
Petabyte-scale Data
with Apache HDFS

Matt Foley
Hortonworks, Inc.
mfoley@hortonworks.com

Matt Foley - Background

Page 2 Architecting the Future of Big Data

• MTS at Hortonworks Inc.
– HDFS contributor, part of original ~25 in Yahoo! spin-out of Hortonworks
– Currently managing engineering infrastructure for Hortonworks
– My team also provides Build Engineering infrastructure services to ASF,

for Hadoop core and several related projects within Apache
– Formerly, led software development for back end of Yahoo Mail for three

years – 20,000 servers with 30 PB of data under management, 400M
active users

– Did startups in Storage Management and Log Management

• Apache Hadoop, ASF
– Committer and PMC member, Hadoop core
– Release Manager – Hadoop-1.0

Company Background

Page 3 Architecting the Future of Big Data

• In 2006, Yahoo! was a very early adopter of Hadoop, and became the
principle contributor to it.

• Over time, invested 40K+ servers and 170PB storage in Hadoop
• Over 1000 active users run 5M+ Map/Reduce jobs per month
• In 2011, Yahoo! spun off ~25 engineers into Hortonworks, a company

focused on advancing open source Apache Hadoop for the broader
market (http://www.wired.com/wiredenterprise/2011/10/how-yahoo-spawned-hadoop)

2006

2011

http://www.wired.com/wiredenterprise/2011/10/how-yahoo-spawned-hadoop�

Tutorial

Page 4 Architecting the Future of Big Data

•Agenda
–Overview of HDFS architecture – ½ hour
–Hardware choices
–Rack topology awareness
–Federated metadata servers (Hadoop 2.0)
–Other Hadoop Improvements
–Calculating the probability of data loss

Overview of HDFS and Hadoop

Page 5 Architecting the Future of Big Data

•What is Hadoop?

•HDFS Architecture

•Using Hadoop: MapReduce example

•Hadoop Ecosystem

What is Hadoop?

Page 6 Architecting the Future of Big Data

• Hadoop - Open Source Apache Project
– Framework for reliably storing & processing petabytes of data using

commodity hardware and storage
• Scalable solution

– Computation capacity
– Storage capacity
– I/O bandwidth

• Core components
– HDFS: Hadoop Distributed File System - distributes data
– Map/Reduce - distributes application processing and control

• Move computation to data and not the other way
• Written in Java
• Runs on

– Linux, Windows, Solaris, and Mac OS/X

Commodity Hardware Cluster

Page 7 Architecting the Future of Big Data

• Typically in 2- or 3-level architecture
– Nodes are commodity Linux servers
– 20 - 40 nodes/rack
– Uplink from rack is 10 or 2x10 gigabit
– Rack-internal is 1 or 2x1 gigabit all-to-all

• “Flat fabric” 10Gbit network architectures being planned at growing
number of sites

10

Hadoop Distributed File System (HDFS)

Page 8 Architecting the Future of Big Data

• One PB-scale file system for the entire cluster
–Managed by a single Namenode
–Files are written, read, renamed, deleted, but append-only
–Optimized for streaming reads of large files

• Files are broken into uniform sized blocks
–Blocks are typically 128 MB (nominal)
–Replicated to several Datanodes, for reliability
–Exposes block placement so that computation can be migrated to

data
• Client library directly reads data from Data Nodes

–Bandwidth scales linearly with the number of nodes
–System is topology-aware
–Array of block locations is available to clients

HDFS Diagram

Page 9 Architecting the Future of Big Data

b1

b2

b3 b1

b5

b3 b3

b5

b2

b4 b5

b6 b2

b3

b4

Namenode

Namespace Metadata &
Journal

Namespace
State

Block
Map

Heartbeats & Block Reports

 Block ID  Block Locations

Datanodes

 Block ID  Data

Backup
Namenode

Hierarchal Namespace
File Name  BlockIDs

Horizontally Scale IO and Storage

Block Placement

Page 10 Architecting the Future of Big Data

•Default is 3 replicas, but settable
•Blocks are placed (writes are pipelined):

–First replica on the local node or a random node on
local rack

–Second replica on a remote rack
–Third replica on a node on same remote rack
–Other replicas randomly placed

