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Why QoS Aware?

 To be able to share a disk among users whilst 
providing tight QoS guarantees.

 Enforce performance isolation: 
the performance experienced by an application (VM) should 

not suffer due to variations in the workload from other 
applications.

 Important in virtualized systems
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Why QoS Aware?

 We consider QoS aware different from 
proportional share:
 QoS aware can specify tight and independent QoS 

guarantees in terms of:
 Bandwidth
 Delay
 Bursts

 Proportional share
 I/O Priorities
 Disk share (in %) → disk performance is very 

difficult to predict
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Why Non-work-conserving?

 Work-conserving schedulers suffer with 
deceptive idleness

 Non-work-conserving schedulers prevent 
deceptive idleness by predicting future requests:

A request that is soon to arrive might be closer to the current 
disk head position than other pending requests

 The solution: after serving a (synchronous and 
sequential) request, keep the disk idle
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Previous Work

 CFQ – Complete Fairness Queuing
 Non-work-conserving 
 Proportional share (I/O priorities)

 BFQ – Budget Fair Queuing
 Non-work-conserving 
 Proportional share (a disk share per application)

 pClock
 Work-conserving
 QoS aware (tags per request)
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HTBS

 High-throughput Token Bucket Scheduler
 Assigns tags per request in a fair-queuing like 

fashion (similar to pClock):
 Request queue per application
 Start and finish tags per request

 Non-work-conserving dispatch order.

 More details in the paper...
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Experimental Setup

 AMD Athlon 2800 MHz dual-core, 4 GB RAM
 Low-end HDD → Samsung HD080HJ SATA, 

80GB, 7200 rpm
 We implemented HTBS and pClock for Linux
 Microbenchmark → fio and dd
 Two experiments:

 Measure how future request prediction increases 
throughput

 Show that a QoS-aware work-conserving scheduler 
misses QoS guarantees in synchronous workloads
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Experimental Results

Aggregated bandwidth achieved by pClock and HTBS 
using fio benchmark
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Experimental Results

Aggregated bandwidth achieved by pClock and HTBS 
using dd processes
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Experimental Results

pClock: four synchronous jobs with different bandwidth 
attributes (8800, 4000, 2000 and 800 KB/s)
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Experimental Results

 Since there is a short amount of time between synchronous requests, 
a work-conserving scheduler cannot dispatch several requests from 
the same application, even if its guarantees are higher.

 QoS guarantees are missed
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Experimental Results

HTBS: four synchronous jobs with different bandwidth 
attributes (8800, 4000, 2000 and 800 KB/s)
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Experimental Results

 HTBS could meet QoS guarantees, since it can dispatch several 
requests from the same application (depending on its QoS 
guarantees, and up to B

max
)

 QoS guarantees are met
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Future Directions

 Do some more experimentation using 
macrobenchmarks
 Filebench
 TCP
 DVDStore

 Integrate with VMMs to provide QoS 
guarantees to VMs without decrease system 
overall throughput
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Conclusions

 We presented HTBS, a new non-work-
conserving QoS aware disk scheduler

 Through experiments with a Linux 
implementation, we showed that:
 HTBS increases throughput when compared to 

other QoS-aware schedulers
 HTBS can provide QoS guarantees even with 

synchronous workloads, unlike previous work
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Thanks!

Questions?


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16

