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• MTS at Hortonworks Inc. 
– HDFS contributor, part of original ~25 in Yahoo! spin-out of Hortonworks 
– Currently managing engineering infrastructure for Hortonworks 
– My team also provides Build Engineering infrastructure services to ASF, 

for Hadoop core and several related projects within Apache 
– Formerly, led software development for back end of Yahoo Mail for three 

years – 20,000 servers with 30 PB of data under management, 400M 
active users 

– Did startups in Storage Management and Log Management 
 

• Apache Hadoop, ASF 
– Committer and PMC member, Hadoop core 
– Release Manager – Hadoop-1.0 



Company Background 
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• In 2006, Yahoo! was a very early adopter of Hadoop, and became the 
principle contributor to it. 

• Over time, invested 40K+ servers and 170PB storage in Hadoop 
• Over 1000 active users run 5M+ Map/Reduce jobs per month 
• In 2011, Yahoo! spun off ~25 engineers into Hortonworks, a company 

focused on advancing open source Apache Hadoop for the broader 
market ( http://www.wired.com/wiredenterprise/2011/10/how-yahoo-spawned-hadoop ) 
 

2006 

2011 

http://www.wired.com/wiredenterprise/2011/10/how-yahoo-spawned-hadoop�


Tutorial 
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•Agenda 
–Overview of HDFS architecture – ½ hour 
–Hardware choices 
–Rack topology awareness 
–Federated metadata servers (Hadoop 2.0) 
–Other Hadoop Improvements 
–Calculating the probability of data loss  



Overview of HDFS and Hadoop 
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•What is Hadoop? 

•HDFS Architecture 

•Using Hadoop: MapReduce example 

•Hadoop Ecosystem 



What is Hadoop? 
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• Hadoop - Open Source Apache Project 
– Framework for reliably storing & processing petabytes of data using 

commodity hardware and storage 
• Scalable solution 

– Computation capacity 
– Storage capacity 
– I/O bandwidth 

• Core components 
– HDFS: Hadoop Distributed File System - distributes data 
– Map/Reduce - distributes application processing and control 

• Move computation to data and not the other way 
• Written in Java 
• Runs on  

– Linux, Windows, Solaris, and Mac OS/X 



Commodity Hardware Cluster 
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• Typically in 2- or 3-level architecture 
– Nodes are commodity Linux servers 
– 20 - 40 nodes/rack 
– Uplink from rack is 10 or 2x10 gigabit 
– Rack-internal is 1 or 2x1 gigabit all-to-all 

• “Flat fabric” 10Gbit network architectures being planned at growing 
number of sites 

10 



Hadoop Distributed File System (HDFS) 

Page 8 Architecting the Future of Big Data 

• One PB-scale file system for the entire cluster 
–Managed by a single Namenode 
–Files are written, read, renamed, deleted, but append-only 
–Optimized for streaming reads of large files 

• Files are broken into uniform sized blocks 
–Blocks are typically 128 MB (nominal) 
–Replicated to several Datanodes, for reliability 
–Exposes block placement so that computation can be migrated to 

data 
• Client library directly reads data from Data Nodes 

–Bandwidth scales linearly with the number of nodes 
–System is topology-aware 
–Array of block locations is available to clients 



HDFS Diagram 
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Block Placement 
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•Default is 3 replicas, but settable 
•Blocks are placed (writes are pipelined): 

–First replica on the local node or a random node on 
local rack 

–Second replica on a remote rack 
–Third replica on a node on same remote rack 
–Other replicas randomly placed 

•Clients read from closest replica 
–System is topology-aware 

•Block placement policy is pluggable 



Block Correctness 
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•Data is checked with CRC32 
•File Creation 

–Client computes block checksums 
–DataNode stores the checksums  

•File access 
–Client retrieves the data and checksum from DataNode 
–If Validation fails, Client tries other replicas 

•Periodic validation by DataNode 
–Background DataBlockScanner task 



HDFS Data Reliability 
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Active Data Management 
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•Continuous replica maintenance 

•End-to-end checksums 

•Periodic checksum verification 

•Decommissioning nodes for service 

•Balancing storage utilization 



Map/Reduce 
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• Programming model for efficient distributed computing 
 

• Works sort of like a Unix pipeline: 
– cat input | grep  |       sort       | uniq -c  >  output 
–        Input      |   Map    | Shuffle &  Sort |   Reduce   |    Output 

