
CORE: Augmenting Regenerating-Coding-Based Recovery for

Single and Concurrent Failures in Distributed Storage Systems

Runhui Li, Jian Lin, Patrick P. C. Lee

Department of Computer Science and Engineering, The Chinese University of Hong Kong

{rhli, jlin, pclee}@cse.cuhk.edu.hk

Abstract—Data availability is critical in distributed storage
systems, especially when node failures are prevalent in real life. A
key requirement is to minimize the amount of data transferred
among nodes when recovering the lost or unavailable data of
failed nodes. This paper explores recovery solutions based on
regenerating codes, which are shown to provide fault-tolerant
storage and minimum recovery bandwidth. Existing optimal
regenerating codes are designed for single node failures. We
build a system called CORE, which augments existing optimal
regenerating codes to support a general number of failures
including single and concurrent failures. We theoretically show
that CORE achieves the minimum possible recovery bandwidth
for most cases. We implement CORE and evaluate our prototype
atop a Hadoop HDFS cluster testbed with up to 20 storage
nodes. We demonstrate that our CORE prototype conforms to
our theoretical findings and achieves recovery bandwidth saving
when compared to the conventional recovery approach based on
erasure codes.

Keywords-regenerating codes, failure recovery, distributed stor-
age systems, coding theory, experiments and implementation

I. INTRODUCTION

To provide high storage capacity, large-scale distributed

storage systems have been widely deployed in enterprises [2],

[8]. In such systems, data is striped across multiple nodes (or

servers) that are interconnected over a networked environment.

Ensuring data availability in distributed storage systems is

critical, since node failures are prevalent [8]. Data availability

can be achieved via erasure codes, which encode original data

and stripe encoded data across multiple nodes. Erasure codes

can tolerate multiple failures and allow the original data to

remain accessible by decoding the encoded data stored in other

surviving nodes. Compared to replication, erasure codes have

less storage overhead at the same fault tolerance.
In addition to tolerating failures, another crucial availability

requirement is to recover any lost or unavailable data of failed

nodes. To achieve high-performance recovery, one approach is

to minimize the recovery bandwidth (i.e., the amount of data

transfer over a network during recovery) based on regenerating

codes [5], in which each surviving node encodes its stored

data and sends encoded data for recovery. In the scenario

where network capacity is limited, minimizing the recovery

bandwidth can improve the overall recovery performance. In

this work, we explore the feasibility of deploying regenerating

codes in practical distributed storage systems.
However, most existing recovery approaches are designed to

optimize single failure recovery. Although single failures are

common, node failures are often correlated and co-occurring

in practice, as reported in both clustered storage (e.g., [7],

[25]) and wide-area storage (e.g., [3], [9], [18]). In addi-

tion, concurrent recovery is beneficial to delaying immediate

recovery [1]. That is, we can perform recovery only when

the number of failures exceeds a tolerable limit. This avoids

unnecessary recovery should a failure be transient and the

data be available shortly (e.g., after rebooting a failed node).

Given the importance of concurrent recovery, we thus pose

the following question: Can we achieve bandwidth saving,

based on regenerating codes, in recovering a general number

of failures including single and concurrent failures?

In this paper, we propose a complete system called CORE,

which supports both single and concurrent failure recovery

and aims to minimize the bandwidth of recovering a general

number of failures. CORE augments existing optimal regener-

ating code constructions (e.g., [21], [30]), which are designed

for single failure recovery, to also support concurrent failure

recovery. A key feature of CORE is that it retains existing

optimal regenerating code constructions and the underlying

regenerating-coded data. That is, CORE adds a new recovery

scheme atop existing regenerating codes. This paper makes

the following contributions. We theoretically show that CORE

achieves the minimum recovery bandwidth for a majority

of concurrent failure patterns. We also propose extensions

to CORE to achieve sub-optimal bandwidth saving even for

the remaining concurrent failure patterns. We implement and

experiment our CORE prototype on a Hadoop Distributed File

System (HDFS) [29] testbed with up to 20 storage nodes. We

show that compared to erasure codes, CORE achieves recovery

throughput gains with up to 3.4× for single failures and up to

2.3× for concurrent failures.

The rest of the paper proceeds as follows. Section II first

formulates our system model. Section III describes the design

of CORE and presents our theoretical and analysis findings.

Section IV presents experimental results. Section V reviews

related work, and Section VI concludes this paper.

