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Estimating dedupe and compression ratios – some motivation 

 Data reduction does not come for free 
–Incurs overheads, sometimes significant 
– Not always worth the effort 
–Better to know in advance 

 
 Different techniques give different ratios  

–What technique to use?  
• Chunks? Fixed? Variable-sized? Full-file? Compression? 

–Sometimes better to consolidate storage pools, sometimes not 
 

 Different data reduction ratio: different number of disks to buy 
–Disks = money !  

 
 



How do you estimate efficiently? 

Option 1: according to data type, application type, etc… 
–Can be grossly in-accurate 
–“I’ve seen the same DB application with dedupe ratio 1:2 and 1:50” 
–Better to actually look at the data. 

 
Option 2: Sample a small portion of the data set and deduce from it 

– Problematic when deduplication is involved 
 



 Data set == picture 
– Identical block == identical picture block 

 
 In real life we don’t see the full data set at 

once 
– Rather, we probe locations 
– In sampling we only probe a small number 

of locations 



Why sampling is problematic for dedupe estimation 

 Dedupe ratio is 1:2 
 
 In order to see the duplicates must hit 

the exact same location twice… 
 
 Birthday paradox – need ~N½ 

elements to hit a collision 
– Ω(N½) to see a large number 

of collisions. 
 
What about triple collisions?  

 
 

     
 
 
 



Formal limitations of sampling for Distinct Elements  

Lower bounds: Can show 2 data sets with far apart dedupe ratio, but same 
“behavior” under sampling of O(N1-ε) elements  
 
 Charikar, Chaudhuri, Motwani, & Narasayya 2000 - showed basic bounds and 

empirical failures of approximating “distinct elements”. 
 
 Rashkodnikova, Ron, Shpilka & Smith 2009 – need Ω(N1-ε) samples to 

approximate to within a multiplicative factor. 
 
 Valiant & Valiant 2011 - need Ω(N / logN) samples for same task. 

 
 

Bottom line: need to look at essentially he whole data set 
 
 



Algorithms that see the whole data set : challenges 
 Still a hard task 
 High resources requirements: memory, time, disk accesses 

 
 Naïve approach: simulate the actual dedupe  

• just don’t store the data 
– Problem: simply storing the table of hash indices is too big for memory 

• E.g. [Meyer & Bolosky, FAST 11] 

 Example: metadata for 7 TB of data   24 GB of metadata 
– Using an efficient dynamic data structure will require additional overhead 

 
 Many solutions, none easy 

 
 Goal 1: find a memory efficient estimation scheme with high accuracy 
 Goal 2: Be as efficient as possible (time & CPU). 

– More pronounced when need to integrate local (LZ) compression with  
deduplication 

 
 



Plan for rest of talk 

Our Algorithm 
 
 Integrating compression 

 
 Analysis – both formal and empirical 

 
 Related work 

 
 Full-file deduplication – a special case 

 
 



Our Algorithm: Sample & Scan 

 Sample phase – create a “base sample” 
and store in memory 
 
 Scan phase – Count appearances only 

of elements in the base sample 
 
 Summary – Average of the base sample 

tallies too give estimation 
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What about compression? 

 Add compression evaluation only to elements 
in the base sample 

– Only in the sample phase 
– Crucial since compression is a time 

consuming operation 
 In the summary take the compression stats 

into account 
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 Note: estimating dedupe and compression ratios 
separately is not sufficient for accurate 
estimation of the combination 



Formal Analysis 

 We prove a relation between the size of the base sample and the accuracy 
achieved for a given confidence parameter 

– Accuracy – by how much we may error 
– Confidence – with what probability 

 
Intuition:  
 Each block in the data-set has a “contribution” to the overall reduced output 

– Example: Suppose a block’s dedupe count is 4 
•  then each block contributes ¼ of a block to the overall output 

 
 
 
 
 
  We attempt to estimate the average contribution over the whole data set 

– Average contribution = total output size / total input size 
 Estimating of averages is well studied 

– Our estimation should form a normal distribution around the actual value 



Example of Size of Sample vs Error and Confidence 

Dedupe 
Ratio 

Error Confidence Sample Size Memory 

3:1 0.01 0.0001 44557 10.7 MB 

5:1 0.01 0.0001 1237938 29.7 MB 

15:1 0.01 0.0001 11142000 267 MB 

 Error is a percentage of the output size 
– Good dedupe  small output  1% error is much smaller in absolute values 
– This is why some bound on dedupe ratio is required 
  

 If error percentage of original size is acceptable, then life is easier  
– and memory requirements become even smaller 



Empirical Analysis 

 Evaluated our estimation on 4 real life data-sets: 
1. Workstation data 
2. File repository of an organization 
3. Backup repository 
4. Exchange DB periodical backups 

 
 Largest data set was the file repository with 7TBs of data 

 
 The tests back-up our formal analysis 

 



Convergence of the error percentage as base sample grows 



Error is indeed normally distributed around the actual ratio 

 



Related Work 

 Distinct elements is a heavily studied topic 
–DB analysis 
–Streaming algorithms 

 [FM85],…,[AMS99],…,[KNW2010],…many more… 
 

Distinct elemnts works: 
 Focus on one-pass algorithms 
 Always fixed size elements – not files or variable sized blocks  
 Do not consider compression 

 
Our work:  
 not one pass  
 Comparable to most works (memory wise) 
 When combined with compression we give the best performance (minimal number 

of chunks to compress) 
 



Full-file deduplication 

 Files have properties and metadata that can help us 
– Different file length  no dedupe 
– Different hash on first block  no dedupe 

 
Our algorithm: 
 In sample phase keep also the file length and first block hash of base sample 
 During scan phase: 

– Check if file size relevant to base sample, if not, discard 
– Check if first block hash relevant to base sample, if not, discard 
– If still relevant, then read whole file from disk 

 
Overall: all metadata is scanned, not all files read! 

 



Full-file estimation: 
Percentage of data read from disk vs. desired error gurantee 

 



What to take home from this talk? 

1. Need to be careful when doing sampling for dedupe 
 

2. We have a good algorithm if you can run a full scan or 
already have metadata available. 
 

3. Our algorithm integrates compression and dedupe 
naturally 
– Practically no overhead when adding compression 

 

4. For full-file deduplication we reduce the data reads 
substantially!  
 
 
 



Thank You ! 
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