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Abstract—Most of the modern hard disk drives support
Self-Monitoring, Analysis and Reporting Technology (SMART),
which can monitor internal attributes of individual drives and
predict impending drive failures by a thresholding method. As
the prediction performance of the thresholding algorithm is
disappointing, some researchers explored various statistical and
machine learning methods for predicting drive failures based
on SMART attributes. However, the failure detection rates of
these methods are only up to 50% ∼ 60% with low false alarm
rates (FARs). We explore the ability of Backpropagation (BP)
neural network model to predict drive failures based on SMART
attributes. We also develop an improved Support Vector Machine
(SVM) model. A real-world dataset concerning 23,395 drives
is used to verify these models. Experimental results show that
the prediction accuracy of both models is far higher than
previous works. Although the SVM model achieves the lowest
FAR (0.03%), the BP neural network model is considerably better
in failure detection rate which is up to 95% while keeping a
reasonable low FAR.

I. INTRODUCTION

Nowadays, large scale storage systems usually deploy
massive hard disk drives as primary data storage device.
To provide high reliability in such systems, reactive fault-
tolerant techniques, such as replication and erasure code are
often used. Currently, almost all hard drive manufacturers
have implemented Self-Monitoring, Analysis and Reporting
Technology (SMART) [1] in their products, which monitors
internal attributes of individual drives and raises an alarm
if any attribute exceeds its threshold. However, it has been
estimated that the thresholding algorithm can only reach a
failure detection rate of 3− 10% at 0.1% false alarm rate
(FAR) [8]. Some statistical and machine learning methods have
been proposed to build better prediction models based on the
SMART attributes [5], [6], [7], [8], [13]. However, their failure
detection rates are only up to 50%∼ 60% with low FARs.

In this paper, we explore building drive failure prediction
model based on Backpropagation (BP) neural network [10].
An improved Support Vector Machine (SVM) [12] model is
also proposed. We use new training and detection strategies to
improve the prediction accuracy. Both algorithms are trained
and tested on a real-world dataset concerning 23,395 drives,
and perform much higher prediction accuracy than all of the
previous works [5], [6], [7], [8], [13]. We show that such high

prediction accuracy can significantly improve the reliability of
storage systems.

II. RELATED WORK

To improve failure prediction accuracy of SMART, Hamerly
and Elkan [5] employed two Bayesian approaches (NBEM
and naive Bayes classifier) to build prediction models. Both
methods were tested on a dataset concerning 1,936 drives.
They achieved failure detection rates of 35−40% for NBEM
and 55% for naive Bayes classifier at about 1% FAR.

Another study on drive failure prediction was performed
by Hughes et al. [6]. They used Wilcoxon rank-sum test to
build prediction models. They proposed two different strate-
gies: multivariate test and ORing single attribute test. Their
methods were tested on 3,744 drives. The highest detection
rate achievable was 60% with 0.5% FAR.

Murray et al. [7] compared the performance of SVM,
unsupervised clustering, rank-sum test and reverse arrange-
ments test. In their subsequent work [8], they developed a
new algorithm termed multiple-instance naive Bayes (mi-NB).
They found that, on the dataset concerning 369 drives, rank-
sum test outperformed SVM for certain small set of SMART
attributes (28.1% failure detection at 0% FAR). When using
all features, SVM achieved the best performance of 50.6%
detection with 0% FAR.

III. MODELING METHODOLOGY

A. Support vector machine

SVM [12] is a supervised machine learning method for
classification and regression. Given a set of training samples
from two classes, SVM algorithm can find the best decision
hyperplane that separates the two classes. For those datasets
that are non-linearly separable, SVM algorithm can implicitly
map the training data into a higher dimensional feature space
by a kernel function. In this higher dimensional space, the two
classes can be separated linearly.

Compared with previous SVM models for drive failure pre-
diction [7], [8], our SVM model uses both SMART attributes
and their change rates as features. Besides, samples from
different time windows are used to train different models.
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B. Artificial neural network
Artificial neural networks (ANN) [10] can be viewed as

functions that convert a vector of input variables to another
vector of output variables. A typical method for training ANN
is the BP algorithm [10]. Figure 1 shows the architecture of
the neural network for drive failure prediction. The nodes are
called artificial neurons and arranged in three layers: input
layer, hidden layer, and output layer. The neurons in adjacent
layers are connected with different weights.
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Fig. 1. Three-layer BP neural network.

