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Abstract—This paper presents a novel block I/O scheduler
specifically for SSDs. The scheduler leverages the internal rich
parallelism resulting from SSD’s highly parallelized architecture.
It speculatively divides the entire SSD space into different subre-
gions and dispatches requests into those subregions in a round-
robin fashion at the Linux kernel block layer. In the meanwhile,
to reduce the severe read-write interference problem associated
with SSDs, the scheduler only dispatches a batch of unidirectional
requests to the disk driver for each subregion’s scheduling
opportunity. Furthermore, to take advantage of SSD’S better
sequential performance over random patterns, the scheduler sorts
the pending requests while they are awaiting in the dispatching
queues as those HDD-oriented schedulers do. The experimental
results with a variety of workloads have demonstrated that
the new 1I/O scheduler not only improves the user-perceived
performance, but also enhances the underlying SSD’s lifetime via
reducing the block erase operations during the running processes.

I. INTRODUCTION

Non-volatile memory technologies have recently become
important building blocks in storage systems. Especially, with
great advancement of semiconductor technology and con-
tinuously dropping manufacture cost, flash-based solid state
drives(SSDs) have witnessed an ubiquitous adoption as per-
sistent storage devices during the recent past decades, being
deployed in areas ranging from small handhold devices to
large-scale data center infrastructures [1][2][3][4][5][6]. Flash-
based SSDs have the potential to alleviate the ever-existing I/O
bottleneck problem in data-intensive computing environments,
due to their advantages over conventional HDDs in aspects
of performance, energy, reliability, etc. However, before the
optimistically projected scene becomes realistically true, many
problems and challenges have to be resolved.

SSDs differ from traditional mechanical HDDs in various
respects. The most distinguishing feature is that they are
built upon semiconductors exclusively, completely being free
from the rotational latency which dominates the disk access
time of HDDs, which results in SSDs’ operational speed
being one or two orders of magnitude faster than HDDs.
However, on the other hand, due to the long existence of HDDs
as persistent storage devices, the entire I/O path has been
specifically designed or optimized based on the assumption
of HDDs’ characteristics[7][8][9][10][11]. As a consequence,
if we simply replace conventional HDDs with SSDs in the
storage systems without taking optimizing other relating com-
ponents into account, we may not be able to make the best
use of SSDs, squandering the promising performance they can
provide. For example, there are research work showing that the

legacy software stack can cause 62% performance overheads
to emerging non-volatile memories[12][3]. However, simply
removing those legacy software layers is not viable as well,
because they have provided other essential functionalities[3],
e.g., the file system functionality. Thus, without bothering
to spend tremendous efforts in developing brand new SSD-
tailored systems from the scratch, the more suitable and
convenient way to better employ SSDs is to make appropriate
optimizations based on existing systems[13][14].

While the widely existing disparities between HDDs
and SSDs have created a lot of optimization opportuni-
ties that can be explored to improve the legacy software
stack[14][15][4][13], in this paper we propose to improve
the performance and lifetime of SSDs by leveraging the
rich inherent parallelism within SSDs, which has been well
observed[16][17][18] but surprisingly has not been studied to
be taken advantage of for optimization purposes at a higher
layer on the I/O path. Specifically, we implement a block
layer 1/0O scheduler called ParDispatcher for Linux kernel.
The reason why we choose the block I/O scheduler for
optimization is two-fold. First, the block I/O scheduler layer
is an important, performance-sensitive component along the
I/O path to underlying physical persistent storage devices.
Second and more important, the vast majority of the off-
the-shelf block I/O schedulers in Linux kernel are almost all
designed for the conventional HDD’s rotational characteristics.
One of their main principles is to reduce the seeking overheads
that dominate the access operations. As a result, the currently
available I/O scheduler would not be optimal when working
with SSD which exhibits no seeking latencies. In previous
literature, researchers have almost always passively adopted
the noop scheduler ' for SSDs[19][16].

ParDispatcher is a new 1/O scheduler for SSD devices. It
pro-actively takes advantage of the rich inherent parallelism
within SSDs to improve performance. The main idea be-
hind ParDispatcher is that it speculatively divides the whole
SSD space into many subregions and associates each of the
subregions with a dedicated dispatching subqueue. Incoming
requests are placed into their corresponding subqueues ac-
cording to their accessing addresses. All the subqueues are
serviced in a round-robin manner. Though SSDs are very
sophisticated and have many internal functioning components
including buffer cache manger[20][21] and Flash Translation
Layer(FTL)[22][23] which may affect the performance in
unpredicted ways and there are no evidence showing that there

I Noop scheduler does not perform any optimizations on incoming requests
except only checks to merge consecutively arriving requests.



