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Overview of Key-Value Store 

 Key-Value (KV) store 

– efficiently supports simple operations: Key lookup & KV pair insertion 

– replaces traditional relational DBs for its superior scalability & perf. 

– often implemented through an index structure, mapping Key  Value 

 Popular management (index + storage) solution for large 
volume of records, with the applications like 

– social networks, online shopping, online multi-player gaming 

– data deduplication* 

*Indexing & storing billions of KV pairs persistently, as well as 

providing high-throughput access  

(e.g., each single node KV store offers >10,000 key lookups/sec)   
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Motivation(1/2) 

 KV store in a deduplication system should provide high 
access throughput (> 10,000 key lookups/sec) 

 

  
Scalability challenge: available memory space 

limits the maximum number of stored KV pairs  

Q1: Can we overcome 

the space limitation?  
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Motivation(2/2) 

 To meet high throughput demand, the performance of index 
access and KV pair (data) access is critical 

– index access : search the KV pair associated with a given “key” 

– KV pair access: get/put the actual KV pair 

  Using in-RAM index structure can only address 

index access performance demand 

Q2: How to optimize both  

index & KV pair  

accesses in KV Store?  
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Existing Approach to Speed up Index & 
KV pair Accesses 

 Store KV pairs into SSD for faster data access 

 Maintain the index structure in RAM to map each key to its 
KV pair on SSD 
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Sufficiently fast, but not scalable! 

with 64-byte KV pairs,  

4GB RAM can index about 1 billion KV pairs,  

occupying 64GB flash space 

 

RAM size couldn’t 

scale up linearly to 

flash size! 

RAM FLASH 
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Handling Scalability Challenge  
with SSD 

 Keep the minimum index structure in RAM, while storing the 
rest of the index structure in SSD 

 

 

 

 

 On-flash Index structure should be designed carefully: 
- read/write by page 

- write data only into clean (erased) pages 

- sequential write is multiple times faster than random write 

- erase by block (much slower than read/write) 

- overwrite is inefficient  

- a limited erase count per cell (10K – 100K) 
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BufferHash [Anand’10] 

 Keeps all BFs & the current HT in RAM, while keeping other 
HTs in flash 
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Limitation of SkimpyStash 

 Each false positive error causes all KV pairs in the 
corresponding bucket to be searched “in vain” 

– to improve lookup performance, they have to either increase the BF 
size, or reduce the bucket length  both increase the RAM usage!  

– 1-byte in-RAM BF footprint per key  

– RAM overhead per key  = 1+ 4/(avg_bucket_length) bytes 

 

 Key lookup time increases linearly as the bucket length grows 

– avg # of flash page reads in each key lookup operation equals to half 
of the (average) bucket length 
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Summary of design uniqueness (1/4): 

Data buffer per partition to preserve page-grained spatiality of KV pairs 

(avoid linked-list traverse during lookup) 
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Summary of design uniqueness (2/4): 

Separately store BOTH index structure & KV pairs on flash 
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Summary of design uniqueness (3/4): 

Only one small in-RAM buffer per partition so as to minimize the RAM 

usage for the index 
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Summary of design uniqueness (4/4): 

Use BFs to index keys  removes the flash pointer overhead per bucket, 

further reduce the RAM usage 
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BloomStore Architecture 
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BloomStore –  
Performance Enhancements 

 Multi-BF Buffering 

– Each BloomStore instance holds the active BF plus a number of BFs 
whose data flash pages of KV pairs have been already written into 
the flash in its BF buffer. 

 Pre-filter 

– Why need a pre-filter?  

– Solution: keeping a fix-sized pre-filter in RAM to filter out large 
portion of lookups for the nonexistent keys before reading a BF 
chain from the flash. 

 Use a Bloom Filter as our pre-filter for (1) BF is free of false negative 
errors; (2) with fairly small memory footprint (4 bits/key), the BF is able 
to identify and filter out a significant amount of non-existent keys. 
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Experimental Setup 

 Two I/O traces: backup (linux) & primary storage (vx) 

 

 

 

 BloomStore settings: 

– partition size: 96 flash pages per partition 

– BF chain size: 10KB (for vx) and 12KB (for Linux) 
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Experimental Result: Impact of Pre-filter 

 

Backup (linux) Primary storage (vx) 
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Experimental Result: Key Lookup T-put 

 

 
 

 

 

 

 

SkimpyStash >1 

Backup (linux) Primary storage (vx) 
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Summary 

 We designed BloomStore, a novel KV store on flash 

– utilizes very limited RAM space combined with much large flash 
space to support high throughput, low latency lookup/insertion ops. 

– achieves the design goal of sub-byte-level RAM overhead per key-
value pair, which is significantly lower than other designs 

 Compared with the state-of-the-art (SkimpyStash) 

 Achieved better key lookup performance with lower RAM 
usage on backup & primary dedupe workloads 
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Thanks & Questions? 