The BP learning algorithm has two phases: a feed-forward
stage and a back-propagation stage. In the feed-forward stage,
each neuron calculates weighted sum of input neurons’ values
and then applies an activation function to the sum as the output
of this node. The values flow until they reach the output layer.
In the back-propagation stage, the weights between neurons
are updated by the learning rule for reducing the discrepancies
between actual output and the target value.

IV. DATASET DESCRIPTION AND PREPROCESSING

Our SMART dataset was collected from a single running
datacenter of Baidu Inc. with uniform environment.1 There
are 23,395 drives in the dataset and all of them are with the
same model. SMART attribute values were sampled from each
working drive at every hour. Each drive is labeled good or
failed, with only 433 drives in the failed class and the rest
(22,962 drives) in the good class. For good drives, the samples
in a week are kept in the dataset. For failed drives, samples in
a longer time period (20 days before actual failure) are saved.
This dataset is at least an order of magnitude larger than those
used in previous studies [5], [6], [7], [8], [13].

A. Feature selection and construction
We can read out 23 meaningful attribute values from every

drive at a time, but some attributes are useless for failure
prediction since they keep unchanged during operation. We
get rid of these attributes. Table I lists the remaining 10 useful
SMART attributes for build prediction models.

1The dataset is now available at http://pan.baidu.com/share/
link?shareid=189977&uk=4278294944.

TABLE I
SELECTED SMART ATTRIBUTES AS FEATURES.

ID # Attribute Name
1 Raw Read Error Rate
3 Spin Up Time
5 Reallocated Sectors Count
7 Seek Error Rate
9 Power On Hours
187 Reported Uncorrectable Errors
189 High Fly Writes
194 Temperature Celsius
195 Hardware ECC Recovered
197 Current Pending Sector Count

Each SMART attribute has a six-byte width raw value
(RAW VALUE) and a normalized value (VALUE) rang-
ing from 1 to 253 [1]. The format of RAW VALUE is
vendor-specific. However, there are still two interpretable
RAW VALUEs in our dataset (i.e. those of attributes #5 and
#197 in Table I). Since RAW VALUE is more sensitive to the
drive’s health status, we also select the two RAW VALUEs
for building models.

We observed that for some (but not all) failed drives,
several particular attributes show significant downward trend
over time. While for almost all of the healthy drives, these
attributes keep unchanged or change little. They are VALUEs
of attributes #1, #5, #187, #195, #197 and RAW VALUEs
of attributes #5 and #197. For every sample, we calculate
the absolute differences between the current values of these
attributes and their corresponding values six hours ago as
features. At last, each sample in our dataset has 19 features
including 10 VALUEs, 2 RAW VALUEs, and 7 change rates.

B. Feature normalization

Data normalization can promise a fair comparison between
different feature values in machine learning algorithms. The
formula of data normalization we used is given below:

xnormal = 2× x− xmin

xmax− xmin
−1 (1)

where x is the original value of a feature. xmax and xmin are
respectively the maximum value and the minimum value of
this feature in our dataset. When applying the failure prediction
model to a real storage system, we should use the maximum
and minimum values in the existing dataset.

V. EXPERIMENTAL RESULTS AND DISCUSSION

We divide all the drives randomly into training and test
sets. The training set consists of 70% of all the good and
failed drives, and the remaining 30% of the drives are in the
test set. For each good drive in the training set, we randomly
choose 4 samples as “good” samples (hereinafter referred as
negative samples) to train models. We choose 4 samples per
good drive because it can eliminate the bias of a single drive’s
sample in a particular hour and provide enough information
to describe the good status of the drive. For failed drives in
the training set, we choose samples collected within a certain
time window before the actual drive failure as “failed” samples



(hereinafter referred as positive samples) to train models. To
determine the time window resulting in the best prediction
performance, samples in the last available 12 hours, 24 hours,
2 days, and 4 days are chosen as positive samples to train
models, respectively. When we test the models, we check the
samples in the test set sequentially for each drive, and predict
that the drive is going to fail if any of its samples is classified
as failed. Otherwise, it is classified as a good drive.

The detection rate is defined as the fraction of failed drives
that are predicted correctly as failed. FAR means the fraction
of good drives that are mis-classified as failed. Since good
drives are the absolute majority in reality, a high FAR implies
too many false-alarmed drives and results in heavy processing
cost. We are concerned with keeping a low FAR and we only
present the parameter and strategy combinations achieving
FARs lower than 5%.

