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Modern Storage Systems 
 Large-scale storage systems have seen 

deployment in practice 
• Cloud storage 
• Data centers 
• P2P storage 

Data is distributed over a collection of disks 
• Disk  physical storage device 
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disks 

… 



How to Ensure Data Reliability? 

Disks can crash or have bad data 

Data reliability is achieved by keeping data 
redundancy across disks 
• Replication 

• Efficient computation 
• High storage overhead 

• Erasure codes (e.g., Reed-Solomon codes) 
• Less storage overhead than replication, with same fault 

tolerance 
• More expensive computation than replication 
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XOR-Based Erasure Codes 
XOR-based erasure codes 

• Encoding/decoding involve XOR operations only 
• Low computational overhead 

Different redundancy levels 
• 2-fault tolerant: RDP, EVENODD, X-Code 
• 3-fault tolerant: STAR 
• General-fault tolerant: Cauchy Reed-Solomon (CRS) 
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Example 
EVENODD, where number of disks = 4 
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a+b+d 

a? 

b? 

a=c+(a+c) 

b=d+(b+d) 

Note: “+” denotes XOR operation 



Failure Recovery Problem 
Recovering disk failures is necessary 
Preserve the required redundancy level 
Avoid data unavailability 

Single-disk failure recovery 
Single-disk failure occurs more frequently than a 

concurrent multi-disk failure 

One objective of efficient single-disk failure 
recovery: minimize the amount of data being 
read from surviving disks 
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Related Work 
 Hybrid recovery 

• Minimize amount of data being read for double-fault tolerant 
XOR-based erasure codes 

• e.g., RDP [Xiang, ToS’11], EVENODD [Wang, Globecom’10], X-Code 
[Xu, Tech Report’11] 

 Enumeration recovery [Khan, FAST’12] 

• Enumerate all recovery possibilities to achieve optimal recovery 
for general XOR-based erasure codes 

 

 Regenerating codes [Dimakis, ToIT’10] 

• Disks encode data during recovery 
• Minimize recovery bandwidth 
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Example: Recovery in RDP 
RDP with 8 disks.  
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Let’s say Disk0 fails. 
How do we recover Disk0? 



Conventional Recovery 
 Idea: use only row parity sets. Recover each lost 

data symbol independently 
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Total number of read symbols:  36 



Hybrid Recovery 
 Idea: use a combination of row and diagonal 

parity sets to maximize overlapping symbols 
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[Xiang, ToS’11] 

Total number of read symbols:  27 



Enumeration Recovery 
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Conventional Recovery 
download 4 symbols 
(D2, D3, C0, C1) to 
recover D0 and D1 

Recovery Equations for D0 Recovery Equations for D1 

D0 D2 C0 D1 D3 C1  

D0 D3 C2 D1 D2 C0 C1 C2 

D0 D3 C0 C1 C3 D1 D2 C3 

D0 D2 C1 C2 C3 D1 D3 C0 C2 C3 

Total read 
symbols:  3 

[Khan, FAST’12] 



Challenges 
Hybrid recovery cannot be easily generalized to 

STAR and CRS codes, due to different data 
layouts 

Enumeration recovery has exponential 
computational overhead 

 

Can we develop an efficient scheme for efficient 
single-disk failure recovery? 
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Our Work 

 Speedup in three aspects: 
• Minimize search time for returning a recovery solution  
• Minimize I/Os for recovery (hence minimize recovery time) 
• Can be extended for parallelized recovery using multi-core 

technologies 

 Applications: when no pre-computations are available, 
or in online recovery 
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Speedup of single-disk failure recovery  
for XOR-based erasure codes 



Our Work 

Design a replace recovery algorithm 
• Hill-climbing approach: incrementally replace feasible 

recovery solutions with fewer disk reads 

 Implement and experiment on a networked 
storage testbed 
• Show recovery time reduction in both single-threaded 

and parallelized implementation 
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Key Observation 
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… … … 

k data disks m parity disks 

n disks 

Strip size: ω  

A strip of ω data 
symbols is lost 

There likely exists an optimal recovery 
solution, such that this solution has 

exactly ω parity symbols! 



