
1 EMC CONFIDENTIAL—INTERNAL USE ONLY

BloomStore
Bloom-Filter based Memory-efficient

Key-Value Store for Indexing of Data

Deduplication

Guanlin Lu, EMC2

Youngjin Nam, Daegu Univ., Korea

David H.C. Du, Univ. of Minnesota, Twin-cities

2 EMC CONFIDENTIAL—INTERNAL USE ONLY

Overview of Key-Value Store

 Key-Value (KV) store

– efficiently supports simple operations: Key lookup & KV pair insertion

– replaces traditional relational DBs for its superior scalability & perf.

– often implemented through an index structure, mapping Key Value

 Popular management (index + storage) solution for large
volume of records, with the applications like

– social networks, online shopping, online multi-player gaming

– data deduplication*

*Indexing & storing billions of KV pairs persistently, as well as

providing high-throughput access

(e.g., each single node KV store offers >10,000 key lookups/sec)

3 EMC CONFIDENTIAL—INTERNAL USE ONLY

Motivation(1/2)

 KV store in a deduplication system should provide high
access throughput (> 10,000 key lookups/sec)

Scalability challenge: available memory space

limits the maximum number of stored KV pairs

Q1: Can we overcome

the space limitation?

4 EMC CONFIDENTIAL—INTERNAL USE ONLY

Motivation(2/2)

 To meet high throughput demand, the performance of index
access and KV pair (data) access is critical

– index access : search the KV pair associated with a given “key”

– KV pair access: get/put the actual KV pair

 Using in-RAM index structure can only address

index access performance demand

Q2: How to optimize both

index & KV pair

accesses in KV Store?

5 EMC CONFIDENTIAL—INTERNAL USE ONLY

Existing Approach to Speed up Index &
KV pair Accesses

 Store KV pairs into SSD for faster data access

 Maintain the index structure in RAM to map each key to its
KV pair on SSD

…

…

…

page

… … … … … …

hash

table

index

Sufficiently fast, but not scalable!

with 64-byte KV pairs,

4GB RAM can index about 1 billion KV pairs,

occupying 64GB flash space

RAM size couldn’t

scale up linearly to

flash size!

RAM FLASH

6 EMC CONFIDENTIAL—INTERNAL USE ONLY

Handling Scalability Challenge
with SSD

 Keep the minimum index structure in RAM, while storing the
rest of the index structure in SSD

 On-flash Index structure should be designed carefully:
- read/write by page

- write data only into clean (erased) pages

- sequential write is multiple times faster than random write

- erase by block (much slower than read/write)

- overwrite is inefficient

- a limited erase count per cell (10K – 100K)

7 EMC CONFIDENTIAL—INTERNAL USE ONLY

RAM

Current ith HT Buffer

…

…

1st partition

ith BF

i-1th HT

…

…

Pth Partition

……

……

jth BF

j-1th HT

Current jth HT Buffer

1st BF 1st BF

1st HT 1st HT FLASH

use hash table both as index structure and data

container for KV pairs

BufferHash [Anand’10]

 Keeps all BFs & the current HT in RAM, while keeping other
HTs in flash

8 EMC CONFIDENTIAL—INTERNAL USE ONLY

hash table directory sequential log

SkimpyStash [Debnath’11]

FLASH

key value
nul

l

key value
nul

l

key value
nul

l

.

....

.

key value

key value

key value

Hash

Table

Directory

BF ptr

.

.

.

RAM

Data Buffer (page size) .

key value

key value

key value
nul

l

key value

flash ptr points to

the tail of bucket

examine if

a key

exists in

the bucket

KV pairs

in different

buckets

are

buffered

without

spatiality

bucket

9 EMC CONFIDENTIAL—INTERNAL USE ONLY

Limitation of SkimpyStash

 Each false positive error causes all KV pairs in the
corresponding bucket to be searched “in vain”

– to improve lookup performance, they have to either increase the BF
size, or reduce the bucket length both increase the RAM usage!

– 1-byte in-RAM BF footprint per key

– RAM overhead per key = 1+ 4/(avg_bucket_length) bytes

 Key lookup time increases linearly as the bucket length grows

– avg # of flash page reads in each key lookup operation equals to half
of the (average) bucket length

10 EMC CONFIDENTIAL—INTERNAL USE ONLY

BF

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

ptr

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

^

#
 o

f
b

u
c
k
e

ts

RAM

Flash

data page

ki vi

ptr per bucket

KV pairs in a bucket are

not collocated in flash

pages!

