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The goal: 

To enable the execution of code 
directly on networked storage servers 



Why Active Storage? 

• Based on work by Riedel, Acharya 
• Allows us to run applications directly on storage nodes 

o Storage nodes can now also compute 
• Can dramatically reduce data traffic 

o Also possibly eliminate large network latencies  
• Take better advantage of fast RAID arrays and SSDs 

o Drives bottle-necked by slow networks 
• Run applications in parallel across multiple nodes 
• Make use of unused processor time  



Why Object Storage Devices (OSDs) 

• Moves part of the filesystem to the disk  
• Deals with objects instead of blocks 
• Data and metadata are separated 

o Direct access to data once authorized 
• Object attributes are flexible and directly modifiable 
• Objects accessible by name on nodes, not just as bytes  
• High throughput possible through striping data  
• Included in the Linux kernel as of the 2.6.30 release 



Where We Started 

• Built on top of an open-source OSD stack 
• OSD initiator and target developed originally by 

Ohio Supercomputer Center (OSC) 
o Implements the SCSI T10 OSD spec 

• Both undergoing active development headed by 
Panasas who sells commercial OSD style systems 
o Plan future OSD spec compliance 



Programming Model 

• Acharya, Riedel, Xie(Oasis) - Stream based 
• MapReduce - Hard to transform some problems 
• Our model is Remote Procedure Call (RPC) based 

o Use executable objects 
o Added command to begin execution 
o Allow full access to all OSD functions 

• Functions can be run sync or async 
o Due to iSCSI 30sec timeout 
o Working to allow queries for async 

• Allow parallel execution using async 
• Support multiple languages (C, Java, Python) 



OSD Specification Changes 

 
• Addition of the EXECUTE_FUNCTION() command 
• Sent over iSCSI 
• Triggers execution of an executable object 
• Carries information including: 

o Object id 
o Arguments to the function  
o Return data from function 



OSD Specification Changes 

• Root information page appended to include: 
o List of supported virtual machines 
 Type (C, Java, etc.) 
Min/max API supported 
 Engine implementation version 

• Additional object attributes including: 
o Type(C, Java, etc) 
o Min/max API supported 



Security 

• Multiprocess Implementation 
o Limits AS functions from directly accessing objects 
o Limits access to the OSD services library 
 Forces the use of RPC 

o Enforces the use of OSD security mechanisms 
• Chroot Sandboxing 

o Applied to engines 
o Limits engines inside a single directory 
o Allows limiting of libraries 
 AS versions of libraries possible 



Active OSD Implementation 

• Active storage engines are implemented on the target 
o Provide an API to allow access to storage objects 
o Sandboxed to limit AS code to this API 
o Currently support C and Java, Python forthcoming  
C functions are shared libraries 
 Java functions are JAR archives 

o Supported by the OSD Services RPC Process  
• Simultaneous execution supported 

o Includes long running functions 



Active Storage OSD 



Active Storage Encrypt Code Example 

  



Active OSD Execution Flow 

  



Active Storage Engines 

• Take in arguments, execute function and return results  
• All engines share common code written in C 
• RPC and sandbox initialization 

o Initially used standard SunRPC 
• OSD RPC calls 

o Used for all OSD function calls from application 
• Communication to the iSCSI target through a pipe 
• Only started on first execute_function() call 
• One engine for each supported language 



Active Storage Engines 

• C-engine: 
o Opens objects as C shared libraries 
o Main "start" function then called like a local function 
o Header file defines start and other OSD prototypes 

•  Java-engine: 
o Opens JAR (Java Archives) 
o Creates a JVM  
o Uses JNI for Java -> C function calling 
o Helper Java applications handle loading and execution 
o Contains a separate API class to define OSD calls 



Early Testing: Not so good 

  



Fast RPC - Mike Hearn, Univ. of Durham 



Early Results: Enter fast RPC 

  



Early Results: Enter fast RPC 

  



OSD Services RPC Process 

• Essentially an RPC based OSD target 
• Shares OSD code with the iSCSI target 
• Exists outside of the sandbox 
• Shares the metadata database and objects on disk 
• Converted to FastRPC for performance improvements 

o RPC designed around local communications  
o Utilizes a single shared heap  
  Eliminates copying buffers 

o Only copies stack from engine  
o 100x speed improvement over Sun RPC 



Results: AES Local vs. Active Storage  

  



Results: Scaling with Multiple OSDs 

  



Results: Scaling with Multiple OSDs 

  



Results: C vs. Java 

  



Results: C vs. Java Read Times 

  



Future Work 

• Implement async queries for long running functions 
• Multithread target to allow: 

o Access to OSD while executing objects 
o Multiple simultaneous engines 

• Finish implementing Python engine 
• Make code available for download 
• Re-write engine RPC code in their native languages 

o eg. remove need for JNI interface for RPC 
o Possible performance improvements 



Conclusion 

• Active storage provides a way to: 
o Transfer data processing to a network storage device 
o Decrease transfer times 
o Provide scalability utilizing multiple OSDs  

• This framework allows for: 
o Multiple execution engines 
o Security through the sandbox and separate proceses 
o Low overhead 
 Empty function takes ~500us 

o Scalability across multiple OSDs 
• Thanks to NSF for generous support of this work 
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