
Operating Systems Lab

Shortcut-JFS: A New Journaling File

System for Phase Change Memory

Apr 19, 2012

Eunji Lee

Seoul National University

(alicia0729@gmail.com)

Operating Systems Lab

Old data

Journaling File system

2

 Widely used in modern computing systems to provide
high reliability

Journaling

System crash

Success
New data

Write

Consistent data remains !

Operating Systems Lab

Pros and Cons of Journaling

3

 Journaling affects I/O performance

 Commit and Checkpoint

 Write data twice

 Reasonably efficient in HDD

 Reduces seek movements

 What if using PCM as storage ?

 High-speed and nonvolatile memory

 Expected to be used as secondary
storage with growing scalability

Storage (HDD)

Storage PCM

Journal area

Commit

Checkpoint

Operating Systems Lab

Pros and Cons of Journaling

4

 NOT efficient in PCM

 Long write latency

 Limited write endurance

 Need to reduce additional
write amount in PCM

 Shortcut-JFS minimizes writes
of journaling by taking advantages
of PCM

PCM Storage

Journal area

Large writes !

No seek movement

Operating Systems Lab

Shortcut Journaling File system for PCM

D

Journal area

HDD Storage PCM Storage

Write

Rewrite journal data

Journal area

write 4 blocks
write 11/2 blocks

Reduce Write

Change pointer of

entire log block

Rewrite partial

written block

1 ¼ block is
updated.

Block logging
Differential logging Block logging

Shortcut Journaling Traditional Journaling

Operating Systems Lab

Write

Shortcut Journaling File system for PCM

Journal area

Rewrite journal data

Journal area

Change pointer of

entire log block

Rewrite partial

written block

1 ¼ block is
updated.

Block logging
Differential logging

 Byte addressable

 Uniform random access

 Block-based I/O

 Seek time

?

Block logging

Operating Systems Lab

Data padding in Shortcut-JFS

7

 Adaptive Journaling Policy
depending on write data size

 When a write size < ½ of a block,
Differential logging and Rewriting

 Otherwise,
Block logging and Pointer update

 One implementation Issue

 Expect that byte unit of I/O interface
transfers changed parts only

 Need to fill out remaining part for block
logging “Data padding”

 Nested data updates incurs complicated
data padding

 Delay data padding until checkpointing

Buffer cache

Journal area

Main memory (DRAM)

Storage (HDD)

Byte unit of I/O

Data padding

Operating Systems Lab

Experimental Setup

 Implemented on Linux

Processor Core Intel Pentium(R) Dual-core
E6500 @ 2.93 GHz

Main memory (ram-disk) DDR-3 2GB

Operating System Ubuntu-Server-10.08

Linux version 2.6.32-24

Modified Layer ramfs based implementation

Operating Systems Lab

 Iozone

Experimental Results

(a) Sequential

0

200

400

600

800

1000

1200

1400

1K 2K 3K 4K

Th
ro

u
gh

p
u

t
(M

B
/s

)

ext3
Shortcut

0

200

400

600

800

1000

1200

1400

1K 2K 3K 4K

Th
ro

u
gh

p
u

t
(M

B
/s

)

ext3
Shortcut

Shortcut-JFS improves I/O performance by 2.1x

(b) Random

Operating Systems Lab

 Postmark

Experimental Results

(a) Fileset 1 (b) Fileset 2

0

10

20

30

40

50

60

70

80

90

100

1K 2K 3k 4K

Th
ro

u
gh

p
u

t
(M

B
/s

)

EXT3

Shortcut

0

10

20

30

40

50

60

70

80

1K 2K 3k 4K

Th
ro

u
gh

p
u

t
(M

B
/s

)

EXT3

Shortcut

Shortcut-JFS improves I/O performance by 1.2x

Operating Systems Lab

Thank you~