•Clients read from closest replica
–System is topology-aware

•Block placement policy is pluggable

Block Correctness

Page 11 Architecting the Future of Big Data

•Data is checked with CRC32
•File Creation

–Client computes block checksums
–DataNode stores the checksums

•File access
–Client retrieves the data and checksum from DataNode
–If Validation fails, Client tries other replicas

•Periodic validation by DataNode
–Background DataBlockScanner task

HDFS Data Reliability

Page 12 Architecting the Future of Big Data

b1

b2

b3 b1

b5

b3 b3

b5

b2

b4 b5

b6 b2

b3

b4

Namenode

2. copy

3. blockReceived 1. replicate

Datanodes

Bad/lost
block replica

Namespace
State

Block
Map

Active Data Management

Page 13 Architecting the Future of Big Data

•Continuous replica maintenance

•End-to-end checksums

•Periodic checksum verification

•Decommissioning nodes for service

•Balancing storage utilization

Map/Reduce

Page 14 Architecting the Future of Big Data

• Programming model for efficient distributed computing

• Works sort of like a Unix pipeline:
– cat input | grep | sort | uniq -c > output
– Input | Map | Shuffle & Sort | Reduce | Output

• Another analogy: Inhale/Exhale/Repeat

–See next slide

• Strengths:
–Usable by majority of software developers
–Streaming through data, reducing seeks
–Pipelining of processing
–Automatic reliability and re-execution on failure

Map/Reduce Data Flow

Page 15 Architecting the Future of Big Data

Map/Reduce features

Page 16 Architecting the Future of Big Data

• Java, C++, and text-based APIs
–In Java use Objects, in C++ use bytes
–Text-based (streaming) great for scripting or legacy apps
–Higher level interfaces: Pig, Hive, others

• Automatic re-execution on failure
–Every Map and every Reduce is a task per node
–In a large cluster, some nodes are always slow or flaky
–Framework re-executes failed tasks

• Locality optimizations
–With large datasets, bandwidth to data must be managed
–Map-Reduce queries HDFS for locations of input data
–Map tasks are scheduled close to the inputs when possible

Computation close to the data

Page 17 Architecting the Future of Big Data

Data
Data data data data data
Data data data data data
Data data data data data

Data data data data data
Data data data data data
Data data data data data

Data data data data data
Data data data data data
Data data data data data

Data data data data data
Data data data data data
Data data data data data

Results
Data data data data
Data data data data
Data data data data
Data data data data
Data data data data
Data data data data
Data data data data
Data data data data
Data data data data

Hadoop Cluster

Block 1

Block 1

Block 2

Block 2

Block 2

Block 1

MAP

MAP

MAP

Reduce

Block 3
Block 3

Block 3

Word Count Example

Page 18 Architecting the Future of Big Data

• Mapper
–Input: value: lines of text of input
–Output: key: word, value: 1

• Reducer
–Input: key: word, value: set of counts
–Output: key: word, value: sum

• Launching program
–Defines the job
–Submits job to cluster

Word Count Dataflow

Page 19 Architecting the Future of Big Data

Example: Word Count Mapper

Page 20 Architecting the Future of Big Data

 public static class MapClass extends MapReduceBase
 implements Mapper<LongWritable, Text, Text, IntWritable> {

 private final static IntWritable one = new IntWritable(1);
 private Text word = new Text();

 public void map(LongWritable key, Text value,
 OutputCollector<Text, IntWritable> output,
 Reporter reporter) throws IOException {
 String line = value.toString();
 StringTokenizer itr = new StringTokenizer(line);
 while (itr.hasMoreTokens()) {
 word.set(itr.nextToken());
 output.collect(word, one);
 }
 }
 }

Example: Word Count Reducer

Page 21 Architecting the Future of Big Data

 public static class Reduce extends MapReduceBase
 implements Reducer<Text, IntWritable, Text, IntWritable> {

 public void reduce(Text key, Iterator<IntWritable> values,
 OutputCollector<Text, IntWritable> output,
 Reporter reporter) throws IOException {
 int sum = 0;
 while (values.hasNext()) {
 sum += values.next().get();
 }
 output.collect(key, new IntWritable(sum));
 }
 }

Key Hadoop Ecosystem Components

Page 22 Architecting the Future of Big Data

Zo
ok

ee
pe

r
(C

oo
rd

in
at

io
n)