 
• Another analogy: Inhale/Exhale/Repeat 

–See next slide 
 

• Strengths: 
–Usable by majority of software developers 
–Streaming through data, reducing seeks 
–Pipelining of processing 
–Automatic reliability and re-execution on failure 



Map/Reduce Data Flow 
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Map/Reduce features 
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• Java, C++, and text-based APIs 
–In Java use Objects, in C++ use bytes 
–Text-based (streaming) great for scripting or legacy apps 
–Higher level interfaces: Pig, Hive, others 

• Automatic re-execution on failure 
–Every Map and every Reduce is a task per node 
–In a large cluster, some nodes are always slow or flaky 
–Framework re-executes failed tasks  

• Locality optimizations 
–With large datasets, bandwidth to data must be managed 
–Map-Reduce queries HDFS for locations of input data 
–Map tasks are scheduled close to the inputs when possible 



Computation close to the data 
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Word Count Example 
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• Mapper 
–Input: value: lines of text of input 
–Output: key: word, value: 1 

• Reducer 
–Input: key: word, value: set of counts 
–Output: key: word, value: sum 

• Launching program 
–Defines the job 
–Submits job to cluster 



Word Count Dataflow 
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Example: Word Count Mapper 
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 public static class MapClass extends MapReduceBase 
    implements Mapper<LongWritable, Text, Text, IntWritable> { 
 
    private final static IntWritable one = new IntWritable(1); 
    private Text word = new Text(); 
 
    public void map(LongWritable key, Text value, 
                    OutputCollector<Text, IntWritable> output, 
                    Reporter reporter) throws IOException { 
      String line = value.toString(); 
      StringTokenizer itr = new StringTokenizer(line); 
      while (itr.hasMoreTokens()) { 
        word.set(itr.nextToken()); 
        output.collect(word, one); 
      } 
    } 
  } 
 



Example: Word Count Reducer 
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  public static class Reduce extends MapReduceBase 
    implements Reducer<Text, IntWritable, Text, IntWritable> { 
 
    public void reduce(Text key, Iterator<IntWritable> values, 
                       OutputCollector<Text, IntWritable> output, 
                       Reporter reporter) throws IOException { 
      int sum = 0; 
      while (values.hasNext()) { 
        sum += values.next().get(); 
      } 
      output.collect(key, new IntWritable(sum)); 
    } 
  } 



Key Hadoop Ecosystem Components 

Page 22 Architecting the Future of Big Data 

Zo
ok

ee
pe

r  
(C

oo
rd

in
at

io
n)

 
Core Apache Hadoop Related Hadoop Projects 

HDFS  
(Hadoop Distributed File System) 

MapReduce 
(Distributed Programing Framework) 

Hive 
(SQL) 

Pig 
(Data Flow) 

HBase 
(Columnar NoSQL 

Store) 

H
C

at
al

og
 

(T
ab

le
 &

 S
ch

em
a 

M
an

ag
em

en
t) 



Hadoop Ecosystem 
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• Many other projects in the Hadoop family 
• Most importantly: HBase 

– Distributed “NoSQL” column store database 
• Pig: Dataflow language 
• Hive: SQL-based Data warehouse infrastructure 
• HCatalog: Meta-data sharing infrastructure 

–For Pig, Hive, and HBase 
• Zookeeper: Distributed coordination 
• Oozie: Workflow engine 
• Mahout: Scalable machine learning and data mining library 
• The list is growing… 



Hadoop Ecosystem (cont.) 
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• Monitoring 
–Nagios 
–Ganglia 
–Under development – new Apache Incubator project Ambari: 

Unified Hadoop-centric Monitoring dashboard and 
Management Console 



Tutorial 
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•Agenda 
–Overview of HDFS architecture 
–Hardware choices 
–Rack topology awareness 
–Federated metadata servers (Hadoop 2.0) 
–Other Hadoop Improvements 
–Calculating the probability of data loss  



Hardware Selection for New Clusters 
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• Every site has a different job mix, varying by 
– Type 
– Size 
– Frequency 
– Latency 

• These factors impact 
– Processor workload 
– Memory usage 
– Storage needs 
– Inter-node communications 

• Corresponding server characteristics are 
– CPU power and core count 
– RAM size 
– Disk size, speed, and count 
– Network architecture (whole data center) 



Best Practices for HW Selection 
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• Variability of mix makes it very hard to state firm rules 
• Best practice: Do a pilot program, with quantitative studies of 

cluster behavior 
– Start small and gain experience 
– Use Monitoring to measure actual workloads per component 
– Measure masters and slaves separately 
– Identify saturation of the components 
– Tweak and re-measure, get familiar with the trade-offs 

• Remember:  
– Hadoop was designed to run well on commodity servers and disks 
– Heterogeneous clusters are fine; so as long as your pilot cluster is no 

more than 10% of the whole, you can merge it in without loss of 
investment. 

