
1

On the Speedup of Single-Disk Failure
Recovery in XOR-Coded Storage Systems:

Theory and Practice

Yunfeng Zhu1, Patrick P. C. Lee2, Yuchong Hu2,
Liping Xiang1, Yinlong Xu1

1University of Science and Technology of China
2The Chinese University of Hong Kong

MSST’12

Modern Storage Systems
 Large-scale storage systems have seen

deployment in practice
• Cloud storage
• Data centers
• P2P storage

Data is distributed over a collection of disks
• Disk  physical storage device

2

disks

…

How to Ensure Data Reliability?

Disks can crash or have bad data

Data reliability is achieved by keeping data
redundancy across disks
• Replication

• Efficient computation
• High storage overhead

• Erasure codes (e.g., Reed-Solomon codes)
• Less storage overhead than replication, with same fault

tolerance
• More expensive computation than replication

 3

XOR-Based Erasure Codes
XOR-based erasure codes

• Encoding/decoding involve XOR operations only
• Low computational overhead

Different redundancy levels
• 2-fault tolerant: RDP, EVENODD, X-Code
• 3-fault tolerant: STAR
• General-fault tolerant: Cauchy Reed-Solomon (CRS)

4

Example
EVENODD, where number of disks = 4

5

a

b

c

d

a+c

b+d

b+c

a+b+d

a?

b?

a=c+(a+c)

b=d+(b+d)

Note: “+” denotes XOR operation

Failure Recovery Problem
Recovering disk failures is necessary
Preserve the required redundancy level
Avoid data unavailability

Single-disk failure recovery
Single-disk failure occurs more frequently than a

concurrent multi-disk failure

One objective of efficient single-disk failure
recovery: minimize the amount of data being
read from surviving disks

6

Related Work
 Hybrid recovery

• Minimize amount of data being read for double-fault tolerant
XOR-based erasure codes

• e.g., RDP [Xiang, ToS’11], EVENODD [Wang, Globecom’10], X-Code
[Xu, Tech Report’11]

 Enumeration recovery [Khan, FAST’12]

• Enumerate all recovery possibilities to achieve optimal recovery
for general XOR-based erasure codes

 Regenerating codes [Dimakis, ToIT’10]

• Disks encode data during recovery
• Minimize recovery bandwidth

7

Example: Recovery in RDP
RDP with 8 disks.

8

Disk6

d0,6

d1,6

d2,6

d3,6

d4,6

d5,6

⊕
⊕

⊕
⊕
⊕
⊕

Disk0 Disk1 Disk2 Disk3 Disk4 Disk5

d0,0 d0,1 d0,2 d0,3 d0,4 d0,5

d1,0 d1,1 d1,2 d1,3 d1,4 d1,5

d2,0 d2,1 d2,2 d2,3 d2,4 d2,5

d3,0 d3,1 d3,2 d3,3 d3,4 d3,5

d4,0 d4,1 d4,2 d4,3 d4,4 d4,5

d5,0 d5,1 d5,2 d5,3 d5,4 d5,5

Disk7

d0,7

d1,7

d2,7

d3,7

d4,7

d5,7

⊕
⊕
⊕
⊕
⊕
⊕

Let’s say Disk0 fails.
How do we recover Disk0?

Conventional Recovery
 Idea: use only row parity sets. Recover each lost

data symbol independently

9

Total number of read symbols: 36

Hybrid Recovery
 Idea: use a combination of row and diagonal

parity sets to maximize overlapping symbols

10

[Xiang, ToS’11]

Total number of read symbols: 27

Enumeration Recovery

11

D0
D1
D2
D3
C0
C1
C2
C3

Generator Matrix

D0
D1
D2
D3

D0
D1
D2
D3
C0
C1
C2
C3

Disk0

Disk1

Disk2

Disk3 Data

Codeword

Conventional Recovery
download 4 symbols
(D2, D3, C0, C1) to
recover D0 and D1

Recovery Equations for D0 Recovery Equations for D1

D0 D2 C0 D1 D3 C1

D0 D3 C2 D1 D2 C0 C1 C2

D0 D3 C0 C1 C3 D1 D2 C3

D0 D2 C1 C2 C3 D1 D3 C0 C2 C3

Total read
symbols: 3

[Khan, FAST’12]

Challenges
Hybrid recovery cannot be easily generalized to

STAR and CRS codes, due to different data
layouts

Enumeration recovery has exponential
computational overhead

Can we develop an efficient scheme for efficient
single-disk failure recovery?

12

Our Work

 Speedup in three aspects:
• Minimize search time for returning a recovery solution
• Minimize I/Os for recovery (hence minimize recovery time)
• Can be extended for parallelized recovery using multi-core

technologies

 Applications: when no pre-computations are available,
or in online recovery

13

Speedup of single-disk failure recovery
for XOR-based erasure codes

Our Work

Design a replace recovery algorithm
• Hill-climbing approach: incrementally replace feasible

recovery solutions with fewer disk reads

 Implement and experiment on a networked
storage testbed
• Show recovery time reduction in both single-threaded

and parallelized implementation

14

Key Observation

15

… … …

k data disks m parity disks

n disks

Strip size: ω

A strip of ω data
symbols is lost

There likely exists an optimal recovery
solution, such that this solution has

exactly ω parity symbols!

