OrangeFS Overview Tutorial

Walt Ligon
Clemson University

Tutorial Goals

Brief History

Architecture Overview
User Interfaces
Important Features
Installation/Configuration

Brief History

Brief History < starting here!
Architecture Overview
User Interfaces
Important Features
Installation/Configuration

A Brief History

e First there was PVFS

— VO

* Aric Blumer (Clemson)

e 1993

* PVM User’s Meeting Oak Ridge
— V1

* Rob Ross (Clemson)

e 1994 - 2000
— V2

* Rob Ross (Argonne), Phil Carns (Clemson), et al.
* 2000 - Present

PVES Funding

NASA

NSF
— PACI
— HECURA

DOE
— Office of Science
— SciDAC

Government Agencies

PVES Partnerships

Clemson U
Argonne NL
Northwestern U
Acxiom

Ames NL

U of Michigan
Ohio St. U

Ohio Supercomputer

Center

Carnegie Mellon U
U of Heidleberg
Sandia NL

U of Oregon

Emergence of Orange

* Project started in 2007

— Develop PVFS for “non-traditional” uses
* Very large number of small files
* Smaller accesses
* Much more metadata

— Robust security features
— Improved resilience

* Began to see opportunities for broader area

— Big Data Management
— Clouds
— Enterprise

Today and Beyond

* Clemson reclaims primary site
— As of 2.8.4 began using name “OrangeFS”
— Omnibond offers commercial support
— Currently on 2.8.6

— Version 2.9.0 soon to be released with new
features

— 2.10 is internal development version for ...

* OrangeFS 3.0

What to Expectin 3.0

* Totally Redesigned Object Model
— Replication
— Migration
— Dynamic configuration
— Hierarchical Storage Management (tiers)
— Metadata support for external devices (archive)
— Rule-based security model
— Rule-based policies

Architecture Overview

Brief History

Architecture Overview < You are here!
User Interfaces

Important Features
Installation/Configuration

Architecture Overview

* OrangeFS is designed for parallel machines
— Client/Server architecture
— Expects multiple clients and servers

* Two major software components
— Server daemon
— Client library

* Two auxiliary components
— Client core daemon
— Kernel module

User Level File System

* Everything runs at the user level on clients
and servers
— Exception is the kernel module, which is really just

a shim — more details later

* Server daemon runs on each server node and
serves requests sent by the client library,
which is linked to client code on compute
nodes

Networking

* Client and server communicate using an
interface called “BMI”

— BMI supports tcp/ip, ib, mx, portals
— Module design allows addition of new protocols

— Requests use PVFS protocol similar to that of NFS
but expanded to support a number of high
performance features

Server-to-Server Communication

App
 Mid) Mid
Client

Network Network
Traditional Metadata Scalable Metadata
Operation Operation
Create request causes client to Create request communicates with a single
communicate with all servers O(p) server which in turn communicates with

other servers using a tree-based protocol O
(log p)

Storage

 The OrangeFS server interacts with storage on
the host using an interface layer named
“trove”

— All storage objects referenced with a “handle”

— Storage objects consist of two components

* Bytestreams — sequences of data

» Key/Value Pairs — data items that are accessed by key
— As currently implemented ...

e Bytestreams with the local file system (data)

» Key/value pairs with BerkeleyDB (metadata)

File Model

* Every file consists of two or more objects

— Metadata object contains
* Traditional file metadata (owner, permissions, etc.)
* List of data object handles
* FS specific items (layout, distribution, parameters)
* User-defined attributes

— Data objects contain

* Contents of the file
» Attributes specific to that object (usually not visible)

Directories

Work just like files except

— Data objects contain directory entries rather than
data

— Directory entries have entry name and handle of
that entry’s metadata object (like inode number)

— Extendable hash function selects which data
object contains each entry

— Mechanisms based on GIGA+ manage consistency
as directory grows or shrinks

DirEntl

DirEnt3
DirEnt4
DirEnt5
DirEnt6

Distributed Directories

Extensible Hashing

DirEntl

ServerO
DirEntb

DirEnt3 Serverl

Server2

Server3

Policies

* Objects of any type can reside on any server.
— Random selection (default) used to balance

— User can control various things
 Which servers hold data
 Which servers hold metadata

 How many servers a given file or directory are spread across
 How those servers are selected

e How file data is distributed to the servers

— Parameters can be set in configuration file, many on a
directory, or for a specific file

User Interfaces

Brief History

Architecture Overview
User Interfaces < Half way!
Important Features
Installation/Configuration

User Interfaces

System Interface

VFES Interface

Direct Access Library
MPI-IO

Windows Client

Web Services Module
Utilities

The System Interface

Low-level interface of the client library

— PVFS_sys_lookup()

— PVFS_sys getattr()

— PVFS_sys_setattr()

— PVFS_sys _io)

Based on the PVFS request protocol
Designhed to have interfaces built on them
Provide access to all of the features

NOT a POSIX-like interface

The VFS Interface

Linux kernel module allows OrangeFS volumes
to be mounted and used like any other

— Limited mmap support

— No client side cache

— A few semantic issues

Must run client_core daemon

— Reads requests from the kernel then calls library

The most common and convenient interface
BSD and OS X support via FUSE

The Direct Library

nterposition library for file related stdio and
Linux system calls

Links programs directly to the client library

Can preload the shared library and run
programs without relinking

Faster, lower latency, more efficient than VFS
Configurable user-level client cache
Best option for serious applications

