI/NFS/CIFS

virtual device emulation

Mercury Cache

I/O Stack

Shared Storage

Linux with KVM

user

kernel

 Write-through

– Simplifies cache

consistency

 Persistent

– Warm cache on restart

– Cache durability after a

crash is future work

Simplified I/O Flow

12 28th IEEE Conference on Mass Storage Systems and Technologies (MSST)

Start Write? Hit? Admit? End

Hit?

Perform

I/O

Insert Into

Cache

No (read)

Yes No

Read from

Cache

Yes

No

Invalidate

Yes

Yes

No

Read Processing Example (1 of 6)

13 28th IEEE Conference on Mass Storage Systems and Technologies (MSST)

Start Write? Hit? Admit? End

Hit?

Perform

I/O

Insert Into

Cache

No (read)

Yes No

Read from

Cache

Yes

No

Invalidate

Yes

Yes

No

Read Processing Example (2 of 6)

14 28th IEEE Conference on Mass Storage Systems and Technologies (MSST)

Start Write? Hit? Admit? End

Hit?

Perform

I/O

Insert Into

Cache

No (read)

Yes No

Read from

Cache

Yes

No

Invalidate

Yes

Yes

No

Read Processing Example (3 of 6)

15 28th IEEE Conference on Mass Storage Systems and Technologies (MSST)

Start Write? Hit? Admit? End

Hit?

Perform

I/O

Insert Into

Cache

No (read)

Yes No

Read from

Cache

Yes

No

Invalidate

Yes

Yes

No

Read Processing Example (4 of 6)

16 28th IEEE Conference on Mass Storage Systems and Technologies (MSST)

Start Write? Hit? Admit? End

Hit?

Perform

I/O

Insert Into

Cache

No (read)

Yes No

Read from

Cache

Yes

No

Invalidate

Yes

Yes

No

How is a hit detected?

Detecting Cache Hits

 All cache metadata in RAM for speed.
– Mercury is a second-level cache →

 modest hit rate →

 minimize cache overhead

– Memory-to-cache ratio is 0.5%

 (e.g., 500 GB cache requires 2.5 GB of RAM)

 Cache headers
– One header for each block in the cache

– Implemented as a simple array

 Address Map
– Dictionary maps (primary storage, LBA) keys to

header index values

– Implemented with hash table, O(1) lookup time

17 28th IEEE Conference on Mass Storage Systems and Technologies (MSST)

Data Structures

28th IEEE Conference on Mass Storage Systems and Technologies (MSST) 18

Read Processing Example (5 of 6)

19 28th IEEE Conference on Mass Storage Systems and Technologies (MSST)

Start Write? Hit? Admit? End

Hit?

Perform

I/O

Insert Into

Cache

No (read)

Yes No

Read from

Cache

Yes

No

Invalidate

Yes

Yes

No

Read Processing Example (6 of 6)

20 28th IEEE Conference on Mass Storage Systems and Technologies (MSST)

Start Write? Hit? Admit? End

Hit?

Perform

I/O

Insert Into

Cache

No (read)

Yes No

Read from

Cache

Yes

No

Invalidate

Yes

Yes

No

Write Processing Example (1 of 11)

21 28th IEEE Conference on Mass Storage Systems and Technologies (MSST)

Start Write? Hit? Admit? End

Hit?

Perform

I/O

Insert Into

Cache

No (read)

Yes No

Read from

Cache

Yes

No

Invalidate

Yes

Yes

No

Write Processing Example (2 of 11)

22 28th IEEE Conference on Mass Storage Systems and Technologies (MSST)

Start Write? Hit? Admit? End

Hit?

Perform

I/O

Insert Into

Cache

No (read)

Yes No

Read from

Cache

Yes

No

Invalidate

Yes

Yes

No

Write Processing Example (3 of 11)

23 28th IEEE Conference on Mass Storage Systems and Technologies (MSST)

Start Write? Hit? Admit? End

Hit?

Perform

I/O

Insert Into

Cache

No (read)

Yes No

Read from

Cache

Yes

No

Invalidate

Yes

Yes

No

Write Processing Example (4 of 11)

24 28th IEEE Conference on Mass Storage Systems and Technologies (MSST)

Start Write? Hit? Admit? End

Hit?

Perform

I/O

Insert Into

Cache

No (read)

Yes No

Read from

Cache

Yes

No

Invalidate

Yes

Yes

No

Write Processing Example (5 of 11)

25 28th IEEE Conference on Mass Storage Systems and Technologies (MSST)

Start Write? Hit? Admit? End

Hit?

