

ceph: distributed storage
for cloud infrastructure

sage weil
msst – april 16, 2012

outline

● motivation
● overview
● how it works

● architecture
● data distribution
● rados
● rbd
● distributed file system

● practical guide, demo
● hardware
● installation
● failure and recovery
● rbd
● libvirt

● project status

storage requirements

● scale
● terabytes, petabytes, exabytes
● heterogeneous hardware
● reliability and fault tolerance

● diverse storage needs
● object storage
● block devices
● shared file system (POSIX, coherent caches)
● structured data

time

● ease of administration
● no manual data migration, load balancing
● painless scaling

● expansion and contraction
● seamless migration

money

● low cost per gigabyte
● no vendor lock-in
● software solution
● commodity hardware
● open source

ceph: unified storage system

● objects
● small or large
● multi-protocol

● block devices
● snapshots, cloning

● files
● cache coherent
● snapshots
● usage accounting

RADOS

radosgw RBD Ceph DFS

HadoopNetflix VM

open source

● LGPLv2
● copyleft
● free to link to proprietary code

● no copyright assignment
● no dual licensing
● no “enterprise-only” feature set

distributed storage system

● data center (not geo) scale
● 10s to 10,000s of machines
● terabytes to exabytes

● fault tolerant
● no SPoF
● commodity hardware

– ethernet, SATA/SAS, HDD/SSD
– RAID, SAN probably a waste of time, power, and money

architecture

● monitors (ceph-mon)

● 1s-10s, paxos

● lightweight process

● authentication, cluster membership,
critical cluster state

● object storage daemons (ceph-osd)

● 1s-10,000s

● smart, coordinate with peers

● clients (librados, librbd)

● zillions

● authenticate with monitors, talk directly
to ceph-osds

● metadata servers (ceph-mds)

● 1s-10s

● build POSIX file system on top of objects

rados object storage model

● pools
● 1s to 100s
● independent namespaces or object collections
● replication level, placement policy

● objects
● trillions
● blob of data (bytes to gigabytes)
● attributes (e.g., “version=12”; bytes to kilobytes)
● key/value bundle (bytes to gigabytes)

object storage daemons

● client/server, host/device paradigm doesn't scale
● idle servers are wasted servers
● if storage devices don't coordinate, clients must

● ceph-osds are intelligent storage daemons
● coordinate with peers
● sensible, cluster-aware protocols

● flexible deployment
● one per disk
● one per host
● one per RAID volume

● sit on local file system
● btrfs, xfs, ext4, etc.

data distribution

● all objects are replicated N times
● objects are automatically placed, balanced, migrated

in a dynamic cluster
● must consider physical infrastructure

● ceph-osds on hosts in racks in rows in data centers

● three approaches
● pick a spot; remember where you put it
● pick a spot; write down where you put it
● calculate where to put it, where to find it

CRUSH

● pseudo-random placement algorithm
● uniform, weighted distribution
● fast calculation, no lookup

● hierarchial
● tree reflects physical infrastructure

● placement rules
● “3 replicas, same row, different racks”

● stable: predictable, bounded migration on changes
● N → N + 1 ceph-osds means a bit over 1/Nth of data moves

● b, e, d, g, b, i, e, h, ...

→ b, e, d

…

placement process

● device hierarchy reflects
infrastructure

● choose function
● sample pseudorandom decent
● sequence of possible choices
● return first N unique and

acceptable values
● parameterized by

– x (id/hash of object)
– tree (node ids, types, weights)
– device state (in/out)

root

rack1 rack2 rack3

a b c d e f g h i

placement process (2)

● rules rely on node types
● example

● take(root)
● choose(1, row)
● choose(3, rack)
● choose(1, device)
● emit

● or
● take(fast)
● choose(1, device)
● emit
● take(slow)
● choose(2, rack)
● choose(1, device)
● emit

row2

rack1 rack2 rack3

a b c d e f g h i

root

row4row3

rack4

j k l

row1

● root
● row2
● rack2, rack1, rack4
● f, b, j

…

placement and data safety

● separate replicas across
failure domains
● power circuits
● switches, routers
● physical location

