
Estimating Deduplication Ratios
in Large Data Sets

Danny Harnik, Oded Margalit, Dalit Naor, Dmitry Sotnikov Gil Vernik

IBM Research labs - Haifa

Estimating dedupe and compression ratios – some motivation

 Data reduction does not come for free
–Incurs overheads, sometimes significant
– Not always worth the effort
–Better to know in advance

 Different techniques give different ratios

–What technique to use?
• Chunks? Fixed? Variable-sized? Full-file? Compression?

–Sometimes better to consolidate storage pools, sometimes not

 Different data reduction ratio: different number of disks to buy
–Disks = money !

How do you estimate efficiently?

Option 1: according to data type, application type, etc…
–Can be grossly in-accurate
–“I’ve seen the same DB application with dedupe ratio 1:2 and 1:50”
–Better to actually look at the data.

Option 2: Sample a small portion of the data set and deduce from it

– Problematic when deduplication is involved

 Data set == picture
– Identical block == identical picture block

 In real life we don’t see the full data set at

once
– Rather, we probe locations
– In sampling we only probe a small number

of locations

Why sampling is problematic for dedupe estimation

 Dedupe ratio is 1:2

 In order to see the duplicates must hit

the exact same location twice…

 Birthday paradox – need ~N½

elements to hit a collision
– Ω(N½) to see a large number

of collisions.

What about triple collisions?

Formal limitations of sampling for Distinct Elements

Lower bounds: Can show 2 data sets with far apart dedupe ratio, but same
“behavior” under sampling of O(N1-ε) elements

 Charikar, Chaudhuri, Motwani, & Narasayya 2000 - showed basic bounds and

empirical failures of approximating “distinct elements”.

 Rashkodnikova, Ron, Shpilka & Smith 2009 – need Ω(N1-ε) samples to

approximate to within a multiplicative factor.

 Valiant & Valiant 2011 - need Ω(N / logN) samples for same task.

Bottom line: need to look at essentially he whole data set

Algorithms that see the whole data set : challenges
 Still a hard task
 High resources requirements: memory, time, disk accesses

 Naïve approach: simulate the actual dedupe

• just don’t store the data
– Problem: simply storing the table of hash indices is too big for memory

• E.g. [Meyer & Bolosky, FAST 11]

 Example: metadata for 7 TB of data  24 GB of metadata
– Using an efficient dynamic data structure will require additional overhead

 Many solutions, none easy

 Goal 1: find a memory efficient estimation scheme with high accuracy
 Goal 2: Be as efficient as possible (time & CPU).

– More pronounced when need to integrate local (LZ) compression with
deduplication

Plan for rest of talk

Our Algorithm

 Integrating compression

 Analysis – both formal and empirical

 Related work

 Full-file deduplication – a special case

Our Algorithm: Sample & Scan

 Sample phase – create a “base sample”
and store in memory

 Scan phase – Count appearances only

of elements in the base sample

 Summary – Average of the base sample

tallies too give estimation

4

1

1

1

1

2

What about compression?

 Add compression evaluation only to elements
in the base sample

– Only in the sample phase
– Crucial since compression is a time

consuming operation
 In the summary take the compression stats

into account

4

1

1

1

1

2

0.04

0.9

0.6

0.2

0.4

0.05

 Note: estimating dedupe and compression ratios
separately is not sufficient for accurate
estimation of the combination

Formal Analysis

 We prove a relation between the size of the base sample and the accuracy
achieved for a given confidence parameter

– Accuracy – by how much we may error
– Confidence – with what probability

Intuition:
 Each block in the data-set has a “contribution” to the overall reduced output

– Example: Suppose a block’s dedupe count is 4
• then each block contributes ¼ of a block to the overall output

 We attempt to estimate the average contribution over the whole data set

– Average contribution = total output size / total input size
 Estimating of averages is well studied

– Our estimation should form a normal distribution around the actual value

Example of Size of Sample vs Error and Confidence

Dedupe
Ratio

Error Confidence Sample Size Memory

3:1 0.01 0.0001 44557 10.7 MB

5:1 0.01 0.0001 1237938 29.7 MB

15:1 0.01 0.0001 11142000 267 MB

 Error is a percentage of the output size
– Good dedupe  small output  1% error is much smaller in absolute values
– This is why some bound on dedupe ratio is required

 If error percentage of original size is acceptable, then life is easier
– and memory requirements become even smaller

Empirical Analysis

 Evaluated our estimation on 4 real life data-sets:
1. Workstation data
2. File repository of an organization
3. Backup repository
4. Exchange DB periodical backups

 Largest data set was the file repository with 7TBs of data

 The tests back-up our formal analysis

Convergence of the error percentage as base sample grows

Error is indeed normally distributed around the actual ratio

Related Work

 Distinct elements is a heavily studied topic
–DB analysis
–Streaming algorithms

 [FM85],…,[AMS99],…,[KNW2010],…many more…

Distinct elemnts works:
 Focus on one-pass algorithms
 Always fixed size elements – not files or variable sized blocks
 Do not consider compression

Our work:
 not one pass
 Comparable to most works (memory wise)
 When combined with compression we give the best performance (minimal number

of chunks to compress)

Full-file deduplication

 Files have properties and metadata that can help us
– Different file length  no dedupe
– Different hash on first block  no dedupe

Our algorithm:
 In sample phase keep also the file length and first block hash of base sample
 During scan phase:

– Check if file size relevant to base sample, if not, discard
– Check if first block hash relevant to base sample, if not, discard
– If still relevant, then read whole file from disk

Overall: all metadata is scanned, not all files read!

Full-file estimation:
Percentage of data read from disk vs. desired error gurantee

What to take home from this talk?

1. Need to be careful when doing sampling for dedupe

2. We have a good algorithm if you can run a full scan or
already have metadata available.

3. Our algorithm integrates compression and dedupe
naturally
– Practically no overhead when adding compression

4. For full-file deduplication we reduce the data reads
substantially!

Thank You !

	Estimating Deduplication Ratios�in Large Data Sets��Danny Harnik, Oded Margalit, Dalit Naor, Dmitry Sotnikov Gil Vernik�
	Estimating dedupe and compression ratios – some motivation
	How do you estimate efficiently?
	Slide Number 4
	Why sampling is problematic for dedupe estimation
	Formal limitations of sampling for Distinct Elements
	Algorithms that see the whole data set : challenges
	Plan for rest of talk
	Our Algorithm: Sample & Scan
	What about compression?
	Formal Analysis
	Example of Size of Sample vs Error and Confidence
	Empirical Analysis
	Convergence of the error percentage as base sample grows
	Error is indeed normally distributed around the actual ratio
	Related Work
	Full-file deduplication
	Full-file estimation:�Percentage of data read from disk vs. desired error gurantee
	What to take home from this talk?
	Thank You !