II. SYSTEM MODEL

A. Basics

We first define the terminologies and notation. We consider

a distributed storage system composed of a collection of nodes,

each of which refers to a physical storage device. The storage

system contains n nodes labeled by N0, N1, · · · , Nn−1, in

which k nodes (called data nodes) store the original (uncoded)978-1-4799-0218-7/13/$31.00 c© 2013 IEEE

Data nodes

Block

Stripe

Parity nodes

Strip s0,0

s0,1

s1,0

s1,1

s2,0

s2,1

s3,0

s3,1

s4,0

s4,1

s5,0

s5,1

N0 N1 N2
s0,0Symbol

N3 N4 N5

s0,2 s1,2 s2,2 s3,2 s4,2 s5,2

Fig. 1. Example of a distributed storage system, where n = 6, k = 3, and
r = 3. We assume that nodes N0, N1, and N2 are data nodes, while N3,
N4, and N5 are parity nodes. For load balancing, the identities of data and
parities nodes are rotated across different blocks.

data and the remaining n − k nodes (called parity nodes)

store parity (coded) data. The coding structure is systematic,

meaning that the original data is kept in storage.

Figure 1 shows an example of a distributed storage system.

Each node stores a number of blocks. A block is the basic

unit of read/write operations in a storage system. It is called

a data block if it holds original data, or a parity block if it

holds parity data. To store data/parity information, each block

is partitioned into fixed-size strips, each of which contains

r symbols. A symbol is the basic unit of encoding/decoding

operations. A stripe is a collection of strips on k data nodes

and the corresponding encoded strips on n− k parity nodes.

Each stripe is independently encoded. Our discussion thus

focuses on a single stripe and our recovery scheme will operate

on a per-stripe basis. Let M be the total amount of original

uncoded data stored in a stripe. Let si,j be a stored symbol of

node Ni at offset j in a stripe, where i = 0, 1, · · · , n− 1 and

j = 0, 1, · · · r − 1. Note that our recovery scheme applies to

the failures of both data and parity nodes. It treats each stored

symbol si,j the same way regardless of whether it is a data or

parity symbol.

For data availability, we have the storage system employ

an (n, k) code that is maximum distance separable (MDS),

meaning that the stored data of any k out of the n nodes

can be used to reconstruct the original data. That is, an (n, k)
MDS-coded storage system can tolerate any n − k out of n

concurrent failures. MDS codes also ensure optimal storage

efficiency, such that each node stores M
k

units of data per

stripe. Reed-Solomon (RS) codes [23] are a classical example

of MDS codes. RS codes can be implemented with strip size

r = 1 to minimize the generator matrix size.

B. Recovery

We consider the scenario where the storage system activates

recovery of lost data when there are a number t ≥ 1 of failed

nodes. Clearly, we require t ≤ n− k, or the original data will

be unrecoverable. We call the set of t failed nodes the failure

pattern. The lost data will be reconstructed by the data stored

in other surviving nodes.

Our recovery builds on the relayer model, in which a

relayer daemon coordinates the recovery operation. Figure 2

depicts the relayer model. During recovery, each surviving

node performs two steps: (i) I/O: it reads its stored data,

Relayer

N4 N5N3
N2

N1

N0

New nodes /
Clients

I/O

Encode
(optional)

Download

Reconstruction

Upload

Fig. 2. Recovering nodes N0 and N1 using the relayer model.

and (ii) encode (for regenerating codes only): it combines the

stored data into some linear combinations. The relayer daemon

performs three steps: (i) download: it downloads the data from

some other surviving nodes, (ii) reconstruction: it reconstructs

the lost data, and (iii) upload: it uploads the reconstructed data

to the new nodes (for recovery from permanent failures) or

to the client who requests the data (for degraded reads). We

assume that the relayer is reliable during the recovery process.

We argue that the relayer model can be easily fit into

practical distributed storage systems. In the case of recovering

permanent failures, we can deploy the relayer daemon in

different ways, such as in one of the new storage nodes

that reconstructs all lost data, in every storage node that

reconstructs a subset of lost data, or in separate servers that

run outside the storage system.

To improve the recovery performance of a distributed stor-

age system, we need to minimize the amount of data trans-

ferred over the network. If the number of failed nodes is small,

the amount of data being downloaded from the surviving nodes

is larger than the amount of reconstructed data being uploaded

to new nodes (or clients). If we pipeline the download and

upload steps (see our technical report [17]), then the download

step becomes the bottleneck. Thus, we focus on optimizing the

download step in recovery. We define the recovery bandwidth

as the total amount of data being downloaded per stripe from

the surviving nodes to the relayer during recovery. Our goal

is to minimize the recovery bandwidth.

