
vPFS: Bandwidth Virtualization
of Parallel Storage Systems

Yiqi Xu, Dulcardo Arteaga, Ming Zhao Florida International University

Yonggang Liu, Renato Figueiredo University of Florida

Seetharami Seelam IBM T.J. Watson Research Center

Presenter
Presentation Notes
Good morning, I’m Yiqi Xu. I will be presenting the work “vPFS: bandwidth virtualization of parallel storage systems”. This is a joint work from Florida International University, University of Florida and IBM T.J. Watson Research Center.

Background

 High Performance I/O supports High Performance
Computing (HPC) systems

o HPC applications become increasingly data intensive

o Important to match the parallelism of HPC compute nodes

 Parallel File Systems

o Widely used in HPC systems

 PVFS2[1], PanFS[2], GPFS[3], Lustre[4], etc.

o Use parallel I/Os to achieve high throughput

2

Presenter
Presentation Notes
High performance computers offer substantially scaled computing power. Application performance will be bounded by I/O if the storage system cannot scale up to match the computing nodes. As a result, parallel file systems and parallel I/O libraries come to rescue as the backing end of high performance computing systems. For example, PVFS2 from Clemson University, PanFS from Panasas, GPFS from IBM and Lustre from Oracle all use aggregated throughput from multiple storage nodes to service high I/O demand from multiple clients in the compute nodes.

Background

 Parallel File System
o Striped I/Os across multiple storage nodes
o Aggregated throughput for high-performance I/Os

 Components
o Server side: data server daemon, meta-data server daemon
o Client side: MPI-IO[14] library, client daemon

3

Compute
nodes

APP

Storage
nodes

Pa
ra

lle
l F

ile

Sy
st

em

Data/meta-
data servers

PFS

Presenter
Presentation Notes
File layout: creation, io hintLayout aware

Motivation

 Parallel storage is commonly shared
o Applications have different I/O demands — storage nodes

cannot recognize them
o Their I/Os interfere with each other — storage nodes

cannot isolate them

Compute
nodes

APP1

APP2

APPn

Storage
nodes

4

WRF[10]

S3D[12]

mpiBlast[11]

Presenter
Presentation Notes
In practice, parallel storage systems are shared by multiple applications running concurrently in the system.Meanwhile, each application has unique I/O patterns, demands and they require the storage system to treat them accordingly to meet their specific needs.Furthermore, applications may change their priority temporarily in order to meet a certain deadline. For example, WRF, a weather forecast system, will have to gain higher priority when it is predicting a hurricane route.However, parallel I/Os issued from the clients are translated into generic I/Os and the storage system is not able to identify their origins. Plus, the current parallel storage systems are not designed to recognize each application’s demand because they are designed to deliver the maximum throughput for best utilization.

Motivation — BTIO[9] vs. IOR[8]

 BTIO performance severely impacted by IOR
o I/O time increases > 10x; Total runtime increases > 200%

 Resulted by lack of QoS on the parallel storage

5

0

5

10

15

20

25

BT
IO

 T
hr

ou
gh

pu
t

(M
B/

s)

13.3X slowdown

Alone w/ IOR
0

100

200

300

400

500

BT
IO

 R
un

 T
im

e
(s

)

228.8% increase

Alone w/ IOR

Presenter
Presentation Notes
As a motivating result, we run two parallel I/O benchmarks to demonstrate the I/O performance degradation of two concurrent applications.We used 64 BTIO processes to simulate a parallel scientific application with computing interleaving I/Os.Another 64 IOR processes as the interfering application.To observe the impact inside the shared storage, these two applications run on two separate sets of compute nodes so that the contention is on the storage side. The experiment compares BTIO’s throughput between two cases:One in which BTIO exclusively owns the storage system and the other in which BTIO shares with another application represented by 64 IOR processes. We cover the 2 Classe and Subtype combinations in the configuration for BTIO. The Class A stands for 400MB of data, Class C stands for more than 6.8GBs of data.Simple subtype stands for non-collective I/O and Full subtype stands for collective I/Os.In both scenarios, the throughput is decreased significantly from the standalone case, where there is no competition on the storage. As a result the total running time is greatly affected by the slow down of I/O.