Simplified Recovery Model 

To recover a failed disk, choose a collection of 
parity symbols (per stripe) such that: 
• The collection has ω parity symbols 
• The collection can correctly resolve the ω lost data 

symbols 
• Total number of data symbols encoded in the ω parity 

symbols is minimum  minimize disk reads 

16 



Replace Recovery Algorithm 
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Pi  set of parity symbols in the ith (1≤i ≤ m) parity disk 
X collection of ω parity symbols used for recovery 
Y collection of parity symbols that are considered to be 

included in X 
Target: reduce number of 

read symbols 

1 Initialize X with the ω parity symbols of P1 

2 Set Y to be the collection of parity symbols in P2 ; 
Replace “some” parity symbols in X with same number of symbols in Y, 
such that X is valid to resolve the ω lost data symbols 

3 Replace Step 2 by resetting Y with P3, …,Pm 

4 Obtain resulting X and corresponding encoding data symbols 

Notation: 

Algorithm: 



Example 

18 

D0 
D1 
D2 
D3 
C0 
C1 
C2 
C3 

Generator Matrix 

D0 
D1 
D2 
D3 

D0 
D1 
D2 
D3 
C0 
C1 
C2 
C3 

Disk0 

Disk1 

Disk2 

Disk3 Data 

Codeword 

Step 1: Initialize X = {C0, C1}. Number of read symbols of X is 4 

Step 2: Consider Y = {C2, C3}. C2 can replace C0 (X is valid).  
Number of read symbols equal to 3 

Step 3: Replace C0 with C2. X = {C2,C1}. Note it is an optimal solution.  



Algorithmic Extensions 
Replace recovery has polynomial complexity 

Extensions: increase search space, while 
maintaining polynomial complexity 
• Multiple rounds 

• Use different parity disks for initialization 

• Successive searches 
• After considering Pi, reconsider the previously considered i-2 

parity symbol collections (univariate search) 

Can be extended for general I/O recovery cost 

Details in the paper 
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Evaluation: Recovery Performance 

Recovery performance for STAR 
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Replace recovery is close to lower bound 



Evaluation: Recovery Performance 

Recovery performance for CRS 
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m = 3, ω = 4  m = 3, ω = 5  

Replace recovery is close to optimal (< 3.5% difference) 



Evaluation: Search Performance 
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Enumeration recovery has a huge search space 
• Maximum number of recovery equations being 

enumerated is 2mω.  

Search performance for CRS  
• Intel 3.2GHz CPU, 2GB RAM 

(k, m, ω) Time (Enumeration) Time (Replace) 
(10, 3, 5) 6m32s 0.08s 
(12, 4, 4) 17m17s 0.09s 
(10, 3, 6) 18h15m17s 0.24s 
(12, 4, 5) 13d18h6m43s 0.30s 

Replace recovery uses significantly less search time 
 than enumeration recovery  



Design and Implementation 
Recovery thread 

• Reading data from surviving disks 
• Reconstructing lost data of failed disk 
• Writing reconstructed data to a new disk 

Parallel recovery architecture 
• Stripe-oriented recovery:  

each recovery thread recovers  
data of a stripe 

• Multi-thread, multi-server 
• Details in the paper 
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Experiments 
 Experiments on a networked storage testbed 

• Conventional vs. Recovery 
• Default chunk size = 512KB 
• Communication via ATA over Ethernet (AoE) 

 
 
 
 
 

 Types of disks (physical storage devices) 
• Pentium 4 PCs 
• Network attached storage (NAS) drives 
• Intel Quad-core servers 
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Recovery architecture 

Gigabit switch 

disks 



Recovery Time Performance 
 Conventional vs Replace: double-fault tolerant codes: 
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RDP EVENODD 

X-Code CRS(k, m=2) 



Recovery Time Performance 
 Conventional vs Replace: Triple and general-fault tolerant 

codes 
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STAR CRS(k, m=3) 

CRS(k, m>3) 



Summary of Results 
 Replace recovery reduces recovery time of conventional 

recovery by 10-30% 

 Impact of chunk size: 
• Larger chunk size, recovery time decreases 
• Replace recovery still shows the recovery time reduction 

 Parallel recovery: 
• Overall recovery time reduces with multi-thread, multi-server 

implementation 
• Replace recovery still shows the recovery time reduction 

 Details in the paper 
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Conclusions 
 Propose a replace recovery algorithm  

• provides near-optimal recovery performance for STAR and CRS 
codes 

• has a polynomial computational complexity 

 Implement replace recovery on a parallelized 
architecture 

 Show via testbed experiments that replace recovery 
speeds up recovery over conventional 

 Source code: 
• http://ansrlab.cse.cuhk.edu.hk/software/zpacr/ 
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http://ansrlab.cse.cuhk.edu.hk/software/zpacr/�


Backup 
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Impact of Chunk Size 
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Conventional recovery Replace recovery 

Recovery time decreases as chunk size increases 

Recovery time stabilizes for large chunk size 



Parallel Recovery 

 Recovery performance of multi-threaded implementation: 
• Recovery time decreases as number of threads increases 
• Improvement bounded by number of CPU cores 
• We show applicability of replace recovery in parallelized implementation 

 Similar results observed in our multi-server recovery implementation 
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STAR (p = 13) 
Quad-core case 
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