● important for declustered
replication
● replicas from one device are

spread across many other
devices

● failure under 2x replication
● faster rebuild: 1/100th of disk

moves from 100 peers to 100
other peers

● more disks whole subsequent
failure would lose data

● independent failures
● same MTTDL
● lower E[data loss]

● correlated failures
● data loss less likely if replicas

separated across known failure
domains

node types:
computation vs stability

● four tree node/bucket types
● varying tradeoffs between

● computation: speed of choose calculation
● stability: movement of inputs when bucket items/weights

change

Action Uniform List Tree Straw

Speed O(1) O(n) O(log n) O(n)

Stability (Additions) Poor Optimal Good Optimal

Stability (Removals) Poor Poor Good Optimal

object placement

pool

placement group (PG)

hash(object name) % num_pg = pg

CRUSH(pg, cluster state, rule) = [A, B]

X

declustering

● many to many recovery
● parallel recovery → fast recovery
● 1/nth as long
● no bottleneck for individual disks

● no “spare” necessary
● surviving nodes take up the slack
● flexible

● cluster is elastic
● just deploy more storage before it fills up

placement groups

● more means
● better balancing
● more metadata, osd peer

relationships
● fully connected cluster

● less means
● poor balancing

● aim for ~100 per OSD
● decent utilization variance
● bounded peers per OSD

(~100)

● mkfs time
● num_osd << pg_bits

● pool creation
● ceph osd pool create foo 1024

● later
● eventually adjustable on the fly
● not upstream yet

● pools are granularity of policy
● replication count
● CRUSH placement rule
● authorization

rados

● CRUSH tells us where data should be
● RADOS is responsible for

● moving it there
● make sure you can read/write from/to it
● maintaining illusion of single copy with “consistent”

behavior
– writes are persistent and durable

peering and recovery

● dynamic cluster
● nodes are added, removed
● nodes reboot, fail, recover

● “recovery” is the norm
● “map” records cluster state at point in time

– ceph-osd node status (up/down, weight, IP)
– CRUSH function specifying desired data distribution

● ceph-osds cooperatively migrate data to achieve that

● any map update potentially triggers data migration
● ceph-osds monitor peers for failure
● new nodes register with monitor
● administrator adjusts weights, mark out old hardware, etc.

replication

● all data replicated N times
● ceph-osd cluster handles replication

● client writes to first replica

● reduce client bandwidth
● “only once” semantics
● cluster maintains strict consistently

rados object API

● librados.so
● C, C++, Python, Java. shell.

● read/write object or byte range, truncate, remove, append
● like a file

● get/set/remove attr (bytes to KB)
● based on extended attributes

● get/set/remove key/value (bytes to MB, many keys)
● based on leveldb

● atomic compound operations/transactions
● read + getxattr, write + setxattr
● compare xattr value, if match write + setxattr

rados object API (2)

● per-object snapshot
● keep multiple read-only past versions of an object

● efficient copy-on-write clone
● between objects placed in same location in cluster

● classes
● load new code into cluster to implement new methods
● calc sha1, grep/filter, generate thumbnail
● encrypt, increment, rotate image

● watch/notify
● use object as communication channel between clients

libradoslibrados librados

librados, radosgw

● librados
● direct parallel access to

cluster
● rich API

● radosgw
● RESTful object storage

– S3, Swift APIs
● proxy HTTP to rados
● ACL-based security for

the big bad internet

radosgw

haproxy

HTTP

radosgw

HTTP

your app

radosgw

● atomic
creation/replacement
of large objects

● bucket index
● alphanumerically

sorted object listing
● search by prefix

● ACL security model
● per-object or per-

bucket

● stripe large REST
objects over smaller
RADOS objects

● use a key/value RADOS
object for bucket index
● efficient query, ordered,

etc.