Overview

 Goal
o Achieve proportional sharing of parallel file system storage

 Challenges
o Transparent support for existing HPC systems
 Virtualized PFSes

o Per-application parallel I/O scheduling
 Distributed scheduling

o Scalable implementation of proportional sharing
 Low-cost synchronization

6

Outline

 Background, Motivation, Overview

 Challenges for Total-Service Proportional Sharing

 Solution — vPFS Virtualization and Scheduling

 Experimental Evaluation

 Conclusions

7

Presenter
Presentation Notes
This the outline of the rest of the talk. We will highlight the focus of the work before introduced the challenges of total service proportional sharing as well as the details of the solution we proposed.Then I will show the experimental results of vPFS and end my talk with conclusions and future work.

App1

App2

Collectively
— 1:1

Proportional Sharing on Storage

8

 Local scheduling according to global sharing ratio
 Multi-node aggregated throughput also conforms to

global share ratio
o Assumption: application file layouts are the same

PFS Locally
— 1:1

App2

App1

S4

S3

S2

Collectively
— 2:1

Locally
— 1:0

Total-Service Proportional Sharing

 Local proportional sharing algorithms (SFQ(D)[6])
are not enough for total service fairness

 Global synchronization is necessary among local
schedulers — distributed SFQ (DSFQ[7])

9

S1
PFS Locally

— 1:1

Presenter
Presentation Notes
In resource sharing management, proportional sharing is widely used. For example in network packet scheduling and in disk I/O scheduling. Proportional sharing in a storage system assigns different I/Os with different priorities and schedules I/Os in proportion to their respective weights.In typical parallel I/O systems, file distribution pattern can be specified at the creation time and each file can be distributed in different ways. We call the distribution pattern file layout. Total service is the sum of services achieved from all the data servers dedicated to each application. Because a local view of I/Os on each server do not take total-service into account, the local scheduling decisions made will be biased depending on the # dedicated servers and the file’s layout. Thus, local proportional sharing is not enough to achieve the total service fairness across all applications. Total Service Proportional sharing is contributed by DSFQ for a distributed storage environment.It is unique in that it solves application I/O’s asymmetry problem in distributed storage systems, defined as files having different layouts skewing the total-service sharing resulted from local scheduling.DSFQ used piggybacking technique to carry synchronization data together with I/O data and achieves low cost total-service proportional sharing in the presence of server side asymmetry.

Limitations of DSFQ on Parallel Storage

 Broadcast-based synchronization is expensive
 A centralized coordinator is not scalable

10

App2

App1

PFS
Broadcast is
too costly

Coord

Sync total service

Presenter
Presentation Notes
The challenges from achieving total-service proportional sharing for the parallel storage system results from the need for global synchronization between all applications.In a high performance system, broadcast based synchronization incurs very high cost and are not considered feasible.It the mean time, it is also not feasible to apply DSFQ directly to parallel storage for two reasons.First, for high efficiency, parallel I/Os typically chose to travel in short data paths. Thus, it doesn’t allow a coordinator acting as an extra hop to become a bottleneck.Second, for high throughput, parallel I/Os reach their respective data server directly because the library on the client routes them to the destination before issuing requests. Thus, the role of forwarding requests by the coordinator is also disabled. As a side effect, the piggybacking of synchronization messages are impossible in a parallel storage system.

S4

S3

S2

Limitations of DSFQ on Parallel Storage

 Broadcast-based synchronization is expensive
 A centralized coordinator is not scalable
 Distributed coordinators do not fit HPC architecture
o HPC apps access data using predetermined layout

11

App2

App1

S1

PFS

Sync total service

Coord4

Coord3

Coord2

Coord1

Presenter
Presentation Notes
The challenges from achieving total-service proportional sharing for the parallel storage system results from the need for global synchronization between all applications.In a high performance system, broadcast based synchronization incurs very high cost and are not considered feasible.It the mean time, it is also not feasible to apply DSFQ directly to parallel storage for two reasons.First, for high efficiency, parallel I/Os typically chose to travel in short data paths. Thus, it doesn’t allow a coordinator acting as an extra hop to become a bottleneck.Second, for high throughput, parallel I/Os reach their respective data server directly because the library on the client routes them to the destination before issuing requests. Thus, the role of forwarding requests by the coordinator is also disabled. As a side effect, the piggybacking of synchronization messages are impossible in a parallel storage system.

Outline

 Background, Motivation, Overview

 Challenges for Total-Service Proportional Sharing

 Solution — vPFS Virtualization and Scheduling

 Experimental Evaluation

 Conclusions

12

Presenter
Presentation Notes
This the outline of the rest of the talk. We will highlight the focus of the work before introduced the challenges of total service proportional sharing as well as the details of the solution we proposed.Then I will show the experimental results of vPFS and end my talk with conclusions and future work.