Simplified Recovery Model

To recover a failed disk, choose a collection of
parity symbols (per stripe) such that:
• The collection has ω parity symbols
• The collection can correctly resolve the ω lost data

symbols
• Total number of data symbols encoded in the ω parity

symbols is minimum  minimize disk reads

16

Replace Recovery Algorithm

17

Pi set of parity symbols in the ith (1≤i ≤ m) parity disk
X collection of ω parity symbols used for recovery
Y collection of parity symbols that are considered to be

included in X
Target: reduce number of

read symbols

1 Initialize X with the ω parity symbols of P1

2 Set Y to be the collection of parity symbols in P2 ;
Replace “some” parity symbols in X with same number of symbols in Y,
such that X is valid to resolve the ω lost data symbols

3 Replace Step 2 by resetting Y with P3, …,Pm

4 Obtain resulting X and corresponding encoding data symbols

Notation:

Algorithm:

Example

18

D0
D1
D2
D3
C0
C1
C2
C3

Generator Matrix

D0
D1
D2
D3

D0
D1
D2
D3
C0
C1
C2
C3

Disk0

Disk1

Disk2

Disk3 Data

Codeword

Step 1: Initialize X = {C0, C1}. Number of read symbols of X is 4

Step 2: Consider Y = {C2, C3}. C2 can replace C0 (X is valid).
Number of read symbols equal to 3

Step 3: Replace C0 with C2. X = {C2,C1}. Note it is an optimal solution.

Algorithmic Extensions
Replace recovery has polynomial complexity

Extensions: increase search space, while
maintaining polynomial complexity
• Multiple rounds

• Use different parity disks for initialization

• Successive searches
• After considering Pi, reconsider the previously considered i-2

parity symbol collections (univariate search)

Can be extended for general I/O recovery cost

Details in the paper
19

Evaluation: Recovery Performance

Recovery performance for STAR

20

Replace recovery is close to lower bound

Evaluation: Recovery Performance

Recovery performance for CRS

21

m = 3, ω = 4 m = 3, ω = 5

Replace recovery is close to optimal (< 3.5% difference)

Evaluation: Search Performance

22

Enumeration recovery has a huge search space
• Maximum number of recovery equations being

enumerated is 2mω.

Search performance for CRS
• Intel 3.2GHz CPU, 2GB RAM

(k, m, ω) Time (Enumeration) Time (Replace)
(10, 3, 5) 6m32s 0.08s
(12, 4, 4) 17m17s 0.09s
(10, 3, 6) 18h15m17s 0.24s
(12, 4, 5) 13d18h6m43s 0.30s

Replace recovery uses significantly less search time
 than enumeration recovery

Design and Implementation
Recovery thread

• Reading data from surviving disks
• Reconstructing lost data of failed disk
• Writing reconstructed data to a new disk

Parallel recovery architecture
• Stripe-oriented recovery:

each recovery thread recovers
data of a stripe

• Multi-thread, multi-server
• Details in the paper

23

Experiments
 Experiments on a networked storage testbed

• Conventional vs. Recovery
• Default chunk size = 512KB
• Communication via ATA over Ethernet (AoE)

 Types of disks (physical storage devices)
• Pentium 4 PCs
• Network attached storage (NAS) drives
• Intel Quad-core servers

24

Recovery architecture

Gigabit switch

disks

Recovery Time Performance
 Conventional vs Replace: double-fault tolerant codes:

25

RDP EVENODD

X-Code CRS(k, m=2)

Recovery Time Performance
 Conventional vs Replace: Triple and general-fault tolerant

codes

26

STAR CRS(k, m=3)

CRS(k, m>3)

Summary of Results
 Replace recovery reduces recovery time of conventional

recovery by 10-30%

 Impact of chunk size:
• Larger chunk size, recovery time decreases
• Replace recovery still shows the recovery time reduction

 Parallel recovery:
• Overall recovery time reduces with multi-thread, multi-server

implementation
• Replace recovery still shows the recovery time reduction

 Details in the paper

27

Conclusions
 Propose a replace recovery algorithm

• provides near-optimal recovery performance for STAR and CRS
codes

• has a polynomial computational complexity

 Implement replace recovery on a parallelized
architecture

 Show via testbed experiments that replace recovery
speeds up recovery over conventional

 Source code:
• http://ansrlab.cse.cuhk.edu.hk/software/zpacr/

28

http://ansrlab.cse.cuhk.edu.hk/software/zpacr/�

Backup

29

Impact of Chunk Size

30

Conventional recovery Replace recovery

Recovery time decreases as chunk size increases

Recovery time stabilizes for large chunk size

Parallel Recovery

 Recovery performance of multi-threaded implementation:
• Recovery time decreases as number of threads increases
• Improvement bounded by number of CPU cores
• We show applicability of replace recovery in parallelized implementation

 Similar results observed in our multi-server recovery implementation

 31

STAR (p = 13)
Quad-core case

	On the Speedup of Single-Disk Failure Recovery in XOR-Coded Storage Systems: Theory and Practice
	Modern Storage Systems
	How to Ensure Data Reliability?
	XOR-Based Erasure Codes
	Example
	Failure Recovery Problem
	Related Work
	Example: Recovery in RDP
	Conventional Recovery
	Hybrid Recovery
	Enumeration Recovery
	Challenges
	Our Work
	Our Work
	Key Observation
	Simplified Recovery Model
	Replace Recovery Algorithm
	Example
	Algorithmic Extensions
	Evaluation: Recovery Performance
	Evaluation: Recovery Performance
	Evaluation: Search Performance
	Design and Implementation
	Experiments
	Recovery Time Performance
	Recovery Time Performance
	Summary of Results
	Conclusions
	Backup
	Impact of Chunk Size
	Parallel Recovery