C. Regenerating Codes

We consider a special class of codes called regenerating

codes [5], which enable the relayer to transfer less than

the amount of original data being stored. During recovery,

surviving nodes send encoded symbols that are computed by

the linear combinations of their stored symbols, and then the

encoded symbols are used to reconstruct the lost data. It is

shown that regenerating codes lie on an optimal tradeoff curve

between storage cost and recovery bandwidth [5]. In this work,

we focus on one optimal extreme point called the minimum

storage regenerating (MSR) codes, in which each node stores

the minimum amount of data on the tradeoff curve. MSR codes

have the same optimal storage efficiency as MDS erasure

codes such as RS codes.

Existing optimal MSR codes are designed for recovering

a single failure, as described below. First, the strip size has

r = n − k symbols to achieve the minimum possible band-

width. During recovery, the relayer downloads one encoded

symbol from each of the n− 1 surviving nodes1. Let ei,i′ be

the encoded symbol downloaded from node Ni and used to

reconstruct data for the failed node Ni′ . Each encoded symbol

ei,i′ is a function of the symbols si,0, si,1, · · · , si,r−1 stored

in the surviving node Ni, and has the same size as each stored

symbol. Using the encoded symbols, the relayer reconstructs

the lost symbols of the failed node Ni′ . The theoretical lower

bound of recovery bandwidth for MSR is [5]:

γMSR =
M(n− 1)

k(n− k)
. (1)

Note that if more than one node fails, the optimal MSR code

constructions cannot achieve the saving shown in Equation (1)

by connecting to n−1 surviving nodes. To recover concurrent

failures, a straightforward approach is to resort to conventional

recovery and download the size of original data from any

k surviving nodes. This paper explores if we can achieve

recovery bandwidth saving for concurrent failures as well.

III. DESIGN OF CORE

CORE builds on existing MSR code constructions that are

designed for single failure recovery with parameters (n, k).
CORE has two major design goals. First, CORE preserves

existing code constructions and stored data. That is, we still

have data be striped and stored with existing MSR code

constructions, while CORE sits as a layer atop existing MSR

code constructions and enables efficient recovery for both

single and concurrent failures. The optimal storage efficiency

of MSR codes is still preserved. Second, CORE aims to

minimize recovery bandwidth for a variable number t ≤ n−k

of concurrent failures, without requiring t to be fixed before

a code is constructed and the data is stored.

In this section, we first describe the baseline approach of

CORE, in which we extend the existing optimal solution of

single failure recovery to support concurrent failure recovery

(Section III-A). We note that the baseline approach of CORE

is not applicable in a small proportion of failure patterns, so

we propose a simple extension that still provides bandwidth

reduction for such cases (Section III-B). We present theoretical

results that show that CORE can reach the optimal point in a

majority of failure patterns (Section III-C). Finally, we analyze

the recovery bandwidth saving of CORE (Section III-D).

A. Baseline Approach of CORE

Building blocks. We refer readers to our technical report

[17] for the background details of the MSR code constructions.

Our observation is that any optimal MSR code construction

can be defined by two functions. Let Enci,j be the encoding

function that is called by node Ni to generate an encoded

symbol for the failed node Nj using the r = n − k stored

symbols in node Ni as inputs; let Reci be the reconstruction

function that returns the set of n − k stored symbols of a

1There are MSR code constructions (e.g., [21], [30]) that can download
encoded symbols from less than n − 1 surviving nodes at the expense of
higher recovery bandwidth. In this work, we only focus on the case where
n− 1 surviving nodes are connected.

Relayer

e3,0

N4 N5N3N2

N1

N0

e2,0
e1,0

e4,0

e5,0

e3,1e2,1

e0,1

e4,1

e5,1

Fig. 3. An example of how the relayer downloads real and virtual symbols
for a (6,3) code when there are two failed nodes N0 and N1. Here, e1,0 and
e0,1 are the virtual symbols.

failed node Ni using the encoded symbols from the other n−
1 surviving nodes as inputs. Both Enc and Rec define the

operations of linear combinations of the stored symbols si,j’s,

depending on the specific code construction.

CORE works for any construction of optimal MSR codes, as

long as the functions Enc and Rec are well-defined. The two

functions Enc and Rec form the building blocks of CORE.