Core Apache Hadoop Related Hadoop Projects

HDFS
(Hadoop Distributed File System)

MapReduce
(Distributed Programing Framework)

Hive
(SQL)

Pig
(Data Flow)

HBase
(Columnar NoSQL

Store)

H
C

at
al

og

(T
ab

le
 &

 S
ch

em
a

M
an

ag
em

en
t)

Hadoop Ecosystem

Page 23 Architecting the Future of Big Data

• Many other projects in the Hadoop family
• Most importantly: HBase

– Distributed “NoSQL” column store database
• Pig: Dataflow language
• Hive: SQL-based Data warehouse infrastructure
• HCatalog: Meta-data sharing infrastructure

–For Pig, Hive, and HBase
• Zookeeper: Distributed coordination
• Oozie: Workflow engine
• Mahout: Scalable machine learning and data mining library
• The list is growing…

Hadoop Ecosystem (cont.)

Page 24 Architecting the Future of Big Data

• Monitoring
–Nagios
–Ganglia
–Under development – new Apache Incubator project Ambari:

Unified Hadoop-centric Monitoring dashboard and
Management Console

Tutorial

Page 25 Architecting the Future of Big Data

•Agenda
–Overview of HDFS architecture
–Hardware choices
–Rack topology awareness
–Federated metadata servers (Hadoop 2.0)
–Other Hadoop Improvements
–Calculating the probability of data loss

Hardware Selection for New Clusters

Page 26 Architecting the Future of Big Data

• Every site has a different job mix, varying by
– Type
– Size
– Frequency
– Latency

• These factors impact
– Processor workload
– Memory usage
– Storage needs
– Inter-node communications

• Corresponding server characteristics are
– CPU power and core count
– RAM size
– Disk size, speed, and count
– Network architecture (whole data center)

Best Practices for HW Selection

Page 27 Architecting the Future of Big Data

• Variability of mix makes it very hard to state firm rules
• Best practice: Do a pilot program, with quantitative studies of

cluster behavior
– Start small and gain experience
– Use Monitoring to measure actual workloads per component
– Measure masters and slaves separately
– Identify saturation of the components
– Tweak and re-measure, get familiar with the trade-offs

• Remember:
– Hadoop was designed to run well on commodity servers and disks
– Heterogeneous clusters are fine; so as long as your pilot cluster is no

more than 10% of the whole, you can merge it in without loss of
investment.

• It is common for the workload to change as an organization’s
expertise evolves.

– Expect to do new pilots from time to time.

Reminder: HDFS Diagram

Page 28 Architecting the Future of Big Data

b1

b2

b3 b1

b5

b3 b3

b5

b2

b4 b5

b6 b2

b3

b4

Namenode

Namespace Metadata &
Journal

Namespace
State

Block
Map

Heartbeats & Block Reports

 Block ID  Block Locations

Datanodes

 Block ID  Data

Backup
Namenode

Hierarchal Namespace
File Name  BlockIDs

Horizontally Scale IO and Storage

Starting Points

Page 29 Architecting the Future of Big Data

• Typical Hadoop cluster:
–One or a few master nodes (HDFS Namenode, MapReduce

JobTracker, HBase Master)
– May co-deploy on a single shared node in low-load clusters, or

each have a separate node in high-load clusters.
– If Backup Namenode is used, it must have separate node

–Many slave nodes (HDFS DataNodes, MapReduce TaskTrackers,
HBase RegionServers)

– Datanode, TaskTracker, and RegionServer services are usually co-
deployed on the same slave nodes.

–Three servers will run Zookeeper for HBase coordination
– Each needs 1GB of memory
– Common to co-deploy with any three slave nodes

–At least one Gateway server configured with Client software
–Monitoring and Database servers as preferred for the site

Starting Points (cont.)

Page 30 Architecting the Future of Big Data

• Typical POC1 hardware
– Single rack with top-of-rack Ethernet switch
– 10-20 rack-mount 1U servers

• Slave nodes:
– Dual quad-core CPUs
– 8-24 GB of RAM
– 4-6 disk drives of 1 or 2 TB capacity
– Dual 1 or 10 Gbps NICs and top-of-rack switch, depending on expected network

architecture
• Master node selection:

– Single shared node, unless you know in advance that Map/Reduce and HBase will
both be simultaneously heavily used.