A. SVM results

LIBSVM [2] is used to implement the SVM model. We label
good drive samples with +1 and failed drive samples with −1,
respectively. Parameters of LIBSVM are set as follows: svm-
type = C-SVC, kernel-type = radial basis function, cost C =
10. The penalty parameters w for classes +1 and −1 (denoted
by w+1 and w−1 respectively) can be adjusted to trade off
between the failure detection rate and FAR. Other parameters
are set to default values. Positive samples from the four time
windows mentioned above are used to train different SVM
models while keeping negative training samples fixed.

Figure 2 shows the failure prediction performance of our
SVM models in the form of Receiver Operating Characteristic
(ROC) curve. Each point in Figure 2 denotes the result of a
particular time window with a particular penalty parameter pair
(w+1,w−1). The points are not linked to curves for clarity. It
shows that as the time window becomes earlier, the detection
rate increases at the expense of an increasing FAR. The
reason is that an earlier time window introduces more positive
samples closer to negative samples, which is in favor of the
detection rate and against FAR. Since we want a low FAR,
we had better use a short time window to train models, such
as the last available 12 or 24 hours before the drive failure.
Figure 2 shows that our SVM model gets a failure detection
rate of 68.5% with the lowest FAR of 0.03% when using the
12 hours time window and the penalty parameter pair (5,1).
When the penalty parameter pair is adjusted to (1,2), the SVM
model gets a detection rate of 80.0% with 0.3% FAR. This
result is far higher than the prediction accuracy achieved by
pervious SVM models [7], [8].

Another important measurement is how long in advance we
can detect an impending drive failure. For the point of 68.5%
detection rate and 0.03% FAR in Figure 2, the distribution of
lead time of correct predictions is shown in Figure 3. It has
an average lead time of 334 hours, which is long enough for
users to take actions before the drive failure actually occurs.
For other points in Figure 2, their average lead times are about
330∼ 360 hours. The results are much better than the average
lead time of about 4 days reported in [8].
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Fig. 2. Failure prediction performance of SVM models.  
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Fig. 3. Distribution of lead time of SVM model.

To verify the effectiveness of the seven features reflecting
change rates, we also train SVM models using samples without
change rate features, and compare them with the models
trained with change rates. The result is illustrated in Figure 4.
The time window is set to 12 hours. In general, the ROC curve
of the SVM models trained with change rates shows higher
detection rate and lower FAR than that of the models trained
without change rates. Although the performance gap is narrow,
the 3 ∼ 4 percent improvement in detection rate will bring
more than 10 percent improvement in MTTDL (Mean Time To
Data Loss) because the MTTDL of storage system increases
super linearly as the prediction accuracy improves [3].

B. BP neural network results

We implement the BP neural network shown in Figure 1.
The numbers of nodes in the three layers are 19, 30, and 1,
respectively. The target values for the node in output layer are
0.9 and 0.1 for healthy and failed drives, respectively. Both
hidden and output layers use sigmoid function as activation
function. We set the maximum number of iterations to 400
and the learning rate to 0.1.

Table II shows prediction accuracy and average lead time
of BP network models trained by samples in different time
windows. It shows the same trend as the SVM results, the
earlier time window, the higher the detection rate and FAR.
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Fig. 4. Effectiveness of change rate features.

The distribution of lead time for BP network model is similar
to Figure 3. The prediction performance of BP network models
is much better than those reported by previous works [5], [6],
[7], [8], [13] and those of our improved SVM models.

TABLE II
PREDICTION RESULTS OF BP NETWORK MODELS.

Time window FAR(%) Detection rate(%) Lead time (hours)
12 hours 0.48 94.62 360.4
24 hours 1.14 97.69 355.9
2 days 1.39 99.23 357.0
4 days 2.26 100.0 356.8

Although BP network models achieve far higher failure
detection rate than SVM models, they tend to achieve slightly
higher FAR. The lowest FAR achieved by BP network model
is 0.48%, which is worse than the best FAR (0.03%) of the
SVM model. To reduce the FAR of BP network models, we
propose a voting-based failure detection algorithm. Instead of
making a prediction by a single sample, this algorithm uses the
last N consecutive samples at every time point for prediction:
if more than N/2 samples vote for failed, the drive is classified
as failed. This approach is shown in Algorithm 1. Note that the
ordinary non-voting failure detection method used in previous
experiments can be viewed as a special case when N = 1.
Figure 5 shows the prediction results of BP neural network
models when using the voting-based detection algorithm. The
points on each curve are achieved by setting N = 1, 3, 5,
7, 9, 11, and 13 from right to left. When we select a larger
N, the FAR of the BP network models decreases while the
detection rate is changeless or slightly decreases. That is, the
voting-based algorithm effectively reduces the FAR of BP
network models while keeping a reasonable detection rate.
When applying this approach to SVM models, it shows the
same effect. However, since the best FAR of 0.03% achieved
by the SVM model is already quite low, this approach can not
lower it further.