CORE can build on existing optimal MSR code constructions

including Interference Alignment (IA) codes [30] and Product-

Matrix (PM) codes [21]. Note that both IA and PM codes

have parameter constraints. IA codes require n ≥ 2k, and PM

codes require n ≥ 2k − 1. In this work, we mainly focus on

the double redundancy n = 2k, which is also considered in

state-of-the-art distributed storage systems such as OceanStore

[16] and CFS [4].

Main idea of the baseline approach. We consider two

types of encoded symbols to be downloaded for recovery: real

symbols and virtual symbols. To recover each of the t failed

nodes, the relayer still operates as if it connects to n−1 nodes,

but this time it represents the symbols to be downloaded from

the failed nodes as virtual symbols, while still downloading

the symbols from the remaining n− t surviving nodes as real

symbols. Now, using Enc and Rec, we reconstruct each virtual

symbol as a function of the downloaded real symbols. Finally,

using the downloaded real symbols and the reconstructed

virtual symbols, we can reconstruct the lost stored symbols

in the failed nodes.

Example. We depict our idea using Figure 3, which shows

a (6,3) code and has failures N0 and N1. The two encoded

symbols e1,0 and e0,1 are virtual symbols, and the rest are real

symbols. We can express e1,0 and e0,1 based on the functions

Enc and Rec for single failure recovery as:

e1,0 = Enc1,0(s1,0, s1,1, s1,2)

= Enc1,0(Rec1(e0,1, e2,1, e3,1, e4,1, e5,1))

e0,1 = Enc0,1(s0,0, s0,1, s0,2)

= Enc0,1(Rec0(e1,0, e2,0, e3,0, e4,0, e5,0))

The encoded symbol e1,0 is computed by encoding the stored

symbols s1,0, s1,1, and s1,2, all of which can be reconstructed

from other encoded symbols e0,1, e2,1, e3,1, e4,1, and e5,1
based on single failure recovery. Thus, e1,0 can be expressed

as a function of encoded symbols. The encoded symbol e0,1
is expressed in a similar way. Now, we have two equations

Relayer

N4 N5N3N2

N1

N0

Lost data for

N0 and N1

Fig. 4. An example of using a virtual failure pattern for a (6,3) code. If
the original failure pattern {N0, N1} is bad, then we can instead recover the
virtual failure pattern {N0, N1, N2} and only download encoded symbols
from nodes N3, N4, N5.

with two unknowns e1,0 and e0,1. If these two equations are

linearly independent, we can solve for e1,0 and e0,1. Then we

can apply Reci to reconstruct the lost stored symbols of node

Ni. In general, to recover t failed nodes, we have a total of

t(t− 1) virtual symbols. We can compose t(t− 1) equations

based on the above idea. If these t(t−1) equations are linearly

independent, we can solve for the virtual symbols. A subtle

issue is that the system of equations may be unsolvable. We

explain how we generalize our baseline approach for such an

issue in the next subsection.

B. Recovering Any Failure Pattern

We seek to express the virtual symbols as a function of real

symbols by solving a system of equations. However, we note

that for some failure patterns (i.e., the set of failed nodes),

the system of equations cannot return a unique solution. A

failure pattern is said to be good if we can uniquely express

the virtual symbols as a function of the real symbols, or bad

otherwise. Our goal is to reduce the recovery bandwidth even

for bad failure patterns.

As shown in our technical report [17], the proportion of bad

failure patterns is in general very small, with at most 0.9%

and 1.6% for IA and PM codes, respectively. Also, for some

sets of parameters, we do not find any bad failure patterns.

Nevertheless, we would like to reduce the recovery bandwidth

for such bad failure patterns even though they are rare.

We now extend our baseline approach of CORE to deal

with the bad failure patterns, with an objective of reducing

the recovery bandwidth over the conventional recovery ap-

proach. For a bad failure pattern F , we include one additional

surviving node and form a virtual failure pattern F ′, such

that F ⊂ F ′ and |F ′| = |F| + 1 = t + 1. Then the relayer

downloads the data from the n−t−1 nodes outside F ′ needed

for reconstructing the lost data of F ′, although actually only

the lost data of F needs to be reconstructed. Figure 4 shows an

example of how we use a virtual failure pattern for recovery. If

F ′ is still a bad failure pattern, then we include an additional

surviving node into F ′, and repeat until a good failure pattern

is found. Note that the size of F ′ must be upper-bounded

by n − k, as we can always connect to k surviving nodes to

reconstruct the original data due to the MDS code property.