– Plenty of CPU and RAM, e.g., 16 cores and 16-32 GB
– 2 local disk drives, possibly RAIDed
– 1 or 2 shared network drives, preferably HA

• Cloud alternative:
– Cluster of AWS m1.xlarge or equivalent

Starting Points (cont.)

Page 31 Architecting the Future of Big Data

• POC2 or small production cluster
– Expand the initial test cluster
– 50 nodes in 2 racks
– May separate some services previously co-deployed, based on load
– Secondary Namenode
– 12 disks per Datanode
– Start exploring the impact of network architecture choices
– Grow the variety and specificity of jobs and queries in the job mix
– Server RAM and CPU may need to grow based on load analysis

• It takes a while to grow into a thousand-node cluster

– Need the data flow, of course
– Also need the expertise in the Data Analysis or BI team to generate the

jobs and queries, and interpret the results
– Training is advised.

Pilot: How to measure saturation?

Page 32 Architecting the Future of Big Data

• CPU usage
• Disk IOPs and throughput
• Network packet counts and throughput

– Monitor with tools like Nagios, Ganglia, or other performance monitoring tools
available in your data center and network.

– Monitor while running the actual kinds of query or analysis jobs that are of interest
to your team.

– Scale down the size of the data set proportionally to the size of the pilot cluster.

• RAM
– Note that JVMs typically expand to fill all allocated space
– So RAM usage, per se, is not an important metric
– Observe whether swapping occurs – JVM memory size may also be tuned
– Frequency of stop-the-world GC events are critical – You may need to scan logs to

find these events – tune the GC parameters
– HBase is more memory-intensive on the Datanodes than typical Map/Reduce jobs.

Consider providing more RAM for heavy use of HBase.

Disks – general comments

Page 33 Architecting the Future of Big Data

• Recurring costs of Hadoop nodes (power and a/c) are highly related to
number of physical drives

• Many types of Map/Reduce jobs may not be limited by spindle count.
– Unless monitoring shows disk IOPs or bandwidth saturation, plan to buy the largest

disks available rather than the fastest.
– Spindles do buy more seeks per second.
– Obviously, some types of jobs do smaller amounts of processing per unit of data,

and generate modest amounts of inter-node communication. These jobs will be
more sensitive to disk performance and spindle count.

– Let your pilot project be your guide.
• Many sites accumulate a great deal of data over time, but only use a

fraction of it in the more common jobs. Therefore active storage may
only be a few percent of total storage.

– If a site does not expect to accumulate data, then smaller, faster drives may make
sense.

Network Architecture – critical

Page 34 Architecting the Future of Big Data

• Bandwidth between racks (over-subscription ratio) is
very important to Hadoop job performance

–Want it between 1:1 and 1:5. 1:10 is max.
–10Gbit within rack and only 2x10Gbit uplink doesn’t make sense
–Assume Map/Reduce shuffle randomly uses all-to-all

communication
–And HDFS replication of Reduce results writes cross-rack again

Job Tuning

Page 35 Architecting the Future of Big Data

• Of course you can change the hardware choices to meet your
job needs

• But you can also tune the jobs to better match your hardware
• The way a job is coded or job data is represented, can have large

impact on resource balance:
– resource cost can be shifted between disk IOPS and CPU by choice of

compression scheme or parsing format
– per-node CPU and disk activity can be traded for inter-node bandwidth,

depending on the Map/Reduce strategy.
• If you have an equal number of jobs that saturate each resource

category (“balanced profile”), consider tuning the jobs.
• Consider using Vaidya, a performance diagnostic tool for

Map/Reduce jobs

Tutorial

Page 36 Architecting the Future of Big Data

•Agenda
–Overview of HDFS architecture
–Hardware choices
–Rack topology awareness
–Federated metadata servers (Hadoop 2.0)
–Other Hadoop Improvements
–Calculating the probability of data loss

Rack topology awareness

Page 37 Architecting the Future of Big Data

• Built-in feature recognizes the current norm in network topology
– Communication within a rack is typically cheaper than inter-rack
– Entire racks can go out of service in certain network failure modes

• Performance optimization
– Task assignment for efficiency
– Clients can select “closer” nodes for I/O operations

• Availability optimization
– Replication assures one of three replicas is off-rack

