Valmar: High-Bandwidth Real-Time Streaming Data Management

David BigelowScott BrandtSystems Research Lab, University of California, Santa Cruz

John Bent EMC

HB Chen Los Alamos National Laboratory

MSST 2012

Ever-Increasing Data Rates

ATLAS Experiment, CERN **300 MB/s**

LWA Radio Telescope **3.75 GB/s**

Cisco CRS-1 Core Router Toward TB/s

A Firehose of Data

Problem Area

- Too much data to retain permanently
- "Interesting" data arrives unpredictably
- May take time to identify "interesting" data
- Arrives in real time at high speed

We must fully capture, but only temporarily store, all incoming data.

TiVo on Big Data

Attach THIS...

i i

...to THIS

Existing Systems - Single Disk

Existing systems offer neither high performance nor reliable bandwidth

Ring Buffer Model

- Low data lifetime
- In-place preservation
- Data overwritten as first-in, first-out
- Incoming data gets priority

Data Organization: Chunking

- Data chunks consist of many data elements
- Size: in the tens of MB
- All I/O operations performed on chunks
 - Hardware delay minimized (seeks, rotational delay)
 - Static disk layout

Disk performance becomes predictable

- Can make tight bandwidth guarantees
- Overall bandwidth is higher

Effects of Chunking on I/O Times

Indexing

Same requirements and limitations as data

- Created and stored in real time
- Expires along with the data
- Usually not needed

Can have complex requirements

- Many indexing vectors
- Index size can approach that of the data

Fundamentally a data categorization and movement problem

 Actual searching is fast once index is moved from disk to memory

Indexing Example: IP Packets

Evaluation

Two comparison systems

- Flat filesystem (ext2)
- Database (mysql)

Multiple systems and hard drives

 Results here are from one system/drive for comparison purposes (~80 MB/s sustainable write bandwidth)

Tests tweaked to suit base system ability

- Synchronizing constraints looser on comparison systems
- Data per cycle was about 80% of the drive's maximum capacity

Large Elements, Comparison

Requested Write Bandwidth: 80 MB/s Requested Read Bandwidth: Best Possible

Small Elements, Comparison

Requested Write Bandwidth: 80 MB/s Requested Read Bandwidth: Best Possible

• Questions?