• It is common for the workload to change as an organization’s 
expertise evolves. 

– Expect to do new pilots from time to time. 



Reminder: HDFS Diagram 
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Starting Points 
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• Typical Hadoop cluster: 
–One or a few master nodes (HDFS Namenode, MapReduce 

JobTracker, HBase Master) 
– May co-deploy on a single shared node in low-load clusters, or  

each have a separate node in high-load clusters. 
– If Backup Namenode is used, it must have separate node 

–Many slave nodes (HDFS DataNodes, MapReduce TaskTrackers, 
HBase RegionServers) 

– Datanode, TaskTracker, and RegionServer services are usually co-
deployed on the same slave nodes. 

–Three servers will run Zookeeper for HBase coordination 
– Each needs 1GB of memory  
– Common to co-deploy with any three slave nodes 

–At least one Gateway server configured with Client software 
–Monitoring and Database servers as preferred for the site 



Starting Points (cont.) 
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• Typical POC1 hardware  
– Single rack with top-of-rack Ethernet switch 
– 10-20 rack-mount 1U servers 

• Slave nodes: 
– Dual quad-core CPUs 
– 8-24 GB of RAM 
– 4-6 disk drives of 1 or 2 TB capacity 
– Dual 1 or 10 Gbps NICs and top-of-rack switch, depending on expected network 

architecture 
• Master node selection: 

– Single shared node, unless you know in advance that Map/Reduce and HBase will 
both be simultaneously heavily used. 

– Plenty of CPU and RAM, e.g., 16 cores and 16-32 GB 
– 2 local disk drives, possibly RAIDed 
– 1 or 2 shared network drives, preferably HA 

• Cloud alternative: 
– Cluster of AWS m1.xlarge or equivalent 



Starting Points (cont.) 
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• POC2 or small production cluster 
– Expand the initial test cluster 
– 50 nodes in 2 racks 
– May separate some services previously co-deployed, based on load 
– Secondary Namenode 
– 12 disks per Datanode 
– Start exploring the impact of network architecture choices 
– Grow the variety and specificity of jobs and queries in the job mix 
– Server RAM and CPU may need to grow based on load analysis 

 
• It takes a while to grow into a thousand-node cluster 

– Need the data flow, of course 
– Also need the expertise in the Data Analysis or BI team to generate the 

jobs and queries, and interpret the results 
– Training is advised. 



Pilot: How to measure saturation? 
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• CPU usage 
• Disk IOPs and throughput 
• Network packet counts and throughput 

– Monitor with tools like Nagios, Ganglia, or other performance monitoring tools 
available in your data center and network. 

– Monitor while running the actual kinds of query or analysis jobs that are of interest 
to your team.  

– Scale down the size of the data set proportionally to the size of the pilot cluster. 
 

• RAM 
– Note that JVMs typically expand to fill all allocated space 
– So RAM usage, per se, is not an important metric 
– Observe whether swapping occurs – JVM memory size may also be tuned 
– Frequency of stop-the-world GC events are critical – You may need to scan logs to 

find these events – tune the GC parameters 
– HBase is more memory-intensive on the Datanodes than typical Map/Reduce jobs. 

Consider providing more RAM for heavy use of HBase.   



Disks – general comments 
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• Recurring costs of Hadoop nodes (power and a/c) are highly related to 
number of physical drives 

• Many types of Map/Reduce jobs may not be limited by spindle count. 
– Unless monitoring shows disk IOPs or bandwidth saturation, plan to buy the largest 

disks available rather than the fastest. 
– Spindles do buy more seeks per second. 
– Obviously, some types of jobs do smaller amounts of processing per unit of data, 

and generate modest amounts of inter-node communication.  These jobs will be 
more sensitive to disk performance and spindle count. 

