
 

IEEE MSST'12

A QoS Aware Non-work-conserving 
Disk Scheduler

Pedro E. Rocha
Luis C. E. Bona

Federal University of Paraná
Brazil



 

IEEE MSST'12

Why QoS Aware?

 To be able to share a disk among users whilst 
providing tight QoS guarantees.

 Enforce performance isolation: 
the performance experienced by an application (VM) should 

not suffer due to variations in the workload from other 
applications.

 Important in virtualized systems



 

IEEE MSST'12

Why QoS Aware?

 We consider QoS aware different from 
proportional share:
 QoS aware can specify tight and independent QoS 

guarantees in terms of:
 Bandwidth
 Delay
 Bursts

 Proportional share
 I/O Priorities
 Disk share (in %) → disk performance is very 

difficult to predict



 

IEEE MSST'12

Why Non-work-conserving?

 Work-conserving schedulers suffer with 
deceptive idleness

 Non-work-conserving schedulers prevent 
deceptive idleness by predicting future requests:

A request that is soon to arrive might be closer to the current 
disk head position than other pending requests

 The solution: after serving a (synchronous and 
sequential) request, keep the disk idle



 

IEEE MSST'12

Previous Work

 CFQ – Complete Fairness Queuing
 Non-work-conserving 
 Proportional share (I/O priorities)

 BFQ – Budget Fair Queuing
 Non-work-conserving 
 Proportional share (a disk share per application)

 pClock
 Work-conserving
 QoS aware (tags per request)



 

IEEE MSST'12

HTBS

 High-throughput Token Bucket Scheduler
 Assigns tags per request in a fair-queuing like 

fashion (similar to pClock):
 Request queue per application
 Start and finish tags per request

 Non-work-conserving dispatch order.

 More details in the paper...



 

IEEE MSST'12

Experimental Setup

 AMD Athlon 2800 MHz dual-core, 4 GB RAM
 Low-end HDD → Samsung HD080HJ SATA, 

80GB, 7200 rpm
 We implemented HTBS and pClock for Linux
 Microbenchmark → fio and dd
 Two experiments:

 Measure how future request prediction increases 
throughput

 Show that a QoS-aware work-conserving scheduler 
misses QoS guarantees in synchronous workloads



 

IEEE MSST'12

Experimental Results

Aggregated bandwidth achieved by pClock and HTBS 
using fio benchmark



 

IEEE MSST'12

Experimental Results

Aggregated bandwidth achieved by pClock and HTBS 
using dd processes



 

IEEE MSST'12

Experimental Results

pClock: four synchronous jobs with different bandwidth 
attributes (8800, 4000, 2000 and 800 KB/s)



 

IEEE MSST'12

Experimental Results

 Since there is a short amount of time between synchronous requests, 
a work-conserving scheduler cannot dispatch several requests from 
the same application, even if its guarantees are higher.

 QoS guarantees are missed



 

IEEE MSST'12

Experimental Results

HTBS: four synchronous jobs with different bandwidth 
attributes (8800, 4000, 2000 and 800 KB/s)



 

IEEE MSST'12

Experimental Results

 HTBS could meet QoS guarantees, since it can dispatch several 
requests from the same application (depending on its QoS 
guarantees, and up to B

max
)

 QoS guarantees are met



 

IEEE MSST'12

Future Directions

 Do some more experimentation using 
macrobenchmarks
 Filebench
 TCP
 DVDStore

 Integrate with VMMs to provide QoS 
guarantees to VMs without decrease system 
overall throughput



 

IEEE MSST'12

Conclusions

 We presented HTBS, a new non-work-
conserving QoS aware disk scheduler

 Through experiments with a Linux 
implementation, we showed that:
 HTBS increases throughput when compared to 

other QoS-aware schedulers
 HTBS can provide QoS guarantees even with 

synchronous workloads, unlike previous work



 

IEEE MSST'12

Thanks!

Questions?


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16