Solution – vPFS

 Enable per-application virtual PFSes

 Enable distributed scheduling upon the vPFS
framework with low-cost synchronization

 Achieve total-service proportional sharing across
parallel storage servers

 Support flexible study of different schedulers on
parallel file system storage

13

Presenter
Presentation Notes
We designed vPFS as a solution for bandwidth management of parallel storage systems.vPFS allows virtual PFSs to be dynamically created and destroyed based on application lifecyclesUpon vPFS, we enhancing the existing DSFQ algorithm to adapt to the distributed I/Os and high throughput requirements mentioned just now.Thus, vPFS can deliver total-service proportional sharing across parallel storage servers by allocatingparallel storage bandwidth across virtual PFSs according to the applications’ I/O requirements, even in the presence of server-side asymmetryFurthermore, enhanced DSFQ’s synchronization cost is low enough to control throughput fluctuation in a large system.

vPFS — Virtualization Layer

 Create virtual PFSes by proxy-based interposition
 Capture and differentiate application I/Os
 Re-order and dispatch according to QoS requirements

App2

App

App1

PFS Proxy

Virtual PFS1

Virtual PFS2

14

Presenter
Presentation Notes
Solves the software stack problemVirtual PFSs are created dynamically by using proxy-based interposition. The proxy is located on the data nodes as a layer of indirection between compute nodes and data nodes.When the application exits, the virtual PFS for the application is destroyed.The proxy brokers application’s I/Os by capturing and interpreting I/O messages.It recognizes I/Os from different applications based on their hosts.I/Os are queued for different virtual PFSsWith the help of embedded schedulers, different QoS can be met for different applications.

vPFS — Scheduling

 Implemented Schedulers

o SFQ(D)[6] local proportional sharing

o Threshold-driven distributed proportional sharing

o Layout-driven distributed proportional sharing

 Generic interfaces

o Flexible to support multiple schedulers of different natures

15

Naive Synchronization

 Synchronization in parallel scheduling remains
unsolved

 Simple broadcast-based synchronization cost:

o O(M•A•N2•W)
 M = sync message size per application
 A = number of applications
 W = total bytes serviced
 N = number of servers

o Scales with number of servers (N)

o Scales with number of bytes serviced (W)

 16

Presenter
Presentation Notes
Unfiarness caused by the delay of unsynchronized messagesEnhancement to DSFQ for parallel storage. It uses broadcast based synchronization with a controllable synchronization frequency.Due to the reduced frequency, the unfairness bound might be loose when I/Os are slow. We can control the unfairness dynamically by monitoring I/O patterns and adjust the threshold to meet a tighter bound.

Threshold-driven Synchronization

 Threshold-driven synchronization reduces cost

o Limits broadcast frequency
 T = threshold with regard to W

 Synchronizes only when W exceeds T

o Synchronization cost is O(M•A•N2•W/T)
 Cost greatly reduced by T

 E.g., 10MB threshold reduces 95% synchronization with 512KB
request size

o With bounded worst-case unfairness
 Controlled by T

17

 Unfairness between f and g bounded[15]:

() ()

g

prop
g

g
f

prop
f

f

g

Ag

f

Af
s

g

Ag
gds

f

Af
fds

g

g

f

f

C
N

C
N

batchcostbatchcost
D

cost
NDD

cost
NDD

ttwttw

φφ

φφ

φφ

φφ

)1(2)1(2

)1(

1)(1)(

),(),(

max
,

max
,

max
,

max
,

2121

−+−+

+++

+++++≤

−

Threshold-driven Synchronization

18

Synchronization Threshold

Number of servers

Max Cost
Share

Max total cost
between two requests

Depth of scheduler/disk

 Threshold-driven synchronization cost still scales
quadratically with N — O(M•A•N2•W/T)

 Layout-driven synchronization is proposed
o Utilizes file layout of each application
o Transforms global communication into local computation

 Approximate total-service
o Using local service I/Os
o Needs file layout information
 Stripe method

 Stripe parameters

Layout-driven Synchronization

19

Local
service = 2

Simple stripe
Total service: 8 = 4 * 2

Servers = 4

Presenter
Presentation Notes
To solve the performance asymmetry by using the asymmetry information.The estimation of total-service is performed locally by utilizing local information and asymmetry informationLocal I/O dependent on other serversWe have implemented simple stripe estimation with the informing of app arrival and departure

