

NANDFlashSim : Intrinsic Latency Variation Latency Variation Aware NAND Flash Memory System Modeling and Simulation at Microarchitecture Level

Myoungsoo Jung (MJ),

Ellis H. Wilson III, David Donofrio, John Shalf, Mahmut T. Kandemir

National Energy

Agenda

- •Revisiting NAND flash technology
- •• Advance NAND flash operations
- NANDFlashSim
- Evaluation

Intrinsic Latency Variation

- • Fowler-Nordheim Tunneling
	- –– Making an electron channel
	- –Voltage is applied over a certain threshold
- Incremental step pulse programming (ISPP)

Intrinsic Latency Variation

- •• Each step of ISPP needs different programming duration (latency)
- \bullet Latencies of the NAND flash memory fluctuate depending on the address of the pages in a block

NAND Flash Architecture

- •• Employing cache and data registers
- •Multiple planes (memory array)
- \bullet Multiple dies

Memory Array (Plane)

Density Trend

- • Flash technology
	- –– Each cell is capable to store multiple bits
	- –manufacturing feature size is scaling down
- So far, density is increasing by two to four times every 2 years_{0,} $F = F$ lash Chip

Density Trend

- •**• Shrinking manufacturing feature size** mi ght be limited around 12 nanometer
- • Multi-die stack technology
	- Flash packages continue to scale up by employing multiple dies and planes 70 Flash Chip

40

30

10

0

1Gb

0

20

MOSAID HLNAN<mark>D</mark>

(32Gb 16-DIE NAND STACK)

2002 2004 2006 2008 2010 2012 2002 2004 2006 2008 2010 2012 201420022006200820122014 Years1Gb

Years Years

32Gb

64Gb 64Gb

?

Gb)

Gb)

50

1500

2000

<u>لَّكِنَّ مَسْتَمَدٍ وَمَسْتَمَدٍ مَسْتَمَ</u>
How does performance behavior change? صَحَّةً ج

Advance NAND Flash Operation

Legacy Operation

- An I/O operation splits into several operation stages
- Each stage should be appropriately handled by device drivers

Cache Operation

• Cache mode operations use internal registers in an attempt to hide performance overhead from data movements

Internal Data Move Mode

- Saving space and cycles to copy data
- Source and destination page address should be located in the same die

Multi-plane Mode Operation

- Two different pages can be served in parallel
- Addresses should indicate same page offset in a block, same die address and should have different plane addresses (*plane addressing rule*)

Interleaved-Die Mode Operation

- providing a way, taking advantage of internal
parallelism by interleaving NAND transactions
- Scheduling NAND transactions and bus arbitrations are critical dominant of memory system performance

Challenges

- Performances are varied based on:
	- intrinsic latency variation characteristic
	- –internal parallelism
	- –– advanced flash operations types
- \bullet Performances are affected by
	- how to deal with diverse advance flash operations
	- – how to effectively schedule NAND transactions

Prior Simulation Works

- Flash-based Solid State Disks Simulation – Tightly coupled to specific flash firmware
- Unaware of latency variation of NAND flash – Latency approximation model with *constants*
- Course-grain NAND command handling
	- In-order execution

NANDFlashSim

- Simulating and Modeling NAND flash
rather than flash firmware or SSDs
	- NANDFlashSim can be applied to diverse application like off-chip caches of a multi-core
system and I/O subsystems of mobile systems
	- –– Multiple instances can be used for building
SATA, PCI-e based SSDs

NANDFlashSim

- Detailed Timing Model
- Awareness of intrinsic latency variation
	- designed to be performance variation-aware and employs different page offsets in a physical block
- Reconfigurable Microarchitecture
	- Supports highly reconfigurable architectures in
terms of multiple dies and planes
- Fine-grain NAND flash command handling
	- 16 combinations of advance flash operation
	- –Supporting out-of-order execution

High-level View

- Command set architecture and individual state machine associated with it
- Host and NAND flash clock domain are separate.
- All entries (controller, register, die, …) are updated at every cycles

Command Set Architecture

- • Multi-stage Operation
	- –– Stage are defined by common operations
	- –CLE, ALE, TIR, TIN, TOR, TON, etc…
- Command Chains **Command Chains** ____
	- –Defines command sequences

Variation

Generators

Evaluation Methodology

Validation (Throughput)

Performance of Multiple Planes

- Performance of write are significantly enhanced as the number of plane increases – Cell activities (TIN) can be executed in parallel
- Data movement (TOR) is ^a dominant factor in determining bandwidth
2048 Bytes 4096 Bytes 8192 Bytes 8192 Bytes 8192 Bytes 8192 Bytes

Performance of Multiple Dies

- Similar to multi-plane, write performance
are improved by increasing the number of
dies
- Multiple dies architecture provides a little
worse performance than multi-plane

Multi-plane VS Multi-die

- • Under disk-friendly workload
	- –– The performance of interleaved-die operation is 54.5% better than multi-plane operation on average
	- Interleaved-die operations have less restrictions for addressing

Breakdown of Cycles

• While writes, most cycles are used for NAND flash itself, reads spend at least 50.5% of the total time doing.

Conclusion & Future Works

- A research vehicle for evaluating parallelism and architecture trend
	- Single instance
		- Integrating it into GEM5 and Simics
		- Plan to apply it with Green Flash and Xtensa of CoDEx
	- – Multiple instances
		- We successfully built a multi-channel SSD framework
with 1024 instances (~16384 dies, ~ 131072 planes)
- Open Source Project
	- Static/shared library
	- Standalone simulation

Q&A

- Download
	- –http://www.cse.psu.edu/~mqj5086/nfs/
- Mailing list
	- nandflashsim@googlegroups.com
- Thanks to
	- –— Dean Klein, Micron Technology, Inc.
	- Seung-hwan Song, University of Minnesota
	- Michael Kim, Corelinks
	- –– Kurt Lee, Corelinks
	- Leonard Ko, Corelinks
	- Yulwon Cho, Stanford University