• Topology representation is pluggable
– Default mapping strategy takes an arbitrary executable, such as a script
– Namenode/JobTracker path specified by HDFS parameter
topology.script.file.name

– Takes list of host ids, returns list of rack ids
– Results are cached, so efficiency is not critical

Tutorial

Page 38 Architecting the Future of Big Data

•Agenda
–Overview of HDFS architecture
–Hardware choices
–Rack topology awareness
–Federated metadata servers (Hadoop 2.0)
–Other Hadoop Improvements
–Calculating the probability of data loss

Federated metadata servers

Page 39 Architecting the Future of Big Data

• In our experience, in production use, block size is typically
adjusted to large values (64MB – 256MB)

– So most files are only 1 or 2 blocks long
– Load on Namenode is then proportional to number of files, not the

quantity of storage used.
• Namenode with 64GB of memory and 24 cores can handle 100M

files, with replication=3, with reasonable performance.
– 100M file inodes and path strings
– 300M-600M block objects
– Only about 10% of files in active data set for most jobs

• Some sites are experimenting with even larger VMs, 128GB+
– Concern is robustness of JVM at such sizes, especially GC

implementations
• Alternative: Federated Namespaces and Nameservers

HDFS Federation in v2.0

Page 40 Architecting the Future of Big Data

• Improved scalability and isolation
• Clear separation of Namespace and Block Storage

HDFS Federation in v2.0 (cont.)

Page 41 Architecting the Future of Big Data

• Allows the namespace to scale horizontally
• Partially alleviates the SPOF problem
• Leaves it up to users to partition the namespace
• Took opportunity to improve the architecture by separating
namespace management from block management. Now
have block pool management layer.

• Datanodes can participate in multiple block pools, which
are separately maintained and reported, so can balance
across the whole system – not partitioned set of
datanodes with “LUN” problem.

• Block pools are access-isolated.

Tutorial

Page 42 Architecting the Future of Big Data

•Agenda
–Overview of HDFS architecture
–Hardware choices
–Rack topology awareness
–Federated metadata servers (Hadoop 2.0)
–Other Hadoop Improvements
–Calculating the probability of data loss

Other Hadoop Improvements in v2.0

Page 43 Architecting the Future of Big Data

• HA Namenode
–Solve the SPOF
–See Symposium talk tomorrow!

• MR2 / YARN

• Compatible Wire Protocols
–On the way to rolling upgrades

• Performance

–Including big HDFS Write pipeline improvements for HBase

MapReduce2 - YARN

Page 44 Architecting the Future of Big Data

• NextGen Hadoop Data Processing Framework
• Support MR and other paradigms

YARN

Performance

Page 46 Architecting the Future of Big Data

• 2x+ across the board

• HDFS read/write
–CRC32
–fadvise
–Shortcut for local reads

• MapReduce
–Improvements from Terasort record experience (Owen/Arun,

2009)
–Shuffle 30%+
–Small Jobs optimization

Tutorial

Page 47 Architecting the Future of Big Data

•Agenda
–Overview of HDFS architecture
–Hardware choices
–Rack topology awareness
–Federated metadata servers (Hadoop 2.0)
–Other Hadoop Improvements
–Calculating the probability of data loss

–Analysis methodology developed by Rob Chansler
of Yahoo!

Probability of Data Loss (1)

Page 48 Architecting the Future of Big Data

• Suppose our cluster has 4000 nodes, with 12TB each.
• If block size is set to 128MB, there are 384,000,000 block replicas,
• Or 128,000,000 unique blocks, or 85,333,333 files (at ~1.5 blocks/file).

• Suppose we have a failure of about 1 node per day.
• If a node fails, 96,000 replicas are immediately unavailable, and the

same number of blocks have only 2 replicas remaining.
• Each other node has an average of 48 of one or the other of those

replicas that need re-replication.
• So if a second node fails, ~48 blocks will have only one replica

remaining available.

• Now if a third node fails, the probability that it has the only remaining
replica of one of those 48 particular blocks is: 0.000250125

• So the probability of losing all replicas of at least one block, in case of 3
simultaneous node failures, is 0.011938669, or a little over 1%

Probability of Data Loss (2)

Page 49 Architecting the Future of Big Data

• The cool thing is, that even with complete loss of a whole 12TB node,
and only allowing 1Mbps of bandwidth per node for re-replication
operations, it takes less than an hour (about 50 minutes) to fully re-
create 3x redundancy for all blocks in the system.