● standalone daemon
● apache, nginx, lighty
● fastcgi socket

rados block device (rbd)

librados

rbd – rados block device

● replicated, reliable, high-performance virtual disk
● striped over objects across entire cluster
● thinly provisioned, snapshots
● image cloning (real soon now)

● well integrated
● Linux kernel driver (/dev/rbd0)
● qemu/KVM + librbd
● libvirt, OpenStack

● sever link between virtual machine and host
● fail-over, live migration

kernel

librbd

rbd
ext4 rbd

KVM/Xen

KVM

rbd objects

● for each pool used with rbd
● rbd_info – latest rbd image id
● rbd_directory – list of images
● <image>.rbd – image header

– id
– size of image, objects
– snapshots

● rbd.<id>.<n> – image segments/objects
– images are sparse

image striping

● disk image striped over power-of-2 byte objects
● default 4MB objects
● seek times not significant
● small enough to be a reasonable IO size
● small enough to not get too hot

● objects randomly distributed
● no single (set of) servers responsible for large image
● workload is well distributed
● single image can potentially leverage all spindles

rbd and snapshots

● rados clients participate in
snapshots
● provide “context” on write

– list of snapshots for given object
– informs copy-on-write behavior

on ceph osds
● clients “watch” header object

for changes

● command line tool
● update header: resize, snap

create/delete, rollback
● notify watchers

● rados class to manage
header
● encapsulate knowledge of on-

disk format
● safe, efficient updates

● snapshot example
● freeze fs inside VM

– e.g., xfs_freeze
● rbd snap create ...

– update header
– notify clients

● re-read headers

● unfreeze fs

rbd (cont)

● snapshot rollback
● offline operation
● repeatable

...

● layering
● copy-on-write layer over read-

only image
● reads “fall-thru” missing objects
● writes trigger "copy-up”

● image cloning
● e.g., OS image for VMs

● image migration
● create overlay at new location
● async copy-up
● sever parent relationship

distributed file system

the metadata problem

● shared cluster-coherent file system
● consistent behavior
● client caching, prefetching

● separate metadata and data paths
● avoid “server” bottleneck inherent in NFS etc

● dynamic ceph-mds cluster
● manage file system hierarchy, concurrency
● redistribute load based on workload
● leverage object storage infrastructure

the metadata workload

● most files are small
● most data lives in big files
● most file updates are bursty

● many metadata updates, then idle
● untar, compilation

● locality matters
● intra-directory
● nearby inter-directory

– rename

● ls -al
● readdir + many stats/getattrs

● metadata is critical to performance
● many small operations, often synchronous

metadata storage

● legacy design is a disaster
● name → inode → block list → data
● no inode table locality
● fragmentation

– inode table
– directory

● block lists unnecessary
● inode table mostly useless

● APIs are path-based, not inode-based
● no random table access, sloppy caching

● embed inodes inside directories
● good locality, prefetching
● leverage key/value objects

usr

etc

var

home

vmlinuz

passwd
mtab
hosts

lib
…

…

…

include
bin

102

100

1

usr

etc

var

home

vmlinuz

passwd
mtab
hosts

lib
include
bin

…

…

…

hard links?

● rare
● useful locality properties

● intra-directory
● parallel inter-directory

● “anchor” table provides by-ino lookup
● degenerates to similar update

complexity
● optimistic read complexity

controlling metadata io

● view ceph-mds as (smart)
caching layer
● reduce reads

– dir+inode prefetching
● reduce writes

– consolidate multiple writes

● large journal or log
● stripe over objects for efficient io
● per-segment dirty list, flush to trim

– combine dir updates over long period
● two tiers

– journal for short term
– per-directory for long term

● fast failure recovery

journal

directories

load distribution

● coarse (static subtree)
● preserve locality
● high management overhead

● fine (hash)
● always balanced
● less vulnerable to hot spots
● destroy hierarchy, locality

