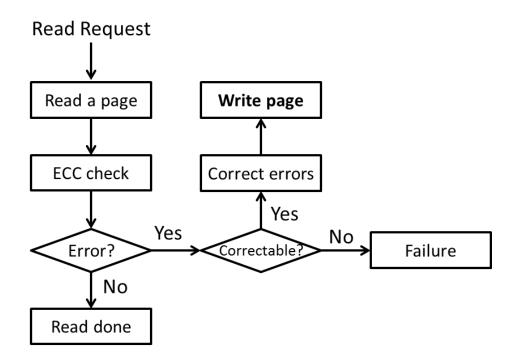
WRITE AMPLIFICATION DUE TO ECC ON FLASH MEMORY OR LEAVE THOSE BIT ERRORS ALONE

Sangwhan Moon and A. L. Narasimha Reddy Texas A&M University

sangwhan@tamu.edu reddy@ece.tamu.edu

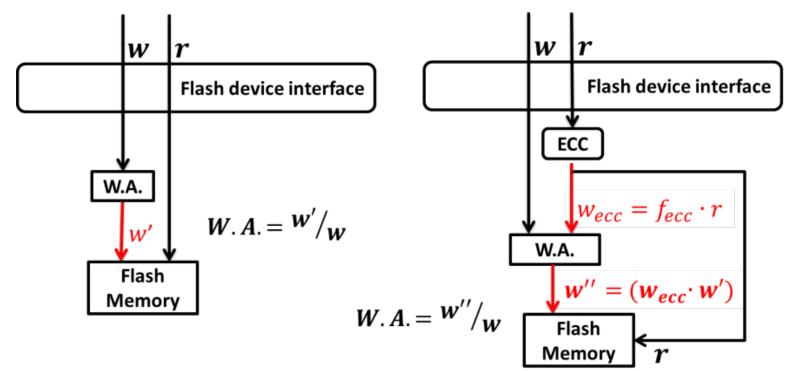
Introduction (1/2)

- Flash Memory Write Endurance Problem
 - 10,000 P/E cycles for MLC
- Flash Memory Protection Scheme
 - Error Correcting Code (ECC)
 - Scrubbing
 - Wear-leveling and Garbage Collection
- These protection schemes
 - (+) Improve the reliability of flash memory
 - (-) Amplify writes → Reduce the reliability of flash memory


Introduction (2/2)

- Write amplification
 - Writes internally done / Writes externally issued
- Main sources
 - Copying live data in garbage collection (prior work)
 - Writing corrected data back in ECC recovery
- Write amplification degrades
 - write performance (prior work)
 - flash memory's *lifetime*

WRITE AMPLIFICATION FROM ECC

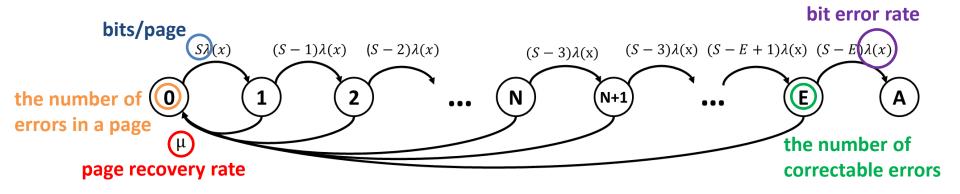

- W.A. due to ECC recovery
 - Reads lead to writes

WRITE AMPLIFICATION FROM ECC

- A traditional point of view to WA and our point of view to WA
- Severe problem with read intensive workload

Contribution

- A statistical model
 - The impact of the W.A. to the lifetime of flash


- A loss of 50% of the lifetime due to the W.A.
 - 20% due to garbage collection, 30% due to ECC

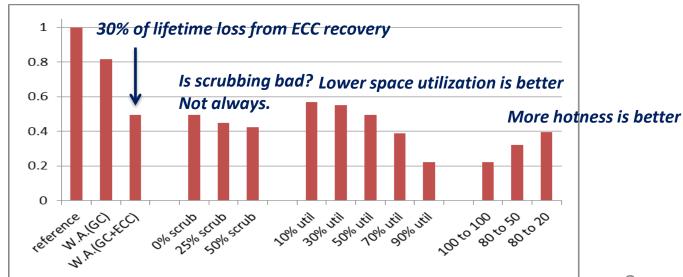
- Threshold-based ECC to reduce the W.A.
 - Improves the lifetime up to 40%.