SkimpyStash

11 EMC CONFIDENTIAL—INTERNAL USE ONLY

.

.

.

.

.

Data buf

#
 o

f
p

a
rt

it
io

n
s

ptr

RAM

.

.

.

.

.

.

…
…
…

Active BF

Filled BF
…

…

data page

…

ki vi

ptr per partition

partition size >> page

size;

spatiality is held at

flash page granularity

BloomStore

Flash

Summary of design uniqueness (1/4):

Data buffer per partition to preserve page-grained spatiality of KV pairs

(avoid linked-list traverse during lookup)

12 EMC CONFIDENTIAL—INTERNAL USE ONLY

.

.

.

.

.

Data buf

#
 o

f
p

a
rt

it
io

n
s

ptr

RAM

.

.

.

.

.

.

…
…
…

Active BF

Filled BF
…

…

data page

…

ki vi

ptr per partition

partition size >> page

size;

spatiality is held at

flash page granularity

BloomStore

Flash

Summary of design uniqueness (2/4):

Separately store BOTH index structure & KV pairs on flash

13 EMC CONFIDENTIAL—INTERNAL USE ONLY

.

.

.

.

.

Data buf

#
 o

f
p

a
rt

it
io

n
s

ptr

RAM

.

.

.

.

.

.

…
…
…

Active BF

Filled BF
…

…

data page

…

ki vi

ptr per partition

partition size >> page

size;

spatiality is held at

flash page granularity

BloomStore

Flash

Summary of design uniqueness (3/4):

Only one small in-RAM buffer per partition so as to minimize the RAM

usage for the index

14 EMC CONFIDENTIAL—INTERNAL USE ONLY

.

.

.

.

.

Data buf

#
 o

f
p

a
rt

it
io

n
s

ptr

RAM

.

.

.

.

.

.

…
…
…

Active BF

Filled BF
…

…

data page

…

ki vi

ptr per partition

partition size >> page

size;

spatiality is held at

flash page granularity

BloomStore

Flash

Summary of design uniqueness (4/4):

Use BFs to index keys removes the flash pointer overhead per bucket,

further reduce the RAM usage

15 EMC CONFIDENTIAL—INTERNAL USE ONLY

BloomStore Architecture

RA

M
KV pairs

KV Pair Write

Buffer

KV pairs …

1st Partition Pth Partition

……

……

FLASH

BF

Buffer

1st

BF

2nd BF … i-1th BF

ith BF

flash pages

KV pairs KV pairs

KV pairs

KV Pair Write

Buffer

KV pairs …

BF

Buffer

1st

BF

2nd BF … j-1th BF

jth BF

flash pages

KV pairs KV pairs

16 EMC CONFIDENTIAL—INTERNAL USE ONLY

BloomStore –
Performance Enhancements

 Multi-BF Buffering

– Each BloomStore instance holds the active BF plus a number of BFs
whose data flash pages of KV pairs have been already written into
the flash in its BF buffer.

 Pre-filter

– Why need a pre-filter?

– Solution: keeping a fix-sized pre-filter in RAM to filter out large
portion of lookups for the nonexistent keys before reading a BF
chain from the flash.

 Use a Bloom Filter as our pre-filter for (1) BF is free of false negative
errors; (2) with fairly small memory footprint (4 bits/key), the BF is able
to identify and filter out a significant amount of non-existent keys.

17 EMC CONFIDENTIAL—INTERNAL USE ONLY

Experimental Setup

 Two I/O traces: backup (linux) & primary storage (vx)

 BloomStore settings:

– partition size: 96 flash pages per partition

– BF chain size: 10KB (for vx) and 12KB (for Linux)

18 EMC CONFIDENTIAL—INTERNAL USE ONLY

Experimental Result: Impact of Pre-filter

Backup (linux) Primary storage (vx)

19 EMC CONFIDENTIAL—INTERNAL USE ONLY

Experimental Result: Key Lookup T-put

SkimpyStash >1

Backup (linux) Primary storage (vx)

20 EMC CONFIDENTIAL—INTERNAL USE ONLY

Summary

 We designed BloomStore, a novel KV store on flash

– utilizes very limited RAM space combined with much large flash
space to support high throughput, low latency lookup/insertion ops.

– achieves the design goal of sub-byte-level RAM overhead per key-
value pair, which is significantly lower than other designs

 Compared with the state-of-the-art (SkimpyStash)

 Achieved better key lookup performance with lower RAM
usage on backup & primary dedupe workloads

21 EMC CONFIDENTIAL—INTERNAL USE ONLY

Thanks & Questions?