exists the assumed relationship between address regions and
internal parallelism, the evaluation results have demonstrated
the effectiveness of the proposed scheduler and confirmed our
initial speculation. Besides space partition, ParDispatcher em-
ploys two other techniques to further improve performance and
lifetime. First, as other schedulers do, it sorts pending requests
in the same subqueue as well to create sequentiality. The pur-
pose is to leverage the fact that the performance of sequential
patterns on SSDs are also better than random ones[19], though
the performance gap between the two patterns is much smaller
than that of HDDs. Furthermore, request sorting would reduce
the amount of random write requests which are harmful to the
performance and lifetime. Second, to reduce the unique read-
write interference problem of SSDs[14], at each dispatching
opportunity of a subregion, ParDispatcher only dispatches a
batch of unidirectional requests into underlying drivers. Via the
combination of the aforementioned techniques, ParDispatcher
improves performance and lifetime of SSD for a variety of
workloads.

The rest of this paper is structured as follows. In Section II,
we elaborate on the design details of the proposed scheduler.
Subsequently, in Section III we evaluate ParDispatcher with a
wide variety of workloads and present the experimental results.
Finally, in Section IV we conclude this paper.

II. SYSTEM DESIGN AND IMPLEMENTATION

In this section, we discuss the design and implementation
of the proposed ParDispatcher scheduler. Fig.1 shows the
scheduler’s architectural overview. As it is shown in the figure,
the entire storage space of the underlying SSD is partitioned
into n subregions and each of those subregions is assigned a
dedicated dispatching subqueue to track those requests whose
visiting locations fall in the same subregion. The right-top
subfigure details the internal data structures of the region
subqueues. Within each subqueue, there are two FIFO lists
for tracking requests in their arriving-time order and two red-
black trees for tracking the same requests but in their visiting
address order. Each incoming request is linked in both an FIFO
list and a red-black tree. Subqueues are selected to be served
in a round-robin manner in the hope that requests would be
distributed among different parallel units and as a result can
be executed simultaneously within the underlying device.

A. Partition the Space

The rationale behind partitioning the space into a number
of fix-sized subregions is to leverage the rich inherent paral-
lelism coming from the highly hierarchical and parallelized
architecture of SSDs[17][16]. Generally speaking, a parallel
operational unit(e.g. an individual flash package) has an opti-
mal number of requests that it can serve best simultaneously.
And if it is overcrowded with more requests than the optimal
point, the overall performance would possibly be degraded due
to aggravating resource contention. By dividing the space into
small parallel subregions, we can flexibly control the number
of requests that issued to a subregion simultaneously appro-
priately leveraging the parallelism within the same subregion
and at the same time avoiding excessively overcrowding it
and degrading overall performance. Furthermore, switching
to serve another subqueue timely, i.e., dispatching requests
into another subregion, instead of overcrowding a specific
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Fig. 1. The structural overview of ParDispatcher scheduler

region, can provide the potential to efficiently utilize the time
which would otherwise be very likely spent in waiting for
the completion of degraded operations in the overcrowded
subregion, yielding better overall performance. For example,
suppose the optimal amount of requests that a subregion can
serve simultaneously is N and there are Ni,No(lNy > N
and Ny > N) requests that fall in the range of Regionl and
Region2, respectively. It is better to dispatch /N requests out
of the N; requests to Regionl and switch to dispatch another
N requests out of the Ny requests to Region2 as opposed to
first dispatching all of the N; requests to Regionl and then
subsequently dispatching all of the Ny requests to Region2.

At system initialization phase, ParDispatcher first calcu-
lates the total capacity of the underlying SSD and initializes
the corresponding data structures for all subqueues. Suppose
the SSD has a capacity of C' sectors and each of the subregion
is configured to be S sectors. Then (C'+ S —1)/S subqueues
will be needed. The responsible address range of the i!"(0 <
i < C/S) subqueue is [i .S, (i + 1) * S — 1]. When a request
enters into the I/O scheduler, ParDispatcher first determines
its responsible subqueue by examines the request’s accessing
location. For example, if its starting accessing address is A,
then the request would be forwarded to the A/ Sth subqueue
and linked to the subqueue’s corresponding FIFO list and red-
black tree.

One important affecting parameter of Partition Space is
the determination of the size of individual subregions. The
ideal size value should be determined such that the resultant
subregion itself exhibits reasonable amount of parallelism and
independent subregions can operate in parallel. It’s admitted
that the optimal subregion size is a feature of SSD and can
vary with different SSDs and vendors. However, in reality, for a
specific SSD, we can conduct micro-tests on it to determine the
size of subregion[19]. For example, we can generate requests
into a specific region with varying region size and the number
of concurrently issued requests. The optimal point on the
performance curve tells the appropriate subregion size and
the dispatching batch value, i.e., how many requests we can
dispatch into the subregion for best performance.