● can a dynamic approach
capture benefits of both
extremes?

static subtree

hash directories

hash files

good locality

good balance

dynamic subtree partitioning
Root

ceph-mds

● scalable
● arbitrarily partition metadata
● coarse when possible, fine when necessary

● dynamic
● daemons can join/leave
● take over for failed nodes

● efficient

● hierarchical partition preserve locality
● single mds for any piece of metadata

● adaptive

● move work from busy to idle servers
● hot metadata gets replicated

workload adaptation
many directories same directory

failure recovery

client protocol

● stateless protocols
● either inefficient...

– all operations synchronous
● ...or inconsistent

– e.g. NFS, timeout based
caching

● stateful protocols
● complex
● even more complex

recovery
● do well in non-failure

● we choose stateful
● consistent caches
● aggressive prefetching

● async whenever possible
● consistency vs durability

● fine-grained metadata
locks/leases
● size/mtime vs mode/uid/gid

an example

● mount -t ceph 1.2.3.4:/ /mnt
● 3 ceph-mon RT
● 2 ceph-mds RT (1 ceph-mds to -osd RT)

● cd /mnt/foo/bar
● 2 ceph-mds RT (2 ceph-mds to -osd RT)

● ls -al
● open
● readdir

– 1 ceph-mds RT (1 ceph-mds to -osd RT)
● stat each file
● close

● cp * /tmp
● N ceph-osd RT

ceph-mon

ceph-mds

ceph-osd

recursive accounting

● ceph-mds tracks recursive directory stats
● file sizes
● file and directory counts
● modification time

● virtual xattrs present full stats
● clean, efficient implementation

● metadata lives in a hierarchy
● lazy propagation of changes up the tree

$ ls -alSh | head
total 0
drwxr-xr-x 1 root root 9.7T 2011-02-04 15:51 .
drwxr-xr-x 1 root root 9.7T 2010-12-16 15:06 ..
drwxr-xr-x 1 pomceph pg4194980 9.6T 2011-02-24 08:25 pomceph
drwxr-xr-x 1 mcg_test1 pg2419992 23G 2011-02-02 08:57 mcg_test1
drwx--x--- 1 luko adm 19G 2011-01-21 12:17 luko
drwx--x--- 1 eest adm 14G 2011-02-04 16:29 eest
drwxr-xr-x 1 mcg_test2 pg2419992 3.0G 2011-02-02 09:34 mcg_test2
drwx--x--- 1 fuzyceph adm 1.5G 2011-01-18 10:46 fuzyceph
drwxr-xr-x 1 dallasceph pg275 596M 2011-01-14 10:06 dallasceph

snapshots

● volume or subvolume snapshots unusable at petabyte scale
● snapshot arbitrary subdirectories

● simple interface
● hidden '.snap' directory
● no special tools

$ mkdir foo/.snap/one # create snapshot
$ ls foo/.snap
one
$ ls foo/bar/.snap
_one_1099511627776 # parent's snap name is mangled
$ rm foo/myfile
$ ls -F foo
bar/
$ ls -F foo/.snap/one
myfile bar/
$ rmdir foo/.snap/one # remove snapshot

practical private cloud setup

hardware deployment

● commodity
● SAS/SATA, HDD/SDD
● ethernet (IP)
● NVRAM

● user-level daemons
● mon

– lightweight, some local disk space
● osd

– big backend filesystem, preferably
btrfs

– fast journal (SSD, NVRAM)
● mds

– no disk
– lots of RAM

● RAID
● more reliable
● local recovery
● some storage overhead

● JBOD
● no overhead
● network recovery
● some software fault isolation

● tend to prefer JBOD,
currently
● osd per disk
● shared SSD for journals

installation

● git, tarball, deb, rpm
● debs are easiest

● debian sid, wheezy, squeeze
● ubuntu precise, oneiric,

maverick

● rpms
● open build service
● Fedora, RHEL/CentOS
● OpenSUSE, SLES

● add apt source
echo deb http://ceph.newdream.net/debian precise main > /etc/apt/sources.list.d/ceph.list