Layout-driven Synchronization

 Availability of Layout
o PFS protocol
 E.g., PVFS2 I/O request header has stripe information

o Meta-data server
 Meta-data is generally available

o Arrival and departure of applications
 Servers notifies others when it sees the first I/O of an app

 Limitation of Layout
o Small I/Os that are not evenly distributed on all servers
o Threshold-driven synchronization works better

20

Layout-driven Synchronization

 Synchronization cost further reduced to O(M•A•N)

o Cost is much lower than threshold-driven scheme

 Scales only linearly with number of servers (N)

 Independent of total bytes serviced (W)

 Incurs less interference between application I/Os (W) and
synchronization I/Os (M•A)

 Synchronizes only when application arrives/departs

 So that layout is available

21

Outline

 Background, Motivation, Overview

 Challenges for Total-Service Proportional Sharing

 Solution — vPFS Virtualization and Scheduling

 Experimental Evaluation

 Conclusions

22

Presenter
Presentation Notes
This the outline of the rest of the talk. We will highlight the focus of the work before introduced the challenges of total service proportional sharing as well as the details of the solution we proposed.Then I will show the experimental results of vPFS and end my talk with conclusions and future work.

Evaluation

 Hardware

o 8 Clients & 8 Servers, 1 gigabit switch

 Software

o PVFS 2.8.2 — up to 96 daemons

o IOR 2.10.3 — up to 256 processes

o BTIO 3.3.1-MPI — up to 64 processes

 Experiments

o Overhead of proxy-based virtualization

o Effectiveness of total-service proportional sharing

o Comparison of different synchronization schemes

23

vPFS Overhead

 Throughput overhead is below 3%

 CPU and memory overhead is below 1%

99.6% 97.6% 99.6% 97.5%

0

200

400

600

800

1000

1200

READ WRITE

Th
ro

ug
hp

ut
 (

M
B/

s)

NATIVE
VIRTUAL
VIRTUAL-DSFQ

24

 Comparing 3 cases

o Native: PVFS only

o Virtual: PVFS + vPFS

o Virtual+DSFQ: PVFS + vPFS
 + DSFQ

 Worst case scenario
overhead

Presenter
Presentation Notes
256 processes over 8 physical nodes

1.99:1
3.97:1 7.90:1 15.98:1 31.95:1

0

20

40

60

80

100

120

140

2:1 4:1 8:1 16:1 32:1

Th
ro

ug
hp

ut
 (

M
B/

s)

App1 App2

2 IORs — Write vs. Write

25

 App1: 4 servers; App2: 8 ervers
 Threshold-driven DSFQ
 97% accuracy of target sharing ratio is achieved

Achieved
ratios

Target
ratios

Presenter
Presentation Notes
Threshold based128 per appApp1 represented by IOR to simulate a check-pointing application with sequential writes

2 IORs — More Access Patterns

 97% accuracy of target sharing ratio is also achieved

26

1.99:1
3.97:1 8.10:1 16:21 32.73:1

0

20

40

60

80

100

120

140

2:1 4:1 8:1 16:1 32:1

Th
ro

ug
hp

ut
 (

M
B/

s)
 App1 App2

2.02:1
3.95:1

8.01:1 16.01:1 31.34:1

2:1 4:1 8:1 16:1 32:1

App1 App2

Write vs. Read Write vs. Random R/W

Target Ratio

0

5

10

15

20

25

BT
IO

Th

ro
ug

hp
ut

(M

B/
s)

BTIO vs. IOR

 BTIO & IOR

o Each with 64 processes

o 16:1 sharing favoring BTIO

 Layout-driven schedulers

o Work-conserving

o Non-work-conserving

 BTIO throughput can be
restored to near-standalone
performance

27

Alone w/ IOR w/ IOR w/ IOR
 Layout-DSFQ NWC-
 Layout-DSFQ

13.3X
slowdown

0

50

100

150

200

250

300

350

BT
IO

 R
un

 T
im

e
(s

)

228.8%
increase

5.96X
slowdown

153.3%
increase

1.07X
slowdown

1.9%
increase

Presenter
Presentation Notes
Restoring the BTIO’s performance in the motivation section.16:1BTIO/C is bursty: work-conservingBTIO/A has too many small I/Os: depthPutting work-conserving versions of Layout-dsfq to use to shield the interference from IOR, result is perfect

Time (s)

Different Synchronization Schemes

 Layout-driven synchronization achieves
o 13.2% higher throughput
o 93.0% lower standard deviation