Perform

I/O

Insert Into

Cache

No (read)

Yes No

Read from

Cache

Yes

No

Invalidate

Yes

Yes

No

Write Processing Example (6 of 11)

26 28th IEEE Conference on Mass Storage Systems and Technologies (MSST)

Start Write? Hit? Admit? End

Hit?

Perform

I/O

Insert Into

Cache

No (read)

Yes No

Read from

Cache

Yes

No

Invalidate

Yes

Yes

No

Write Processing Example (7 of 11)

27 28th IEEE Conference on Mass Storage Systems and Technologies (MSST)

Start Write? Hit? Admit? End

Hit?

Perform

I/O

Insert Into

Cache

No (read)

Yes No

Read from

Cache

Yes

No

Invalidate

Yes

Yes

No

What is the

admittance policy?

Admittance Policies

 Unrestricted (default)

– All writes and read misses are inserted into the

cache

 Write-Around

– writes skip the cache

 Sequential I/O Bypass (future work)

– Sequential reads, writes, or both skip the cache

28 28th IEEE Conference on Mass Storage Systems and Technologies (MSST)

Write Processing Example (8 of 11)

29 28th IEEE Conference on Mass Storage Systems and Technologies (MSST)

Start Write? Hit? Admit? End

Hit?

Perform

I/O

Insert Into

Cache

No (read)

Yes No

Read from

Cache

Yes

No

Invalidate

Yes

Yes

No

Write Processing Example (10 of 11)

30 28th IEEE Conference on Mass Storage Systems and Technologies (MSST)

Start Write? Hit? Admit? End

Hit?

Perform

I/O

No (read)

Yes No

Read from

Cache

Yes

No

Invalidate

Yes

Yes

No

What is the eviction

policy?

Insert Into

Cache

Eviction Policies

 First In First Out (FIFO)

– Less I/O to clean log, but lower hit rate

 Eliminates reads during log cleaning.

 CLOCK

– Higher hit rate, but more expensive log

cleaning compared to FIFO.

28th IEEE Conference on Mass Storage Systems and Technologies (MSST) 31

Write Processing Example (9 of 11)

32 28th IEEE Conference on Mass Storage Systems and Technologies (MSST)

Start Write? Hit? Admit? End

Hit?

Perform

I/O

No (read)

Yes No

Read from

Cache

Yes

No

Invalidate

Yes

Yes

No

How do we efficiently

insert into the cache?

Insert Into

Cache

Cache Insertion

28th IEEE Conference on Mass Storage Systems and Technologies (MSST) 33

 Specialize I/O access patterns for flash

– Log-structured writes with erase block size

chunks to minimizes SSD FTL’s (flash

translation layer) cleaning

Write Processing Example (11 of 11)

34 28th IEEE Conference on Mass Storage Systems and Technologies (MSST)

Start Write? Hit? Admit? End

Hit?

Perform

I/O

Insert Into

Cache

No (read)

Yes No

Read from

Cache

Yes

No

Invalidate

Yes

Yes

No

Part III. Evaluation

28th IEEE Conference on Mass Storage Systems and Technologies (MSST) 35

Evaluation

 Two workloads:

– Microsoft® Exchange Jetstress

– NetApp® Enterprise Workload1

 PCIe device with SLC (single-level cell) flash

– Paper contains SLC and MLC SSD results

 x86 Server with Linux, KVM/QEMU

 NetApp FAS3270 with iSCSI LUN(s)

1 S. Daniel et al., A portable, open-source implementation of the SPC-1 workload.

28th IEEE Conference on Mass Storage Systems and Technologies (MSST) 36

Cache reduces access to network storage

28th IEEE Conference on Mass Storage Systems and Technologies (MSST) 37

Jetstress workload. Unrestricted admittance policy. FIFO eviction policy. PCIe flash device.

Warming the cache takes a long time

Enterprise workload. Unrestricted admittance policy. PCIe flash device capacity 11.25% of dataset.

28th IEEE Conference on Mass Storage Systems and Technologies (MSST) 38

Unrestricted Beats Write-Around

28th IEEE Conference on Mass Storage Systems and Technologies (MSST) 39

Enterprise workload. CLOCK eviction policy. PCIe flash device capacity 11.25% of dataset.

Significant Response Time Improvement

Enterprise workload. Unrestricted admittance policy. CLOCK eviction policy. PCIe flash device.

28th IEEE Conference on Mass Storage Systems and Technologies (MSST) 40

A response time of over 30ms fails the test.

Summary

Host-side flash

– minimizes flash access latency

Hypervisor I/O cache

– simplifies deployment

Persistent

– cache is warm on a restart

Write-through

– consistent with primary storage

28th IEEE Conference on Mass Storage Systems and Technologies (MSST) 41

28th IEEE Conference on Mass Storage Systems and Technologies (MSST) 42