● install
apt-get install ceph

apt-get install librbd1, librados2, libcephfs1

apt-get install radosgw

http://ceph.newdream.net/debian

cluster configuration

● /etc/ceph/ceph.conf
● ini-style config file
● section per daemon
● inherit type/global sections
● daemon behavior; no cluster info

● past/present
● can be global
● enumerates daemons
● daemon start/stop when host field

matches hostname

● future
● udev hooks
● chef, juju, etc.

[global]
auth supported = cephx

[mon]
mon data = /var/lib/ceph/ceph-mon.$id

[mon.a]
host = mymon-a
mon addr = 1.2.3.4:6789

[mon.b]
host = mymon-b
mon addr = 1.2.3.5:6789

[mon.c]
host = mymon-c
mon addr = 1.2.3.4:6789

[osd]
osd data = /var/lib/ceph/ceph-osd.$id

[osd.0]
host = myosd0

creating a cluster

● easiest
● set up ssh keys
● mkcephfs -c conf -a –

mkbtrfs
● distribute admin key

● start up
● service ceph start

● ceph command
● monitoring, status
● admin

● ceph health
● HEALTH_OK
● HEALTH_WARN …

● ceph -w
● watch cluster state

change

cluster management

● ceph command-line tool
● uses client.admin user to communicate with

monitors

● admin-friendly text and script-friendly json

ceph osd dump

ceph osd dump –format=json

ceph health

authentication and authorization

● design based on kerberos
● monitors are trusted authority

● maintain repository of secret keys
● clients and daemons

– authenticate against ceph-mon
– mutual authentication (authenticity of server

confirmed)
– get a ticket with a signed/encrypted capability

● set of (service type, opaque blob) pairs

● daemons authenticate on TCP
connection open
● limit access based on signed capability
● e.g., a librados client “client.foo” may have

capability
– osd = “allow rwx pool=foo, allow r pool=bar”

● current capability definitions coarse; can
be refined

● ceph command defaults to
client.admin, key in
/etc/ceph/keyring
● -n <name> to set “user”
● -k <keyring path>

● keys and associated capabilities
registered with the monitor
● ceph auth add …
● ceph auth list

...

ceph-osd failure

● kill a ceph-osd daemon
● peers will discover failure
● monitor will update osdmap
● cluster will repeer
● degraded cluster

● mark failed nodes out
● make CRUSH skip them
● data remapped to new nodes
● cluster will “recover” (re-

replicate/migrate data)

● configurable timeouts

killall ceph-osd

service stop osd.12

ceph osd out 12

ceph-osd recovery

● restart daemon
● comes back up...
● not auto-marked in

unless it was auto-
marked out

● optional behavior for
new nodes
– admin or deployment

driven migration

add new osd

● ceph osd create

12

● add to ceph.conf

[osd.12]
host = plana12

btrfs devs = /dev/sdb

● mkfs + mount

mkfs.btrfs /dev/sdb

mkdir -p /var/lib/ceph/osd-data/12

mount /dev/sdb /var/lib/ceph/osd-data/12

ceph-osd –mkfs -i 12 –mkkey

● add auth key

ceph auth add osd.12 osd 'allow *' mon 'allow
rwx' -i /var/lib/ceph/osd-data/12/keyring