B. Request Management with Interference Avoidance

As mentioned in previous sections, each subqueue is as-
sociated with several data structures to track requests heading
for locations within responsible range of the corresponding
region. The main data structures include two FIFO lists and
two red-black trees. The two FIFO lists are used to link
read and write requests together in their arriving time order,
respectively, while the two red-black trees are also used to
link read and write requests together, respectively, but in their
accessing address order. In order to guarantee responsiveness
and avoid starvation, each incoming request is assigned a
deadline time that defines the latest timepoint before which the
request should be dispatched into the driver. This is achieved
by periodically checking those two FIFO lists. The primary
purpose of using red-black trees is to sort and dispatch requests
in their address order, creating sequential reference patterns to
the driver. Every request is linked on both a FIFO list and a red-
black tree. The main entrance of request into block layer is the
kernel function generic_make_request which takes a pointer to
a struct bio describing a block operation on the underlying disk
as input parameter. This function first determines the subqueue
that is responsible for the incoming bio and then tries to merge
the bio with an existing request in the same subqueue by
calling the I/O scheduler merge function interface. If there
exits no such request that can be merged with, a new request
structure is allocated and the bio is added to the bio list of the
newly allocated request, otherwise the bio is inserted to the
found request’s bio list and the resultant request is checked
for possible repositioning by calling the I/O scheduler merged
function interface.

When dispatching requests, ParDispatcher selects to serve
all the subqueues in a round-robin manner. For each subqueue’s
dispatching turn, depending on the request type of its last
dispatching turn it consecutively dispatches either a batch of
read or write requests and dispatches a batch of the other
type requests in its next turn. There are two situations when
ParDispatcher switches to serve another subqueue. The first
situation is when the selected subqueue has no more pending
requests of this turn’s direction and the second situation is
when the number of requests it has already dispatched exceeds
the configured batch threshold. By doing so, we can avoid
read/write interference phenomenon within the same subregion
which is very harmful to the overall performance and at the
same time take advantage of both intra-region and inter-regions
parallelism. This scheduling policy is reminiscent of the read
preference policy [14] which was proposed to avoid excessive
read/write interference as well. However, in read preference,
the appropriate extent of preference given to read is obscured
in that paper. Even worse, it may risk starving write requests.

C. Dispatch Requests

As mentioned earlier, all incoming requests are placed
in their respective subqueues according to their accessing
locations when entering into the I/O scheduler layer. They
wait in the subqueues until ParDispatcher selects them to
be dispatched into the underlying driver. Fig.2 shows the
process of dispatching requests. As it is shown in that figure,
for each subqueue’s dispatching chance, it checks whether
there are no pending requests in the selected subqueue. If
the subqueue has no pending requests, it goes on to serve

the next subqueue. It then sets this turn’s direction to be the
opposite of the dispatching direction its last turn. After that it
further checks whether there are pending requests in the chosen
dispatching direction and if there are no pending requests in
the chosen direction, it switches to the opposite direction.
Finally, it continuously dispatches the pending requests in the
chosen subqueue until either there are no more requests in this
turn’s direction or the requests issued has exceeded the preset
threshold, i.e., batch value.
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Fig. 2. The diagram of the process of dispatching requests.

III. SYSTEM EVALUATION

In this section, we conduct extensive experiments to eval-
uate the new I/O scheduler. The experiments are divided into
two sets. The first set is to run different benchmarks on
the chosen I/O schedulers to demonstrate the effectiveness of
ParDispatcher in improving the user-perceived performance.
The second set is to run traces collected during the testing
phases on an SSD simulator[22] to illustrate its effectiveness
in improving SSD lifetime and reliability. In the subsequent
subsections, we give a description of the experimental setup,
followed by detailed experimental results.

A. Experimental Setup

ParDispatcher scheduler is implemented as a kernel mod-
ule in Centos 6.0 with Linux Kernel 2.6.32. It is based on
the deadline scheduler and consists of about 1000 Lines of
Code(LOC). We use a Kingston MLC 60GB SSD and its
region size and read/write batch value are set to 4GB and 16/8,
respectively according to our micro-testing results. We use
FileBench[24] tool to generate four representative workloads to
drive those tests, including Fileserver, Webserver, Mailserver,
and Database. We use blktrace tool to record the block
activities during the running phases and feed them to FlashSim



simulator to investigate the induced block erase operations with
different Flash Translation Layers(FTLs).

