EMC

informatio

BloomStore

Bloom-Filter based Memory-efficient

Key-Value Store for Indexing of Data
Deduplication

Guanlin Lu, EMC?
Youngjin Nam, Daegu Univ., Korea
David H.C. Du, Univ. of Minnesota, Twin-cities

Overview of Key-Value Store EMC

where information lives®

e Key-Value (KV) store
— efficiently supports simple operations: Key lookup & KV pair insertion
— replaces traditional relational DBs for its superior scalability & perf.
— often implemented through an index structure, mapping Key - Value

* Popular management (index + storage) solution for large
volume of records, with the applications like

— social networks, online shopping, online multi-player gaming
— data deduplication*

*Indexing & storing billions of KV pairs persistently, as well as
providing high-throughput access
(e.g., each single node KV store offers >10,000 key lookups/sec)

Motivation(1/2) EMC

where information lives®

e KV store in a deduplication system should provide high
access throughput (> 10,000 key lookups/sec)

Scalability challenge: available memory space
limits the maximum number of stored KV pairs

Q1: Can we overcome

the space limitation?

Motivation(2/2) EMC

where information lives®

\

e To meet high throughput demand, the performance of index
access and KV pair (data) access is critical

— index access : search the KV pair associated with a given “key”
— KV pair access: get/put the actual KV pair

Using in-RAM index structure can only address
Index access performance demand

Q2: How to optimize both
iIndex & KV pair

accesses in KV Store?

Existing Approach to Speed up Index & EMC
KV pair Accesses fomtion e

e Store KV pairs into SSD for faster data access

e Maintain the index structure in RAM to map each key to its
KV pair on SSD

hash RAM size couldn’t
scale up linearly to

table
iInde!)
flash size!

RAM FLASH

Handling Scalability Challenge 2
with SSD EMC.

e Keep the minimum index structure in RAM, while storing the
rest of the index structure in SSD

» On-flash Index structure should be designed carefully:
- read/write by page
- write data only into clean (erased) pages
- sequential write is multiple times faster than random write

- erase by block (much slower than read/write)
- overwrite is inefficient
- a limited erase count per cell (10K — 100K)

BufferHash [Anand’10] EMC:

where information lives®

» Keeps all BFs & the current HT in RAM, while keeping other
HTs in flash

. - RAM - -

15t partition Pt Partition
=== — e m - ——=- | === — e m - ——=- |
: Current i HT Buffer | : Current j" HT Buffer |

| st ith | st .
| 1st BF 1" BF : | 1st BF jth BF :
: \4 I : \< I
3
I I
: | : |
} - I } - I
|1 HT FL"HT | FLASH | 1s0HT FINHT
| l | l
| PP | !
L o e e e e e e e e -] L o e e e e e e e e -]

use hash table both as index structure and data
container for KV pairs

SkimpyStash [Debnath’1 1 RitlREleI o)

flash ptr points to

EMC

where information lives®

examine If
a key
exists in
the bucket

bucket

N,

KV pairs
In different
buckets
are
buffered
without
spatiality

sequential log

Hash
Table
Directory--

-
-
-
-

key value

key value

Data Buffer (page size)

key value nlul |;_\
P key value n:JI
/ key value nlul
key value n:JI
key value
i | key value
==
____'!:L_Il N key value
I' | ‘~-T key value
FLASH

Limitation of SkimpyStash EMC

where information lives®

e Each false positive error causes all KV pairs in the
corresponding bucket to be searched “in vain”

— to improve lookup performance, they have to either increase the BF
size, or reduce the bucket length - both increase the RAM usage!

— 1-byte in-RAM BF footprint per key
— RAM overhead per key = 1+ 4/(avg_bucket_length) bytes

* Key lookup time increases linearly as the bucket length grows

— avg # of flash page reads in each key lookup operation equals to half
of the (average) bucket length

SkimpyStash

RAM

of buckets

L~

_.-- Pptrper bucket data page

Flash

]

KV pairs in a bucket are

not collocated in flash
pages!