We also apply a boosting method (AdaBoost [9]) to improve
the prediction performance of BP neural network models.
When setting the number of weak classifiers to 10, predic-

Algorithm 1 Voting-based failure detection algorithm
Input: The sample set S[1..t] of the drive, the BP prediction

model BP() which returns 0 if the input sample is classi-
fied as good and 1 otherwise, and the voter turnout N

Output: good or failed
1: Begin
2: C[1..N] = 0
3: for i = 1 to t do
4: C[((i−1) mod N)+1] = BP(S[i])
5: if ∑

N
j=1 C[ j]> N/2 then

6: return failed
7: end if
8: end for
9: return good

10: End
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Fig. 5. Failure prediction performance of BP network models using the
voting-based detection method.

tion results of AdaBoost-enhanced BP network models using
the voting-based detection method are shown in Figure 6.
Compared to the results of plain BP network models in
Figure 5, AdaBoost algorithm indeed improve the prediction
performance. However, the performance gap is narrow because
the plain BP network models have already achieved very good
prediction accuracy. Generally, by combining AdaBoost and
the voting-based detection method, we can improve prediction
performance in several ways: higher detection rate, lower FAR,
and sometimes both.

In a word, the experimental results show the big advantage
of the BP neural network model in prediction accuracy over
the SVM model. Considering results reported in pervious
literatures [5], [6], [7], [8], [13], we can say that our BP
network model obtains the best prediction accuracy by far.

C. benefit of failure prediction

Eckart et al. [3] devised a Markov model to analyze N +1
RAID systems (i.e. systems using parity) with drive failure
prediction. We use this model to compute the MTTDLs of
such systems with different prediction models. The MTTDLs
of N +1 and N +2 RAID systems without failure prediction
are also computed using formulas in [4] for comparison. The
same MTTF (Mean Time To Failure) and MTTR (Mean Time
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Fig. 6. Failure prediction performance of AdaBoost-enhanced BP network
models using the voting-based detection method.

To Repair) of a single hard drive as those in [3] are used. For
our BP neural network and SVM models, the result of 94.62%
detection rate with 360 hours lead time and the result of 68.5%
detection rate with 334 hours lead time are used, respectively.
Figure 7 shows the MTTDL for each configuration with
different sizes up to 2000 drives. Although such a large RAID
is impossible in real world large distributed file systems such
as a Hadoop file system [11], it can be used to estimate
the reliability of this kind of systems. This kind of systems
generally store three replicas by default for each data chunk,
and spread chunk replicas across machines and racks. So each
drive may share chunks with drives on different machines and
racks. Therefore, such a system with a replication factor three
(two) has a MTTDL between the MTTDL of an N+2 (N+1)
RAID and that of a three-way (two-way) mirroring system.
This estimation may be too coarse, however, we are interested
in showing the improvement of MTTDL.

Figure 7 shows that the BP neural network and SVM models
improve the MTTDL by several orders of magnitude. An N+1
RAID using BP network prediction model achieves the same
level of MTTDL as an N + 2 RAID without prediction, and
exceeds the latter when the system size approaches 1000.
This result suggests that, using our failure prediction models,
we can replace complex fault-tolerant mechanisms with the
simpler ones to lower the storage cost and reduce read/write
overhead while maintaining the same reliability level.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we explore the ability of BP neural network
to predict drive failures based on SMART attributes. We also
build an improved SVM model. Besides, new training and
detection strategies are proposed to improve the prediction
performance. Compared with previous studies, our prediction
models achieve much higher prediction accuracy. The SVM
model achieves the lowest FAR (0.03%), and the BP neural
network model is far superior in detection rate which is more
than 95% while keeping a reasonable low FAR. We believe
our models are extremely promising for future proactive failure
prediction systems.
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There are several problems to be solved in the future. The
prediction models need to be further verified in real storage
systems. Besides, automatic data migration for the storage
system after failure prediction is an important research topic.
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