• So 3 nodes would have to fail within a 2 hour time window, in order to
have a 1% chance of losing one block.

• In practice, with 4000 node clusters in production, we see entire nodes
re-replicated in aprx. 2 minutes (25 Mbps per node, effective), not 50
minutes.

• More importantly, since v0.20.204, Datanodes have been able to
withstand losses of single disk drives without bringing down the entire
node. So the loss would be 1TB, not 12TB, the number of at-risk
replicas per other node is just 4, not 48, and the number of at-risk
replicas per drive in those other nodes is 0.33.

• Re-replication time at 1Mbps per node, would be only 22 seconds; so 3
disk drives would have to fail simultaneously within less than a minute,
to have an infinitesimal chance of losing one block.

Probability of Data Loss (3)

Page 50 Architecting the Future of Big Data

• Even cooler: As you scale up the number of nodes in
the cluster, the probability of data loss DECREASES!
How often does that happen?

Credits

Page 51 Architecting the Future of Big Data

For major contributions to Hadoop technology, and
help with this presentation:

• Sanjay Radia and Suresh Srinivas, Hortonworks
– Architect and Team Lead, HDFS
– HA and Federation

• Owen O’Malley, Hortonworks
– Hadoop lead Architect
– Security, Map/Reduce, system configuration

• Arun Murthy, Hortonworks
– Architect and Team Lead, Map/Reduce
– M/R2, YARN, etc.

• Rob Chansler, Yahoo!
– Team Lead, HDFS
– Analysis of Probability of Data Loss

Help getting started

Page 52 Architecting the Future of Big Data

• Apache Hadoop Projects
– http://hadoop.apache.org/
– http://wiki.apache.org/hadoop/

• Apache Hadoop Email lists:
– common-user@hadoop.apache.org
– hdfs-user@hadoop.apache.org
– mapreduce-user@hadoop.apache.org

• O’Reilly Books
– Hadoop, The Definitive Guide
– HBase, The Definitive Guide

• Hortonworks, Inc.
– Installable Data Platform distribution (100% OSS, conforming to Apache releases)

– http://hortonworks.com/technology/techpreview/
– Training and Certification programs

– http://hortonworks.com/training/

• Hadoop Summit 2012 (June 13-14, San Jose)
– http://hadoopsummit.org/

http://hadoop.apache.org/�
http://wiki.apache.org/hadoop/�
http://hortonworks.com/technology/techpreview/�
http://hortonworks.com/training/�
http://hadoopsummit.org/�

Thanks for Listening!

Page 53 Architecting the Future of Big Data

Questions?

	Petabyte-scale Data with Apache HDFS
	Matt Foley - Background
	Company Background
	Tutorial
	Overview of HDFS and Hadoop
	What is Hadoop?
	Commodity Hardware Cluster
	Hadoop Distributed File System (HDFS)
	HDFS Diagram
	Block Placement
	Block Correctness
	HDFS Data Reliability
	Active Data Management
	Map/Reduce
	Map/Reduce Data Flow
	Map/Reduce features
	Computation close to the data
	Word Count Example
	Word Count Dataflow
	Example: Word Count Mapper
	Example: Word Count Reducer
	Key Hadoop Ecosystem Components
	Hadoop Ecosystem
	Hadoop Ecosystem (cont.)
	Tutorial
	Hardware Selection for New Clusters
	Best Practices for HW Selection
	Reminder: HDFS Diagram
	Starting Points
	Starting Points (cont.)
	Starting Points (cont.)
	Pilot: How to measure saturation?
	Disks – general comments
	Network Architecture – critical
	Job Tuning
	Tutorial
	Rack topology awareness
	Tutorial
	Federated metadata servers
	HDFS Federation in v2.0
	HDFS Federation in v2.0 (cont.)
	Tutorial
	Other Hadoop Improvements in v2.0
	MapReduce2 - YARN
	YARN
	Performance
	Tutorial
	Probability of Data Loss (1)
	Probability of Data Loss (2)
	Probability of Data Loss (3)
	Credits
	Help getting started
	Thanks for Listening!