B. Workloads Performance

In this section, we compare the workloads performance
under different I/O schedulers, including the four off-the-
shelf I/O schedulers(i.e., Noop, Deadline,CFQ and Anticipa-
tory(AS)) and ParDispatcher. Fig.3 shows their performance
comparison. From that figure we can make the following
two observations. First, except for the Database workload,
Noop consistently outperforms all the other schedulers. This
is because most of the requests generated by Database are
random patterns and most of the requests generated by other
workloads are more sequential®>. The fact that SSDs are in-
competent in handling random requests is the primary behind
reason that causes Noop to underperform other schedulers
all of which perform request sorting. Second, the proposed
ParDispatcher scheduler is almost always better than all the
other four schedulers for all the workloads. For Fileserver,
Webserver,Mailserver and Database workloads, ParDispatcher
outperforms the best and the worst of the other four scheduler
by 9.9%-17.7%, 6.8%-8.7%, -0.3%-13.5% and 0.6%-6.4%,
respectively. Overall, ParDispatcher is effective in improving
the performance of a variety of representative workloads by
actively exploiting built-in parallelism within SSDs.
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Fig. 3. Workloads performance under different I/O schedulers.

C. Improved SSD Lifetime

In this section, we look into the wearing-out ramifications
imposed by the different schedulers when running the four
workloads. We compare the number of block erase operations
incurred during the respective testing phases, which is a good
indicator of the lifetime of SSDs. To demonstrate the wide
applicability of ParDispatcher, for each workload trace, we
replay it in the SSD simulator with three FTL schemes,
including pure Page Mapping(PM), DFTL and FAST FTL[25].
To reflect the realworld situation faithfully, we simulated a
60GB SSD which is equal to the capacity of the used SSD
in the experiments conducted in the preceding section and the
SSD is configured with 3% overprovisional space.

2Database has no append operations, while the other four workloads have
append operations. More details about workloads can be found in [24].

TABLE 1L THE NUMBER OF BLOCK ERASE OPERATIONS OF

WEBSERVER WORKLOADS

Noop Deadline CFQ AS ParDispatcher
DFTL 32102/34 31543/32.7 31160/32 30356/30 21214
PM 30244/35.8 29717/34.7 29356/34 28598/32.2 19401
FAST | 306957/45.3 | 298075/43.6 | 248418/32.4 | 277993/39.6 167953

Our experiments consist of a very large exploration space
and it is hard to present all of the experimental results in this
paper due to space limit. For each workload, we have five
traces corresponding to the five I/O schedulers, respectively
and for each of the trace we have three set of results corre-
sponding to the Page Mapping(PM),DFTL and FAST schemes,
respectively. As a result, we have a total number of 60 set of
results for all of the four workloads. As a result, we choose
to discuss the number of block erase operations of Webserver
workloads in detail and give a brief summary of all the other
results.

Table I details the specific number of erase operations
of each of combination of different FTL schemes and I/O
schedulers. The last column shows the block erase operations
of the proposed ParDispatcher scheduler. Each table cell con-
tains the number of block erase operations and the percentage
degree that ParDispatcher scheduler has improved over the
corresponding I/O scheduler under the same FTL scheme.
For example, the central cell “29356/34” indicates that when
working with the CFQ scheduler Webserver has caused 29356
block erase operations and if using the proposed ParDispatcher
scheduler instead of CFQ, the caused block erase operations
can be reduced by 34%. As can be clearly seen from the table,
ParDispatcher have uniformly significantly reduced the block
erase operations over all the other schedulers for all of the FTL
schemes. Recalling the results from the preceding section, we
know that the ParDispatcher schedulers can not only improve
the user-perceived performance but also improve the lifetime
of underlying SSDs.

Other workloads exhibit similar results, with the reduction
of block erase operations being 30%, 28% and 42% on average
for Fileserver, Mailserver and Database, respectively. The pos-
sible reason why ParDispatcher scheduler have reduced block
erase operations is because clustering and dispatching requests
by their addresses would make the physical page allocation
operation more easily, utilize the buffer/cache more efficiently
and reduce write amplification associated with the garbage
collection(GC) process correspondingly. Overall, through the
experimental results, we have demonstrated ParDispatcher
scheduler’s effectiveness in improving both performance and
SSD lifetime simultaneously, which we think is important to
SSD’s deployment.

IV. CONCLUSION AND FUTURE WORK

In this paper, we propose a new block layer I/O scheduler
named ParDispatcher which is specifically designed for SSD
devices. ParDispatcher attempts to leverage the rich paral-
lelism inherent in SSDs by dispatching requests to different
regions simultaneously. Furthermore, it adopts request sorting
to create access sequentiality and unidirectionally dispatching
requests to reduce read/write interference. The evaluation re-
sults with a variety of representative workloads have proven its
efficiency in improving performance and lifetime over the four



off-the-shelf schedulers. Our planned future work is two-fold.
First, we plan to investigate how the different schedulers affect
SSD cache/buffer behaviors and design a new cache/buffer
management scheme to accommodate the new scheduler to
further improve SSD performance and lifetime. Second, we
intend to compare ParDispatcher with other SSD schedulers,
like FIOS[14] scheduler which is specifically designed to
improve the fairness when dispatching requests.
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