C. Theoretical Results

We present two theorems. The first one shows the lower

bound of recovery bandwidth. The second one shows that

CORE achieves the lower bound for good failure patterns.

Since most failure patterns are good, we conclude that CORE

minimizes recovery bandwidth for a majority of failure pat-

terns. The proofs are in [17].

Theorem 1: Suppose that we recover t failed nodes. The

lower bound of recovery bandwidth is:






Mt(n− t)

k(n− k)
where t < k,

M where t ≥ k.
�

Theorem 2: CORE, which builds on MSR codes for single

failure recovery, achieves the lower bound in Theorem 1 if we

recover a good failure pattern. �

D. Analysis of Bandwidth Saving

We now study the bandwidth saving of CORE over con-

ventional recovery. We compute the bandwidth ratio, defined

as the ratio of recovery bandwidth of CORE to that of

conventional recovery. We vary (n, k) and the number t of

failed nodes to be recovered.

We first consider good failure patterns. Figure 5(a) shows

the bandwidth ratio. We observe that CORE achieves band-

width saving in both single and concurrent failures. For single

failures (i.e., t = 1), CORE directly benefits from existing

regenerating codes, and saves the recovery bandwidth by 70-

80%. For concurrent failures (i.e., t > 1), CORE also shows

the bandwidth saving, for example by 44-64%, 25-49%, and

11-36% for t = 2, t = 3 and t = 4, respectively. The

bandwidth saving decreases as t increases, since more lost

data needs to be reconstructed and we need to retrieve nearly

the amount of original data stored. On the other hand, the

bandwidth saving increases with the values of (n, k). For

example, the saving is 36-64% in (20,10) when 2 ≤ t ≤ 4.

We now study how CORE performs for bad failure patterns.

Recall from Section III-B for each bad failure pattern F ,

CORE forms a virtual failure pattern F ′ that is a good

failure pattern. We compute the recovery bandwidth for F ′

based on our theoretical results in Section III-C. Figure 5(b)

shows the bandwidth ratio. We find that in all cases we

consider, it suffices to add one surviving node into F ′ (i.e.,

|F ′| = |F| + 1) and obtain a good failure pattern. Thus, the

recovery bandwidth of CORE for a bad t-failure pattern is

always equivalent to that for a good (t + 1)-failure pattern.

From the figure, we still see bandwidth saving of CORE over

conventional recovery. For example, the saving is 25-49% in

(20,10) when 2 ≤ t ≤ 4.

IV. PROTOTYPE EXPERIMENTS

We implement CORE on Hadoop Distributed File System

(HDFS) [29] with its erasure-coded module HDFS-RAID [10].

We experiment CORE on an HDFS testbed with one NameN-

ode and up to 20 DataNodes being used. Each node runs on a

quad-core PC equipped with an Intel Core i5-2400 3.10GHz

CPU, 8GB RAM, and a Seagate ST31000524AS 7200RPM

1TB SATA harddisk. All machines are equipped with a 1Gb/s

Ethernet card and interconnected over a 1Gb/s Ethernet switch.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 3 4 5 6 7 8 9 10

B
a

n
d

w
id

th
 R

a
ti
o

t

(12,6)
(16,8)

(20,10)
 0

 0.2

 0.4

 0.6

 0.8

 1

 2 3 4 5 6 7 8 9

B
a

n
d

w
id

th
 R

a
ti
o

t

(12,6)
(16,8)

(20,10)

(a) Good failure patterns (b) Bad failure patterns

Fig. 5. Ratio of recovery bandwidth of CORE to that of conventional
recovery.

They all run Linux Ubuntu 12.04. We compare RS codes [23],

which use conventional recovery, and CORE, which builds on

IA codes [30]. Both codes are implemented in C++ using the

Jerasure library [20] and compiled with GCC 4.6.3 with the

-O3 option. Our results are averaged over five runs.

We evaluate the recovery performance. For a given (n, k),
we configure our HDFS testbed with n DataNodes, one of

which also deploys the RaidNode for striping the encoded

data. We prepare a kGB of original data as our input. By

our observation, the input size is large enough to give a

steady throughput. HDFS first stores the file with the default

3-replication scheme. Then the RaidNode stripes the replica

data into encoded data using either RS codes or IA codes.

The encoded data is stored in n DataNodes. We rotate node

identities when we place the blocks so that the parity blocks

are evenly distributed across different DataNodes to achieve

load balancing. We fix the symbol size at 8KB. We use the

default HDFS block size at 64MB, but for some (n, k), we

alter the block size slightly to make it a multiple of the strip

size (which is (n− k)×8KB) for IA codes.