– Let your pilot project be your guide. 
• Many sites accumulate a great deal of data over time, but only use a 

fraction of it in the more common jobs. Therefore active storage may 
only be a few percent of total storage. 

– If a site does not expect to accumulate data, then smaller, faster drives may make 
sense. 



Network Architecture – critical  
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• Bandwidth between racks (over-subscription ratio) is 
very important to Hadoop job performance 

–Want it between 1:1 and 1:5.  1:10 is max. 
–10Gbit within rack and only 2x10Gbit uplink doesn’t make sense 
–Assume Map/Reduce shuffle randomly uses all-to-all 

communication 
–And HDFS replication of Reduce results writes cross-rack again 



Job Tuning 
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• Of course you can change the hardware choices to meet your 
job needs 

• But you can also tune the jobs to better match your hardware 
• The way a job is coded or job data is represented, can have large 

impact on resource balance: 
– resource cost can be shifted between disk IOPS and CPU by choice of 

compression scheme or parsing format 
– per-node CPU and disk activity can be traded for inter-node bandwidth, 

depending on the Map/Reduce strategy.  
• If you have an equal number of jobs that saturate each resource 

category (“balanced profile”), consider tuning the jobs. 
• Consider using Vaidya, a performance diagnostic tool for  

Map/Reduce jobs 



Tutorial 
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•Agenda 
–Overview of HDFS architecture 
–Hardware choices 
–Rack topology awareness 
–Federated metadata servers (Hadoop 2.0) 
–Other Hadoop Improvements 
–Calculating the probability of data loss  



Rack topology awareness 
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• Built-in feature recognizes the current norm in network topology 
– Communication within a rack is typically cheaper than inter-rack 
– Entire racks can go out of service in certain network failure modes 

• Performance optimization 
– Task assignment for efficiency 
– Clients can select “closer” nodes for I/O operations 

• Availability optimization 
– Replication assures one of three replicas is off-rack 

• Topology representation is pluggable 
– Default mapping strategy takes an arbitrary executable, such as a script 
– Namenode/JobTracker path specified by HDFS parameter 
topology.script.file.name 

– Takes list of host ids, returns list of rack ids 
– Results are cached, so efficiency is not critical 



Tutorial 
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•Agenda 
–Overview of HDFS architecture 
–Hardware choices 
–Rack topology awareness 
–Federated metadata servers (Hadoop 2.0) 
–Other Hadoop Improvements 
–Calculating the probability of data loss  



Federated metadata servers 
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• In our experience, in production use, block size is typically 
adjusted to large values (64MB – 256MB) 

– So most files are only 1 or 2 blocks long 
– Load on Namenode is then proportional to number of files, not the 

quantity of storage used. 
• Namenode with 64GB of memory and 24 cores can handle 100M 

files, with replication=3, with reasonable performance. 
– 100M file inodes and path strings 
– 300M-600M block objects 
– Only about 10% of files in active data set for most jobs 

• Some sites are experimenting with even larger VMs, 128GB+ 
– Concern is robustness of JVM at such sizes, especially GC 

implementations 
• Alternative: Federated Namespaces and Nameservers 



HDFS Federation in v2.0 
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• Improved scalability and isolation 
• Clear separation of Namespace and Block Storage 



HDFS Federation in v2.0 (cont.) 
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• Allows the namespace to scale horizontally 
• Partially alleviates the SPOF problem 
• Leaves it up to users to partition the namespace 
• Took opportunity to improve the architecture by separating 
namespace management from block management.  Now 
have block pool management layer.  

• Datanodes can participate in multiple block pools, which 
are separately maintained and reported, so can balance 
across the whole system – not partitioned set of 
datanodes with “LUN” problem.  

• Block pools are access-isolated. 



Tutorial 
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•Agenda 
–Overview of HDFS architecture 
–Hardware choices 
–Rack topology awareness 
–Federated metadata servers (Hadoop 2.0) 
–Other Hadoop Improvements 
–Calculating the probability of data loss  



Other Hadoop Improvements in v2.0 
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• HA Namenode  
–Solve the SPOF 
–See Symposium talk tomorrow! 

