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Old data  

Journaling File system  
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 Widely used in modern computing systems to provide 
high reliability  

Journaling 

System crash  

Success  
New data 

Write 

Consistent data remains ! 
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Pros and Cons of Journaling  
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 Journaling affects I/O performance 

 

 Commit and Checkpoint   

 Write data twice  

 Reasonably efficient in HDD  

 Reduces seek movements  

 

 What if using PCM as storage ?  

 High-speed and nonvolatile memory  

 Expected to be used as secondary  
storage with growing scalability 

 

 

 

Storage (HDD) 

Storage PCM 

Journal area 

Commit  

Checkpoint  
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Pros and Cons of Journaling  
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 NOT efficient in PCM  

 Long write latency 

 Limited write endurance   

 

 Need to reduce additional  
write amount in PCM  

 

 Shortcut-JFS minimizes writes  
of journaling by taking advantages  
of PCM 

 
PCM Storage 

Journal area 

Large writes !  

No seek movement  



Operating Systems Lab 

Shortcut Journaling File system for PCM 

D 

Journal area 

HDD Storage PCM Storage 

Write 

Rewrite journal data 

Journal area 

write 4 blocks 
write 11/2 blocks 

Reduce Write  

Change pointer of 

entire log block 

Rewrite partial 

written block  

1 ¼  block is 
updated. 

Block logging  
Differential logging  Block logging  

Shortcut Journaling  Traditional Journaling  
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Write 

Shortcut Journaling File system for PCM 

Journal area 

Rewrite journal data 

Journal area 

Change pointer of 

entire log block 

Rewrite partial 

written block  

1 ¼  block is 
updated. 

Block logging  
Differential logging  

 Byte addressable 

 Uniform random access 

 Block-based I/O  

 Seek time  

? 

Block logging  
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Data padding in Shortcut-JFS 
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 Adaptive Journaling Policy 
depending on write data size 

 When a write size < ½  of a block, 
Differential logging and Rewriting  

 Otherwise,  
Block logging and Pointer update  

 One implementation Issue  

 Expect that byte unit of I/O interface 
transfers changed parts only  

 Need to fill out remaining part for block 
logging “Data padding”  

 Nested data updates incurs complicated 
data padding  

 Delay data padding until checkpointing  

Buffer cache  

Journal area 

Main memory (DRAM) 

Storage (HDD) 

Byte unit of I/O  

Data padding 
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Experimental Setup 

 Implemented on Linux 

  

Processor Core Intel Pentium(R) Dual-core 
E6500 @ 2.93 GHz  

Main memory (ram-disk)  DDR-3 2GB  

Operating System Ubuntu-Server-10.08  

Linux version  2.6.32-24  

Modified Layer  ramfs based implementation  
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 Iozone  

Experimental Results  

(a) Sequential  
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Shortcut-JFS improves I/O performance by 2.1x 

(b) Random  
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 Postmark  

Experimental Results  

(a) Fileset 1 (b) Fileset 2 
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Shortcut-JFS improves I/O performance by 1.2x 
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Thank you~  