A RELIABILITY MODEL

- Raw Bit Error Rate from measurement study
- A Canonical Markov Model

Mean Time To Data Loss

$$MTTDL_p = \lim_{k \to \infty} \sum_{j=1}^k \left(jg(j) \prod_{i=1}^{j-1} (1 - \underbrace{g(i)}) \right)$$
 The probability of getting into the absorbing state A in the Markov chain


EVALUATION

- WA from ECC recovery
- Scrubbing
- Space utilization
- Hot/cold dichotomy

r:w	5000	10000	15000	20000	25000	30000
		1.0839	1.2125	1.4430	1.7011	1.8738
3:1	1.0308	1.0889	1.2475	1.6287	2.3165	3.0930
5:1	1.0309	1.0899	1.2560	1.6862	2.5968	3.9032
7:1	1.0310	1.0904	1.2598	1.7142	2.7571	4.4806
9:1	1.0302 1.0308 1.0309 1.0310 1.0310	1.0906	1.2619	1.7308	2.8609	4.9130

W.A. from ECC recovery at different P/E cycles

160GB 3x nm SSD 100MB/s Bandwidth 61bits correctable / 4KB 50% Random Workload 50% Device Utilization R:W=3:1

THRESHOLD-BASED ECC (1/3)

A few bit errors accumulate before ECC correction

58.2% of recoveries for pages with <= 5 bit errors

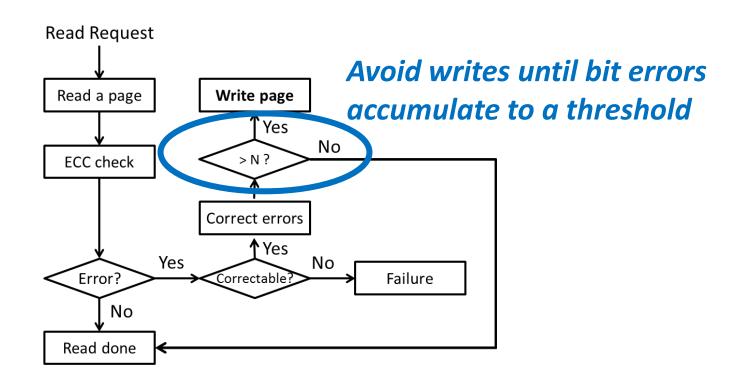
n	5000	10000	15000	20000	25000
=1	0.0286	0.0756	0.1657	0.2463	0.2105
≤ 3	0.0295	0.0823	0.2077	0.4022	0.4604
≤ 5	0.0295	0.0824	0.2096	0.4323	0.5824
> 5	6.57e-10	3.12e-7	8.50e-5	0.0072	0.1163

<u>Probability distribution of the number of accumulated bit errors</u> <u>n when they are recovered by ECC</u>

THRESHOLD-BASED ECC (1/3)

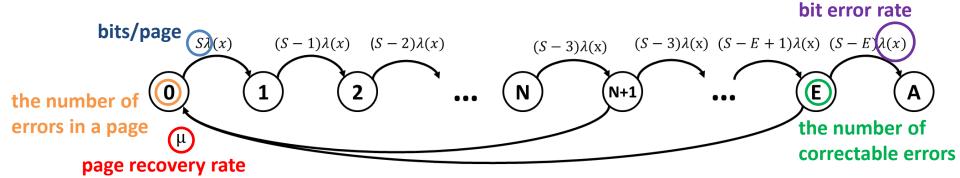
A few bit errors accumulate before ECC correction

11.6% of recoveries for pages with > 5 bit errors


n	5000	10000	15000	20000	25000
=1	0.0286	0.0756	0.1657	0.2463	0.2105
≤ 3	0.0295	0.0823	0.2077	0.4022	0.4604
≤ 5	0.0295	0.0824	0.2096	0.4323	0.5824
> 5	6.57e-10	3.12e-7	8.50e-5	0.0072	0.1163

Probability distribution of the number of accumulated bit errors n when they are recovered by ECC

THRESHOLD-BASED ECC (2/3)


Postpone write until errors accumulate?

THRESHOLD-BASED ECC (3/3)

Reliability Model

Evaluation

Optimal Threshold

Threshold(%)	0	10	30	50	70	90
R.MTTDL	0.496	0.614	0.671	0.694	0.702	0.696

Conclusion

- Reads lead to the W.A.
 - A Statistical Reliability Model
 - A loss of 30% of the lifetime due to ECC recovery under 50% workload and R:W = 3:1.
- To control the W.A. through two tools
 - Scrubbing for detecting latent errors
 - Threshold-based ECC for avoiding excessive recovery

Thank you! Questions and Answers?

