
An Active Storage Framework
for Object Storage Devices

Michael Runde
Wesley Stevens
Paul Wortman
John Chandy

The goal:

To enable the execution of code
directly on networked storage servers

Why Active Storage?

• Based on work by Riedel, Acharya
• Allows us to run applications directly on storage nodes

o Storage nodes can now also compute
• Can dramatically reduce data traffic

o Also possibly eliminate large network latencies
• Take better advantage of fast RAID arrays and SSDs

o Drives bottle-necked by slow networks
• Run applications in parallel across multiple nodes
• Make use of unused processor time

Why Object Storage Devices (OSDs)

• Moves part of the filesystem to the disk
• Deals with objects instead of blocks
• Data and metadata are separated

o Direct access to data once authorized
• Object attributes are flexible and directly modifiable
• Objects accessible by name on nodes, not just as bytes
• High throughput possible through striping data
• Included in the Linux kernel as of the 2.6.30 release

Where We Started

• Built on top of an open-source OSD stack
• OSD initiator and target developed originally by

Ohio Supercomputer Center (OSC)
o Implements the SCSI T10 OSD spec

• Both undergoing active development headed by
Panasas who sells commercial OSD style systems
o Plan future OSD spec compliance

Programming Model

• Acharya, Riedel, Xie(Oasis) - Stream based
• MapReduce - Hard to transform some problems
• Our model is Remote Procedure Call (RPC) based

o Use executable objects
o Added command to begin execution
o Allow full access to all OSD functions

• Functions can be run sync or async
o Due to iSCSI 30sec timeout
o Working to allow queries for async

• Allow parallel execution using async
• Support multiple languages (C, Java, Python)

OSD Specification Changes

• Addition of the EXECUTE_FUNCTION() command
• Sent over iSCSI
• Triggers execution of an executable object
• Carries information including:

o Object id
o Arguments to the function
o Return data from function

OSD Specification Changes

• Root information page appended to include:
o List of supported virtual machines
 Type (C, Java, etc.)
Min/max API supported
 Engine implementation version

• Additional object attributes including:
o Type(C, Java, etc)
o Min/max API supported

Security

• Multiprocess Implementation
o Limits AS functions from directly accessing objects
o Limits access to the OSD services library
 Forces the use of RPC

o Enforces the use of OSD security mechanisms
• Chroot Sandboxing

o Applied to engines
o Limits engines inside a single directory
o Allows limiting of libraries
 AS versions of libraries possible

Active OSD Implementation

• Active storage engines are implemented on the target
o Provide an API to allow access to storage objects
o Sandboxed to limit AS code to this API
o Currently support C and Java, Python forthcoming
C functions are shared libraries
 Java functions are JAR archives

o Supported by the OSD Services RPC Process
• Simultaneous execution supported

o Includes long running functions

Active Storage OSD

Active Storage Encrypt Code Example

Active OSD Execution Flow

Active Storage Engines

• Take in arguments, execute function and return results
• All engines share common code written in C
• RPC and sandbox initialization

o Initially used standard SunRPC
• OSD RPC calls

o Used for all OSD function calls from application
• Communication to the iSCSI target through a pipe
• Only started on first execute_function() call
• One engine for each supported language

Active Storage Engines

• C-engine:
o Opens objects as C shared libraries
o Main "start" function then called like a local function
o Header file defines start and other OSD prototypes

• Java-engine:
o Opens JAR (Java Archives)
o Creates a JVM
o Uses JNI for Java -> C function calling
o Helper Java applications handle loading and execution
o Contains a separate API class to define OSD calls

Early Testing: Not so good

Fast RPC - Mike Hearn, Univ. of Durham

Early Results: Enter fast RPC

Early Results: Enter fast RPC

OSD Services RPC Process

• Essentially an RPC based OSD target
• Shares OSD code with the iSCSI target
• Exists outside of the sandbox
• Shares the metadata database and objects on disk
• Converted to FastRPC for performance improvements

o RPC designed around local communications
o Utilizes a single shared heap
 Eliminates copying buffers

o Only copies stack from engine
o 100x speed improvement over Sun RPC

Results: AES Local vs. Active Storage

Results: Scaling with Multiple OSDs

Results: Scaling with Multiple OSDs

Results: C vs. Java

Results: C vs. Java Read Times

Future Work

• Implement async queries for long running functions
• Multithread target to allow:

o Access to OSD while executing objects
o Multiple simultaneous engines

• Finish implementing Python engine
• Make code available for download
• Re-write engine RPC code in their native languages

o eg. remove need for JNI interface for RPC
o Possible performance improvements

Conclusion

• Active storage provides a way to:
o Transfer data processing to a network storage device
o Decrease transfer times
o Provide scalability utilizing multiple OSDs

• This framework allows for:
o Multiple execution engines
o Security through the sandbox and separate proceses
o Low overhead
 Empty function takes ~500us

o Scalability across multiple OSDs
• Thanks to NSF for generous support of this work

	An Active Storage Framework for Object Storage Devices�
	The goal:
	Why Active Storage?
	Why Object Storage Devices (OSDs)
	Where We Started
	Programming Model
	OSD Specification Changes
	OSD Specification Changes
	Security
	Active OSD Implementation
	Active Storage OSD
	Active Storage Encrypt Code Example
	Active OSD Execution Flow
	Active Storage Engines
	Active Storage Engines
	Early Testing: Not so good
	Fast RPC - Mike Hearn, Univ. of Durham
	Early Results: Enter fast RPC
	Early Results: Enter fast RPC
	OSD Services RPC Process
	Results: AES Local vs. Active Storage
	Results: Scaling with Multiple OSDs
	Results: Scaling with Multiple OSDs
	Results: C vs. Java
	Results: C vs. Java Read Times
	Future Work
	Conclusion