Then we manually delete all blocks stored on t DataNodes

to mimic t failures, where t = 1, 2, 3. Since we rotate

node identities when we stripe data, the lost blocks of the

t failed DataNodes include both data and parity blocks. The

RaidNode recovers the failures and uploads reconstructed

blocks to new DataNodes (same as the failed DataNodes in

our evaluation). Here, we deploy the RaidNode in one of the

new DataNodes for the recovery operation. We measure the

recovery throughput as the total size of lost blocks divided by

the total recovery time.

Figure 6 shows the recovery throughput results. Both CORE

and RS codes see higher throughput for larger t as more

lost blocks are recovered. Overall, CORE shows significantly

higher throughput than RS codes. The throughput gain is the

highest in (20,10). For example, for single failures, the gain is

3.45×; for concurrent failures, the gains are 2.33× and 1.75×
for t = 2 and t = 3, respectively.

Our experimental results are fairly consistent with our

analytical results in Section III-D. For example, in (20,10),

the ratio of the reconstruction bandwidth of CORE to that

of erasure codes for t = 2 and t = 3 are 0.36 and 0.51,

respectively (see Figure 5(a)). These results translate to the

recovery throughput gains of CORE at 2.78× and 1.96×,

respectively. Our experimental results show slightly less gains,

 0

 10

 20

 30

 40

 50

 60

(12,6) (16,8) (20,10)

R
e
c
o
v
e
ry

 t
h
p
t
(M

B
/s

)

(n,k)

CORE t=1
RS t=1

CORE t=2
RS t=2

CORE t=3
RS t=3

Fig. 6. Recovery throughput.

mainly due to disk I/O and encoding/decoding overheads that

are not captured in the recovery bandwidth. We present more

evaluation results in our technical report [17].

V. RELATED WORK

We review related work on the recovery problem for erasure

codes and regenerating codes.

Minimizing I/Os. Several studies [31]–[33] focus on mini-

mizing I/Os required for recovering a single failure in RAID-6

codes. Their approaches mainly focus on a disk array system.

Authors of [15] show that finding the optimal recovery solution

for arbitrary erasure codes is NP-hard. Authors of [34], [35]

propose greedy heuristics to speed up the search of solutions

for single failure recovery. Authors of [6], [13], [19], [24]2

propose local recovery codes that reduce the bandwidth and

I/O when reconstructing a lost data fragment. They evaluate

the codes atop a cloud storage system simulator (e.g., in [19]),

Azure Storage (e.g., in [13]), and HDFS (e.g., in [6], [24]).

It is worth noting that the local recovery codes are non-MDS

codes with additional parities added to storage, so as to trade

for better recovery performance. On the other hand, our work

builds on MSR codes that have the same optimal storage

efficiency as MDS codes.

Minimizing recovery bandwidth. Regenerating codes [5],

[21], [22], [26], [30] minimize the recovery bandwidth for

a single failure in a distributed storage system. In contrast

with the above solutions that minimize I/Os, most regenerating

codes typically read all stored data to generate encoded data

during recovery. Authors of [11] implement and experiment

non-systematic minimum storage regenerating codes in a cloud

storage system prototype, without requiring storage nodes to

perform encoding operations (i.e., uncoded recovery).

Cooperative recovery. Several theoretical studies (e.g.,

[12], [14], [27], [28]) address concurrent failure recovery

based on regenerating codes, and they focus on recovery of

lost data on new nodes. They all consider a cooperative model,

in which the new nodes exchange among themselves their data

being read from surviving nodes during recovery. Authors of

[12], [14] prove that the cooperative model achieves the same

optimal recovery bandwidth as ours, but they do not provide

explicit constructions of regenerating codes that achieve the

optimal point. Authors of [27], [28] provide such explicit

2Although the proposed scheme of [6] is also called CORE, it refers to
Cross Object Redundancy and addresses a different problem from ours.

implementations, but they focus on limited parameters and

the resulting implementations do not provide any bandwidth

saving over erasure codes. A drawback of the cooperative

model requires coordination among the new nodes to perform

recovery, and its implementation complexities are unknown.