 
• MR2 / YARN 
 

• Compatible Wire Protocols 
–On the way to rolling upgrades 

 
• Performance 

–Including big HDFS Write pipeline improvements for HBase 



MapReduce2 - YARN 
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• NextGen Hadoop Data Processing Framework 
• Support MR and other paradigms 



YARN 



Performance 
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• 2x+ across the board 
 

• HDFS read/write 
–CRC32 
–fadvise 
–Shortcut for local reads 

 

• MapReduce 
–Improvements from Terasort record experience (Owen/Arun, 

2009) 
–Shuffle 30%+ 
–Small Jobs optimization 



Tutorial 
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•Agenda 
–Overview of HDFS architecture 
–Hardware choices 
–Rack topology awareness 
–Federated metadata servers (Hadoop 2.0) 
–Other Hadoop Improvements 
–Calculating the probability of data loss 

–Analysis methodology developed by Rob Chansler 
of Yahoo!  



Probability of Data Loss (1) 
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• Suppose our cluster has 4000 nodes, with 12TB each. 
• If block size is set to 128MB, there are 384,000,000 block replicas, 
• Or 128,000,000 unique blocks, or 85,333,333 files (at ~1.5 blocks/file). 

 
• Suppose we have a failure of about 1 node per day. 
• If a node fails, 96,000 replicas are immediately unavailable, and the 

same number of blocks have only 2 replicas remaining. 
• Each other node has an average of 48 of one or the other of those 

replicas that need re-replication. 
• So if a second node fails, ~48 blocks will have only one replica 

remaining available. 
 

• Now if a third node fails, the probability that it has the only remaining 
replica of one of those 48 particular blocks is: 0.000250125  

• So the probability of losing all replicas of at least one block, in case of 3 
simultaneous node failures, is 0.011938669, or a little over 1% 



Probability of Data Loss (2) 

Page 49 Architecting the Future of Big Data 

• The cool thing is, that even with complete loss of a whole 12TB node, 
and only allowing 1Mbps of bandwidth per node for re-replication 
operations, it takes less than an hour (about 50 minutes) to fully re-
create 3x redundancy for all blocks in the system. 

• So 3 nodes would have to fail within a 2 hour time window, in order to 
have a 1% chance of losing one block. 

• In practice, with 4000 node clusters in production, we see entire nodes 
re-replicated in aprx. 2 minutes (25 Mbps per node, effective), not 50 
minutes. 
 

• More importantly, since v0.20.204, Datanodes have been able to 
withstand losses of single disk drives without bringing down the entire 
node.  So the loss would be 1TB, not 12TB, the number of at-risk 
replicas per other node is just 4, not 48, and the number of at-risk 
replicas per drive in those other nodes is 0.33. 

• Re-replication time at 1Mbps per node, would be only 22 seconds; so 3 
disk drives would have to fail simultaneously within less than a minute, 
to have an infinitesimal chance of losing one block. 



Probability of Data Loss (3) 
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• Even cooler:  As you scale up the number of nodes in 
the cluster, the probability of data loss DECREASES!  
How often does that happen? 



Credits 
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For major contributions to Hadoop technology, and 
help with this presentation: 
 

• Sanjay Radia and Suresh Srinivas, Hortonworks 
– Architect and Team Lead, HDFS 
– HA and Federation 

• Owen O’Malley, Hortonworks 
– Hadoop lead Architect 
– Security, Map/Reduce, system configuration 

• Arun Murthy, Hortonworks 
– Architect and Team Lead, Map/Reduce 
– M/R2, YARN, etc. 

• Rob Chansler, Yahoo! 
– Team Lead, HDFS 
– Analysis of Probability of Data Loss 



Help getting started 
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• Apache Hadoop Projects 
– http://hadoop.apache.org/ 
– http://wiki.apache.org/hadoop/ 

• Apache Hadoop Email lists: 
– common-user@hadoop.apache.org 
– hdfs-user@hadoop.apache.org 
– mapreduce-user@hadoop.apache.org 

• O’Reilly Books 
– Hadoop, The Definitive Guide 
– HBase, The Definitive Guide 

• Hortonworks, Inc. 
– Installable Data Platform distribution (100% OSS, conforming to Apache releases) 

– http://hortonworks.com/technology/techpreview/  
– Training and Certification programs 

– http://hortonworks.com/training/  

• Hadoop Summit 2012 (June 13-14, San Jose) 
– http://hadoopsummit.org/  

http://hadoop.apache.org/�
http://wiki.apache.org/hadoop/�
http://hortonworks.com/technology/techpreview/�
http://hortonworks.com/training/�
http://hadoopsummit.org/�


Thanks for Listening! 
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Questions? 
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