0

50

100

150

200
Threshold-driven

0

50

100

150

200

0 100 200 300 400 500 600

Layout-driven

28

Ap
p1

 T
hr

ou
gh

pu
t

 (
M

B/
s)

 8 apps, each
with 32 IORs
o Equal share

 96 servers
o Para-virtualized

o Null-AIO

o T < request size

 Asymmetric file
layouts
o Odd#-app: 48

servers

o Even#-app: 96
servers

Presenter
Presentation Notes
8 server setupMaximum throughputVirtualized-more synchronizationsThreshold is lowThreshold-driven aboveOne app

Cost of Implementation

Framework LOC Component LOC

Virtualization 1,692

Interface 694

TCP 397

PVFS2 601

Scheduler 2,274

Interface 735

SFQ(D) 552

DSFQ 987

Total 3,966

29

 The implementation complexity is low for
 new scheduler / PFS protocol / network support

Conclusions & Future Work

 vPFS manages per-app bandwidth on parallel file
system storage by creating virtual PFSes on PVFS2

 vPFS addresses the limitation of distributed
algorithms to apply to a parallel storage system
o Achieves total-service proportional sharing
o With low-cost synchronization

 Apply the study of QoS-driven parallel storage
management on cloud storage
o Data-intensive
o Large-scale

30

References

[1] PVFS2. http://www.pvfs.org/pvfs2/.
[2] PanFS. http://www.panasas.com .
[3] GPFS. http://www.ibm.com/systems/software/gpfs .
[4] Lustre. http://www.lustre.org .
[5] P. Goyal, H. M. Vin, and H. Cheng, “Start Time Fair Queuing: A Scheduling Algorithm For Integrated

Services Packet Switching Networks,” IEEE/ACM Trans. Networking, vol. 5, no. 5, 1997.
[6] Yin Wang and Arif Merchant, “Proportional-share scheduling for distributed storage systems,”

In Proceedings of the 5th USENIX conference on File and Storage Technologies (FAST’07). USENIX
Association, Berkeley, CA, USA, 4-4.

[7] W. Jin, J. S. Chase, and J. Kaur, “Interposed Proportional Sharing For A Storage Service Utility,”
SIGMETRICS, 2004.

[8] IOR HPC Benchmark, http://sourceforge.net/projects/ior-sio/.
[9] NASA Parallel Benchmark, http://www.nas.nasa.gov/publications/npb.html .
[10] P. Welsh, P. Bogenschutz, “Weather Research and Forecast (WRF) Model: Precipitation Prognostics from

the WRF Model during Recent Tropical Cyclones,” Interdepartmental Hurricane Conference, 2005.
[11] A. Darling, L. Carey, and W. Feng, “The Design, Implementation, and Evaluation of mpiBLAST,”

ClusterWorld Conf. and Expo, 2003.
[12] R. Sankaran, et al., “Direct Numerical Simulations of Turbulent Lean Premixed Combustion,” Journal of

Physics Conference Series, 2006.
[13] W. Tantisiriroj, et al., “On the Duality of Data-intensive File System Design: Reconciling HDFS and PVFS,”

Super Computing, 2011.
[14] MPI-IO, http://www.mpi-forum.org
[15] Yiqi Xu, et al., “Technical Report, School of Computing and Information Sciences,” Florida International

University http://visa.cis.fiu.edu/tiki/tiki-download_file.php?fileId=51

31

http://www.pvfs.org/pvfs2/�
http://www.panasas.com/�
http://www.ibm.com/systems/software/gpfs�
http://www.lustre.org/�
http://sourceforge.net/projects/ior-sio/�
http://www.nas.nasa.gov/publications/npb.html�
http://www.mpi-forum.org/�
http://visa.cis.fiu.edu/tiki/tiki-download_file.php?fileId=51�

Acknowledgement

 Research team
o VISA lab at FIU
 Yiqi Xu, Dulcardo Arteaga, Dr. Ming Zhao

o ACIS lab at UF
 Yonggang Liu, Dr. Renato Figueiredo

o Industry collaborator
 Dr. Seetharami Seelam (IBM T.J. Watson Research Center)

 Sponsor: National Science Foundation

 More information: http://visa.cis.fiu.edu/hecura

32

http://visa.cis.fiu.edu/hecura�

Backup Slides

33

8 IORs – Dynamic Arrivals

 Unfairness definition:

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

0 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950

Fa
ir

en
es

s
D

ev
ia

ti
on

Time (s)