L!_ I‘

10

BloomStore data page

Filled BF
Active BE ptrper partitior] | | [EESS-----

S

Summary of design uniqueness (1/4).
Data buffer per partition to preserve page-grained spatiality of KV pairs

RAM

Flash

BloomStore data page

Filled BF
Active BE ptrper partitior] | | [EESS-----

S

Summary of design uniqueness (2/4).
Separately store BOTH index structure & KV pairs on flash

RAM

Flash

BloomStore data page

Filled BF
Active BE ptrper partitior] | | [EESS-----

S

Summary of design uniqueness (3/4):
Only one small in-RAM buffer per partition so as to minimize the RAM

usage for the index

RAM

Flash

BloomStore data page

Filled BF
Active BE ptrper partitior] | | [EESS-----

S

Summary of design uniqueness (4/4).
m Use BFs to index keys - removes the flash pointer overhead per bucket,
further reduce the RAM usage

RAM

Flash

2

where information lives®

BloomStore Architecture

Pth Partition

1st Partition

KV Pair Write

KV Pair Write

- !:'i"" flash pagé’é'"i':i

- !:'i"" flash pagel's','"i':i

15

BloomStore — EMC
Performance Enhancements

e Multi-BF Buffering

— Each BloomStore instance holds the active BF plus a number of BFs
whose data flash pages of KV pairs have been already written into
the flash in its BF buffer.

e Pre-filter
— Why need a pre-filter?

— Solution: keeping a fix-sized pre-filter in RAM to filter out large
portion of lookups for the nonexistent keys before reading a BF
chain from the flash.

= Use a Bloom Filter as our pre-filter for (1) BF is free of false negative

errors; (2) with fairly small memory footprint (4 bits/key), the BF is able
to identify and filter out a significant amount of non-existent keys.

16

Experimental Setup EMC

where information lives®

e Two I/O traces: backup (linux) & primary storage (vx)

Workload Lookup & Lookup:insert Key/value size
name insert ratio (byte)
operations #
Linux 12,427,697 41:1 20/44
VX 14,628, 873 16:1 20/44

* BloomStore settings:
— partition size: 96 flash pages per partition
— BF chain size: 10KB (for vx) and 12KB (for Linux)

. . 2
Experimental Result: Impact of Pre-filter EMC
where information lives®
RAM usage BF buffer prefilter KV pair RAM usage BF buffer prefilter KV pair
decomposition overhead write buffer | decomposition overhead write buffer
base 1,302 0 1,648 base 3, 066 0 3,840
base+prefilter BO7 495 1,648 base+prefilter 186 2,880 3, 840
4 5
1Ox10 ! 4x1D . |
5 . |Ilnum. of BF chain reads(in tens)
3.5 -+ [lnum. of page reads(in tens)
gl i . |[__]lookup throughput(ops/sec)
ol | 2.5} :
2_ -
ar I 15[.
—1 I -
2r- Bl hum. of BF chain reads(in hundreds)/]
[num. of page reads(in hundreds) 0.5p .
[llookup throughput(ops/sec)

hase

base+prefilter

Backup (linux)

base

base+prefilter

Primary storage (vx)

lookup throughput (ops/second)

Experimental Result: Key Lookup T-put ~ EMC’

where information lives®

x 10°
¥ BloomStore—-Micro
/% SkimpyStash-Micro| 5 .
| -x-BloomStore—Intel *"f'
-7/~ SkimpyStash-Intel : S

h
o

r

*

lookup throughput (ops/second)

n

*
*
D>
B

0 1 12 14 1.8 2 2.3 28 3
Amortized RAM overhead per key-value pair (bytes

Backup (linux)

x 10°

L
()

¥ BloomStore—Micro |

[¥3]
T

N
[

ra
I

-/ SkimpyStash-Micro|

e

]
®

2.2
1.3

1.4

1.5

Amortized RAM overhead per key—-value pair (bytes)

Primary storage (vx)

19

Summary EMC

where information lives®

* We designed BloomStore, a novel KV store on flash

— utilizes very limited RAM space combined with much large flash
space to support high throughput, low latency lookup/insertion ops.

— achieves the design goal of sub-byte-level RAM overhead per key-
value pair, which is significantly lower than other designs

 Compared with the state-of-the-art (SkimpyStash)

* Achieved better key lookup performance with lower RAM
usage on backup & primary dedupe workloads

20

EMC:

where information lives®

Thanks & Questions?

O

a

Q