Direct Access Library

* Implements:
— POSIX system calls
— Stdio library calls

 Parallel extensions

— Noncontiguous |/0O
— Non-blocking I/O
* MPI-IO library

Direct Interface Client Caching

Client Cache

e Direct Interface enables Multi-Process
Coherent Client Caching for a single client

MPI-1O

* Most MPI libraries provide ROMIO support,
which has support for direct access to the

client library

* A number of specific optimizations for MPI
programs, especially for collective |10
— Aggregators, data sieving, data type support

* Probably the best overall interface, but only
for MPI program

Windows Client

_PVES Protocol 2

e Supports Windows 32/64 bit
* Server 2008, R2, Vista, 7

Web Services Module

* WebDAV
* S3
* REST

WebDAV

ModDAV

DAVOrangeFS

e Supports DAV protocol and tested with (insert reference test
run — check with mike)

* Supports DAV cooperative locking in metadata

S3

Admin REST Interface

Y

Mod_OrangeFSREST

Important Features

Brief History

Architecture Overview

User Interfaces

Important Features < over the hump!
Installation/Configuration

Important Features

Already Touched On

— Parallel Files (1.0)

— Stateless, User-level Implementation (2.0)
— Distributed Metadata (2.0)

— Extended Attributes (2.0)

— Configurable Parameters (2.0)

— Distributed Directories (2.9)

Non-Contiguous |/0 (1.0)

SSD Metadata Storage (2.8.5)
Replicate On Immutable (2.8.5)
Capability-based Security (2.9)

Non-Contiguous I/O

Noncontiguous |I/O operations are
common in computational science
applications

Most PFSs available today
implement a POSIX-like interface
(open, write, close)

POSIX noncontiguous support is
poor:

* readv/writev only good for
noncontiguous in memory

* POSIX listio requires matching sizes in
memory and file
Better interfaces allow for better
scalability

Noncontiguous in memory
vemory [l | I |

| Vo~

File |

Noncontiguous in file
Memory [N |

| NS

i ||]

Noncontiguous in memory and file

vemory Il 1 I

N\\E\\\\

File .

SSD Metadata Storage

:>Eﬂ

_WMetadata _ 4

* Writing metadata to SSD
— Improves Performance
— Maintains Reliability

Replicate On Immutable

* First Step in Replication Roadmap

* Replicate data to provide resiliency
— Initially replicate on Immutable

— Client read fails over to replicated file if primary is
unavailable

Capability Based Security

_ OpenSSL
Cert or Credential Metadata pPK|
i habili Servers

. S

Server

'&rg,.ﬂ%

N% Server
) Q m %

3 .,ﬂ”m'
4 ‘.

Future Features

e Attribute Based Search
* Hierarchical Data Management

Attribute-Based Search

Client tags files with Keys/Values
Keys/Values indexed on Metadata Servers
Clients query for files based on Keys/Values

Returns file handles with options for filename
and path

Hierarchical Data Management

i

Metadata
OrangeFS

Systems

TeraGrid, OSG,
Lustre, GPFS G

1 —
E—
Intermediate

Storage HPC
NFS OrangeFS

Installation/Configuration

Brief History

Architecture Overview

User Interfaces

Important Features
Installation/Configuration < Last One!

Installing OrangeFS

e Distributed as a tarball
— You need

* GNU Development environment
— GCC, GNU Make, Autoconf, flex, bison

e Berkeley DB V4 (4.8.32 or later)
* Kernel Headers (for kernel module)

A few libraries
— OpenSSL, etc.

Building OrangeFS

./configure --prefix=<install_dir>
--with-kernel=<kernel dir>
--with-db=<db_dir>

make

make install

make kmod

make kmod_install

Configuring OrangeFS

e Servers

— Many installations have dedicated servers

* Multi-core
* Large RAM
* RAID subsystems

* Faster network connections

— Others have every node as both client and server
* Checkpoint scratch space
* User-level file system
* Smaller, more adaptable systems

Server Storage Modules

e AltIO
— General-purpose
— Uses Linux AIO to implement reads/writes
— Typically utilizes Linux page cache

* DirectlO
— Designed for dedicated storage with RAID
— Uses Linux threads and direct 10

— Bypasses Linux page cache

Parameters to Consider

Default number of IO Servers
Default strip size

RAID parameters
— Cache behavior
— Block sizes

Local file system layout (alignment)

Metadata Servers

 As many or as few as you need

— Every server can be a metadata server
* Metadata access load spread across servers

— Dedicated metadata servers
* Keep metadata traffic from data servers
e Custom configured for metadata

— Depends on workload and data center resources

Clients

* Minimum each client needs libpvfs2
— Direct access lib (libofs)
— MPI libraries
— Precompiled programs
— Web Services
* Most clients will want VFS interface
— pvfs2-client-core
— Modpvfs2
 Need a mount string pointing to a server (fstab)
— Many clients, spread load across servers

Learning More

e www.orangefs.org web site
— Releases

— Documentation
— Wiki

— Support for users

— Support for developers

Commercial Support

&

— Professional Support & Development team

QUESTIONS & ANSWERS