Measured Every 5 Seconds
Measured Every 60 Seconds

app4 arrived

app3 arrived

app2 arrived

app1 arrived
app5 arrived

app6 arrived

app7 arrived

app8 arrived

�|𝑇𝑇ℎ𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑝𝑝𝑟𝑟𝑝𝑝𝑖𝑖 −𝑊𝑊𝑊𝑊𝑖𝑖𝑟𝑟ℎ𝑝𝑝𝑖𝑖 |
𝑛𝑛

𝑖𝑖=1

𝑊𝑊𝑊𝑊𝑖𝑖𝑟𝑟ℎ𝑝𝑝𝑖𝑖 = 𝑖𝑖

34

Presenter
Presentation Notes
8 applications who arrives in the system one after another at an interval of 60 secondsEach with different weightEach has a different file layout with the neighboring appMeasure the sum of deviated throughput in normalized form.One minute measurement stabilizes after each app is present.5-second measurement offers detailed view of fluctuationWhen new app arrives before 420th secondWhen I/O latency is larger than the measurement window so the measure ment is not accurate.

Qs

 Fluctuation

 Lower level scheduler affects the higher level

35

Background

 Parallel File System
 Distributes data on multiple storage nodes
 Aggregate throughput from multiple storage nodes
 File layout — how data is distributed

 Components
 Server side: data node daemon, meta-data node daemon
 Client side: MPI library, client daemon

36

Compute
nodes

APP1

APP2

APP3

Storage
nodes

Data node1

PFS

Meta-data
node1

Data node3
Data node2

Data node5
Data node4

Presenter
Presentation Notes
File layout: creation, io hintLayout aware

CPU and Memory Overhead

 CPU consumption is below 3%

 Memory consumption is below 0.25%

0
0.05
0.1
0.15
0.2
0.25
0.3
0.35
0.4

0
0.5

1
1.5

2
2.5

3
3.5

4

32 64 96 128 160 196 224 256
Processes

M
em

or
y

(%
)

CP
U

 (
%

)

pvfs cpu proxy cpu
pvfs mem proxy mem

37

Presenter
Presentation Notes
We compare the proxy cpu and memory cost of the vPFS+scheduler with that from the native pvfs daemon when running heavily loaded DSFQ with the increase of # of processes

Difference with Existing Solutions

 Facade

38

Challenges (Single Coordinator)

6

4

2

Brick A

Brick B

Brick C

A 0 A 2 A 0

B 1 B 5

C 0 C 2 C 2

…

…

…

stream f

coordinator

A B C A A C C B …

delay value

 Introduces delay value for total-service fair sharing

 Assumption 1: the coordinator can forward I/Os

39

Presenter
Presentation Notes
Solves asymmetry problemNote: examples are for a single stream in distributed systemsI/Os are not dependentAt each step, locally made decision can be justified for global fairness results.How to tell the sharing more simply by adding another stream?

Challenges (Distributed Coordinators)

 Introduces two or more coordinators

 Assumption 2: clients i.i.d. access to all coordinators

2

4

2

Brick A

Brick B

Brick C

A 0

A 1

A 1

B 0 B 2

C 2

C 1 C 1

…

…

…

coordinator

…

…

…

stream f

A C A C …

B A C B …

40

Presenter
Presentation Notes
For scalability

41

	Slide Number 1
	Background
	Background
	Motivation
	Motivation — BTIO[9] vs. IOR[8]
	Overview
	Outline
	Proportional Sharing on Storage
	Total-Service Proportional Sharing
	Limitations of DSFQ on Parallel Storage
	Limitations of DSFQ on Parallel Storage
	Outline
	Solution – vPFS
	vPFS — Virtualization Layer
	vPFS — Scheduling
	Naive Synchronization
	Threshold-driven Synchronization
	Threshold-driven Synchronization
	Layout-driven Synchronization
	Layout-driven Synchronization
	Layout-driven Synchronization
	Outline
	Evaluation
	vPFS Overhead
	2 IORs — Write vs. Write
	2 IORs — More Access Patterns
	BTIO vs. IOR
	Different Synchronization Schemes
	Cost of Implementation
	Conclusions & Future Work
	References
	Acknowledgement
	Backup Slides
	8 IORs – Dynamic Arrivals
	Qs
	Background
	CPU and Memory Overhead
	Difference with Existing Solutions
	Challenges (Single Coordinator)
	Challenges (Distributed Coordinators)
	Slide Number 41