● start

service ceph start osd.12

● osd part of cluster, but stores no data
● add to crush map

ceph osd tree

ceph osd crush add 12 osd.12 1.0
host=plana12 rack=unknownrack
pool=default

ceph osd tree

● data migration starts

a

adjusting device weights

● ceph osd tree
● show crush hierarchy, weights

● ceph osd crush reweight osd.12 .7
● adjust crush weight
● will trigger data migration

modifying crush map

● extract map

ceph osd getcrushmap -o cm

crushtool -d cm -o cm.txt

● modify
● inject new map

crushtool -c cm.txt -o cm.new

ceph osd setcrushmap -i cm.new

crush map

begin crush map

devices
device 0 osd.0

types
type 0 osd
type 1 host
type 2 rack
type 3 pool

buckets
host localhost {
 id -2
 # weight 1.000
 alg straw
 hash 0 # rjenkins1
 item osd.0 weight 1.000
}
rack localrack {
 id -3
 # weight 1.000
 alg straw
 hash 0 # rjenkins1
 item localhost weight 1.000
}
pool default {
 id -1
 # weight 1.000
 alg straw
 hash 0 # rjenkins1
 item localrack weight 1.000
}

crush rules

rules
rule data {
 ruleset 0
 type replicated
 min_size 1
 max_size 10
 step take default
 step choose firstn 0 type osd
 step emit
}
rule metadata {
 ruleset 1
 type replicated
 min_size 1
 max_size 10
 step take default
 step choose firstn 0 type osd
 step emit
}

adjust replication

● pool “size” is replication level

ceph osd dump | grep ^pool

● just another osdmap change

ceph osd pool rbd set data size 3

rbd example

● create an rbd user

ceph-authtool --create-keyring -n client.rbd –gen-
key rbd.keyring

ceph auth add client.rbd osd “allow *” mon “allow *”
-i rbd.keyring

● import an image

rbd import precise-server.img foo

● take an initial snapshot

rbd snap create –snap=orig foo

install libvirt, qemu

● apt source

echo deb http://ceph.newdream.net/debian precise
main > /etc/apt/sources.list.d/ceph.list

● apt-get install libvirt kvm

http://ceph.newdream.net/debian

libvirt authentication

● include rbd secret in libvirt keyring

virsh secret-define secret.xml

virsh secret-set-value <uuid> `ceph-authtool -p
rbd.keyring -n client.rbd`

<secret ephemeral="no" private="no">
 <uuid>fe1447b4-9959-d104-b902-8cf6bf540a5c</uuid>
 <usage type="ceph">
 <name>client.rbd secret</name>
 </usage>
</secret>

define virtual machine

● reference rbd backend disk

virsh define ubuntu-on-rbd.xml

<disk type="network" device="disk">
 <driver name="qemu" type="raw"/>
 <auth username="rbd">
 <secret type="ceph" usage="client.rbd secret"/>
 </auth>
 <source protocol="rbd" name="rbd/foo">
 <host name="10.214.131.38" port="6789"/>
 <host name="10.214.131.37" port="6789"/>
 <host name="10.214.131.35" port="6789"/>
 </source>
 <target dev="vda" bus="virtio"/>
 <address type="pci" domain="0x0000" bus="0x00" slot="0x04" function="0x0"/>
</disk>

resize, rollback image

● we can expand/contract images

rbd resize –size 20000 foo

rbd info foo

rbd resize –size 10000 foo

● if the image goes bad (e.g., rm -rf /)

rbd snap rollback –snap=orig foo

live migration

● define identical image on two libvirt hosts
● same xml with same backend disk

● trigger KVM migration via libvirt

virsh migrate --live foo qemu+ssh://target/system

● very easy with virt-manager gui

why

● limited options for scalable open source storage
● lustre
● gluster
● HDFS
● Orange

● proprietary solutions
● marry hardware and software
● few scale out

● industry needs open alternatives

project status

● 12 developers
● 4 business, community, support
● rados, rbd, rgw supported
● distributed file system next
● included in

● mainline kernel
● linux distros (debian, ubuntu, fedora, suse)

why we like btrfs

● pervasive checksumming
● snapshots, copy-on-write
● efficient metadata (xattrs)
● inline data for small files
● transparent compression
● integrated volume management

● software RAID, mirroring, error recovery
● SSD-aware

● online fsck
● active development community

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Bucket types— Computation vs Stability
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72