VI. CONCLUSIONS

We explore the use of regenerating codes to provide fault-

tolerant storage and minimize the bandwidth of data transfer

during recovery. We propose a system CORE, which general-

izes existing optimal single-failure-based regenerating codes to

support the recovery of both single and concurrent failures. We

theoretically show that CORE minimizes the reconstruction

bandwidth in most concurrent failure patterns. To demonstrate,

we prototype CORE as a layer atop Hadoop HDFS, and show

via testbed experiments that we can speed up the recovery

operation. The source code of CORE is available for download

at http://ansrlab.cse.cuhk.edu.hk/software/core.

ACKNOWLEDGMENTS

This work is supported by grants AoE/E-02/08 and ECS

CUHK419212 from the University Grants Committee of Hong

Kong.

REFERENCES

[1] R. Bhagwan, K. Tati, Y. Cheng, S. Savage, and G. Voelker. Total Recall:
System Support for Automated Availability Management. In Proc. of

USENIX NSDI, Oct 2004.
[2] B. Calder, J. Wang, A. Ogus, N. Nilakantan, A. Skjolsvold, S. McKelvie,

Y. Xu, S. Srivastav, J. Wu, H. Simitci, et al. Windows Azure Storage:
A Highly Available Cloud Storage Service with Strong Consistency. In
Proc. of ACM SOSP, Oct 2011.

[3] B. Chun, F. Dabek, A. Haeberlen, E. Sit, H. Weatherspoon,
M. Kaashoek, J. Kubiatowicz, and R. Morris. Efficient Replica Mainte-
nance for Distributed Storage Systems. In Proc. of USENIX NSDI, May
2006.

[4] F. Dabek, M. Kaashoek, D. Karger, R. Morris, and I. Stoica. Wide-
Area Cooperative Storage with CFS. ACM SIGOPS Operating Systems

Review, 35(5):202–215, Dec 2001.
[5] A. Dimakis, P. Godfrey, Y. Wu, M. Wainwright, and K. Ramchandran.

Network Coding for Distributed Storage Systems. IEEE Trans. on

Information Theory, 56(9):4539–4551, Sep 2010.
[6] K. Esmaili, P. Lluis, and A. Datta. The CORE Storage Primitive: Cross-

Object Redundancy for Efficient Data Repair & Access in Erasure Coded
Storage. arXiv, preprint arXiv:1302.5192, 2013.

[7] D. Ford, F. Labelle, F. I. Popovici, M. Stokel, V.-A. Truong, L. Barroso,
C. Grimes, and S. Quinlan. Availability in Globally Distributed Storage
Systems. In Proc. of USENIX OSDI, Oct 2010.

[8] S. Ghemawat, H. Gobioff, and S. Leung. The Google File System. In
Proc. of ACM SOSP, Dec 2003.

[9] A. Haeberlen, A. Mislove, and P. Druschel. Glacier: Highly Durable,
Decentralized Storage Despite Massive Correlated Failures. In Proc. of

USENIX NSDI, May 2005.
[10] HDFS-RAID. http://wiki.apache.org/hadoop/HDFS-RAID.
[11] Y. Hu, H. Chen, P. Lee, and Y. Tang. NCCloud: Applying Network

Coding for the Storage Repair in a Cloud-of-Clouds. In Proc. of USENIX

FAST, Feb 2012.
[12] Y. Hu, Y. Xu, X. Wang, C. Zhan, and P. Li. Cooperative Recovery

of Distributed Storage Systems from Multiple Losses with Network
Coding. IEEE Journal on Selected Areas in Communications (JSAC),
28(2):268–276, Feb 2010.

[13] C. Huang, H. Simitci, Y. Xu, A. Ogus, B. Calder, P. Gopalan, J. Li, and
S. Yekhanin. Erasure Coding in Windows Azure Storage. In Proc. of

USENIX ATC, Jun 2012.
[14] A. Kermarrec, N. Le Scouarnec, and G. Straub. Repairing Multiple

Failures with Coordinated and Adaptive Regenerating Codes. In Proc.

of NetCod, Jun 2011.

[15] O. Khan, R. Burns, J. Plank, W. Pierce, and C. Huang. Rethinking
Erasure Codes for Cloud File Systems: Minimizing I/O for Recovery
and Degraded Reads. In Proc. of USENIX FAST, Feb 2012.

[16] J. Kubiatowicz, D. Bindel, Y. Chen, S. Czerwinski, P. Eaton, D. Geels,
R. Gummadi, S. Rhea, H. Weatherspoon, W. Weimer, C. Wells, and
B. Zhao. OceanStore: An Architecture for Global-Scale Persistent
Storage. In Proc. of ACM ASPLOS-IX, Nov 2000.

[17] R. Li, J. Lin, and P. Lee. CORE: Augmenting Regenerating-Coding-
Based Recovery for Single and Concurrent Failures in Distributed
Storage Systems. arXiv, preprint arXiv:1302.3344, 2013.

[18] S. Nath, H. Yu, P. B. Gibbons, and S. Seshan. Subtleties in Tolerating
Correlated Failures in Wide-area Storage Systems. In Proc. of USENIX

NSDI, May 2006.
[19] D. Papailiopoulos, J. Luo, A. Dimakis, C. Huang, and J. Li. Simple

Regenerating Codes: Network Coding for Cloud Storage. In Proc. of

IEEE INFOCOM, Mar 2012.
[20] J. Plank, J. Luo, C. Schuman, L. Xu, and Z. Wilcox-O’Hearn. A Per-

formance Evaluation and Examination of Open-Source Erasure Coding
Libraries for Storage. In Proc. of USENIX FAST, Feb 2009.

[21] K. Rashmi, N. Shah, and P. Kumar. Optimal Exact-Regenerating Codes
for Distributed Storage at the MSR and MBR Points via a Product-
Matrix Construction. IEEE Trans. on Information Theory, 57(8):5227–
5239, Aug 2011.

[22] K. Rashmi, N. Shah, P. Kumar, and K. Ramchandran. Explicit Con-
struction of Optimal Exact Regenerating Codes for Distributed Storage.
In Proc. of Allerton Conf., Sep 2009.

[23] I. Reed and G. Solomon. Polynomial Codes over Certain Finite Fields.
Journal of the Society for Industrial and Applied Mathematics, 8(2):300–
304, Jun 1960.

[24] M. Sathiamoorthy, M. Asteris, D. Papailiopoulos, A. G. Dimakis,
R. Vadali, S. Chen, and D. Borthakur. XORing Elephants: Novel Erasure
Codes for Big Data. Proceedings of the VLDB Endowment (to appear),
2013.

[25] B. Schroeder and G. A. Gibson. Disk Failures in the Real World: What
Does an MTTF of 1,000,000 Hours Mean to You? In Proc. of USENIX

FAST, Feb 2007.
[26] N. Shah, K. Rashmi, P. Kumar, and K. Ramchandran. Interference

Alignment in Regenerating Codes for Distributed Storage: Necessity and
Code Constructions. IEEE Trans. on Information Theory, 58(99):2134
– 2158, Apr 2012.

[27] K. Shum. Cooperative Regenerating Codes for Distributed Storage
Systems. In Proc. of IEEE ICC, Jun 2011.

[28] K. Shum and Y. Hu. Exact Minimum-Repair-Bandwidth Cooperative
Regenerating Codes for Distributed Storage Systems. In Proc. of IEEE

ISIT, Jul 2011.
[29] K. Shvachko, H. Kuang, S. Radia, and R. Chansler. The Hadoop

Distributed File System. In Proc. of IEEE MSST, May 2010.
[30] C. Suh and K. Ramchandran. Exact-Repair MDS Code Construction

using Interference Alignment. IEEE Trans. on Information Theory,
57(3):1425–1442, Mar 2011.

[31] Z. Wang, A. Dimakis, and J. Bruck. Rebuilding for Array Codes in
Distributed Storage Systems. In IEEE GLOBECOM Workshops, Dec
2010.

[32] L. Xiang, Y. Xu, J. Lui, Q. Chang, Y. Pan, and R. Li. A Hybrid
Approach to Failed Disk Recovery Using RAID-6 Codes: Algorithms
and Performance Evaluation. ACM Trans. on Storage, 7(3):11, Oct 2011.

[33] S. Xu, R. Li, P. Lee, Y. Zhu, L. Xiang, Y. Xu, and J. Lui. Single
Disk Failure Recovery for X-code-based Parallel Storage Systems. IEEE

Trans. on Computers, To appear.
[34] Y. Zhu, P. Lee, Y. Hu, L. Xiang, and Y. Xu. On the Speedup of Single-

Disk Failure Recovery in XOR-Coded Storage Systems: Theory and
Practice. In Proc. of IEEE MSST, Apr 2012.

[35] Y. Zhu, P. Lee, L. Xiang, Y. Xu, and L. Gao. A Cost-based Heteroge-
neous Recovery Scheme for Distributed Storage Systems with RAID-6
Codes. In Proc. of IEEE DSN, Jun 2012.

