
Fjord: Informed Storage Management for
Smartphones

Hyojun Kim
IBM Research

California, USA
Email: hyojun@us.ibm.com

Umakishore Ramachandran
Georgia Institute of Technology

Georgia, USA
Email: rama@cc.gatech.edu

Abstract—Smartphone applications are becoming more so-
phisticated and require high storage performance. Unfortunately,
the OS storage software stack is not well engineered to support
flash-based storage used in smartphones. On top of that, storage
software stack is configured to be too conservative due to the fear
of sudden power failures. We believe that this conservatism with
respect to data reliability is misplaced considering that many of
the popular apps (e.g., Web browsing, Facebook, Gmail) that run
on today’s smartphones are cloud-backed, and the local storage
on the smartphone is often used as a cache for cloud data.

In this paper, we propose Informed Storage Management
framework, named Fjord, for mobile platforms. The key insight
is to use system-wide dynamic context information to improve the
storage performance on mobile platforms. We implement a set of
mechanisms (write buffering, logging, and fine-grained reliability
control), and through judicious use of these mechanisms based on
system context, we show how we can achieve significant improve-
ment in storage performance. As proof of concept, we implement
Fjord in two Android smartphones and experimentally validate
the performance advantage of informed storage management with
multiple smartphone applications.

I. INTRODUCTION

Smartphones have become an essential part of our daily
life. Today, more smartphones than PCs are being shipped [1],
and the number of people subscribing to mobile phones is
bigger than the number of people subscribing to electricity
and safe drinking water [2].

In contrast to regular desktop and server systems, the
storage subsystem can easily become a performance bottle-
neck in smartphones. Smartphones use low-end flash stor-
age devices such as embedded Multimedia Card (eMMC)
chips and microSDHC cards, and their performance is rela-
tively limited compared to regular computer storage devices
such as Solid-State Drives (SSDs) and Hard Disk Drives
(HDDs). For instance, sequential write throughputs are about
400MB/second and 150MB/second on a recent SSD and HDD,
respectively [3], but they are only about 15MB/second and
12MB/second on eMMC and microSDHC card, respectively;
the performance gap is even bigger for random write through-
puts [4], [5].

The storage performance is limited also by conservative
configurations of the smartphone OS; the safer but slow
choices normally win over faster but risky ones in design-
ing smartphones. As a concrete example, Google Android
4.0.4 uses write barrier enabled EXT4 journaling file sys-
tem instead of the faster EXT2 file system, and uses very

conservative configurations to minimize the possibility of
losing dirty page content due to unexpected system crashes -
dirty expire centisecs and dirty background ratio
values are reduced from 30 seconds to 2 seconds and from 10
percent to 5 percent, respectively. Of course, the configurations
limit the capability of Linux page cache, and it can be a limita-
tion to the performance of smartphone storage. Consequently,
the low-end flash storage easily becomes the Achilles’ heel
when it comes to performance of mobile platforms [6], [4].

However, such a conservative approach that sacrifices per-
formance for storage reliability is unwarranted for all appli-
cations. In many cases, smartphones are terminal devices for
cloud contents, and local storage is used mostly as a cache
for data that already resides safely in the cloud. Facebook,
web browser, Twitter, Google Maps are good examples. For
such applications, users may prefer performance to reliability;
loss of the cached content is not catastrophic since the original
content is safely in the cloud.

However, there is no systematic method to selectively
control the conservative storage configurations of the smart-
phone OS for such applications that can use relaxed semantics
for reliability to gain higher performance. If smartphone OS
can provide a fine-grained control mechanism to tradeoff
reliability for performance, then it will be possible to get better
performance for some applications without losing reliability
for critical applications (e.g., bank transactions).

We propose a novel Informed Storage Management frame-
work, named Fjord1. Fjord includes three key components: 1)
controlled write buffering layer based on logging and RAM
based write-back buffering, 2) fine-grained control mechanism
to trade off reliability for performance, and 3) a framework
to control these solutions dynamically. The third component,
namely, a framework for dynamic control will not be covered
in this paper due to space constraints.

We implement and evaluate Fjord on two real Android
smartphones, and demonstrate significant performance gains
with SQLite benchmark application as well as Email and Web
Browsing clients. For instance, the elapsed time for running the
Email test case is reduced from 34.6 seconds to 16.1 seconds
on Samsung Galaxy Note phone with Fjord. Overall, we see a
performance improvement by a factor of 2 for many test cases.

1The English word Fjord is derived from a Scandinavian word that signifies
a narrow and often shallow area in a river for crossing from one side to the
other on foot...an analogy for our thin system software layer that allows safely
moving data from higher levels of system software to the storage device.



The rest of the paper is structured as follows. Section II
provides a brief background and related works. Section III
presents the key design concepts of Fjord. Our evaluation
results are presented in Section IV, and we conclude in
Section V.

II. BACKGROUND AND RELATED WORK

Flash memory has brought about a drastic change in
storage technology recently, and there are a number of studies
devoted to a deeper understanding of that technology. Most of
the studies are about regular or enterprise level SSDs while
only few studies deal with low-end flash storage for mobile
platforms. Smartphones just a few years back used to have
a bare NAND flash memory chip with a flash native file
system like YAFFS2 [7], but the latest ones use eMMC devices
rather than bare NAND flash memories. The upshot is that
each eMMC chip has Flash Translation Layer (FTL) [8], [9]
internally by using System-On-Chip technology. Eliminating
the need for FTL and/or flash native file system (such as
YAFFS2) on the host side helps rapid development, and the
unified interfaces (at the storage system software level) can
be used by the mobile platform both for an internal eMMC
chip and for an external flash memory card like microSDHC.
Naturally, small flash memory cards (including eMMC) suffer
from many limitations. Only small amount of RAM is available
for internal FTL, and these flash memory cards have severe
limitations when it comes to response time and power con-
sumption. As a result, most inexpensive flash storage devices
show very poor performances especially for small random
write requests, and as a consequence, inexpensive flash storage
devices remain as the main source of performance bottleneck
on mobile platforms [4].

Related with file system reliability, journaling [10] is being
popularly used in modern file systems. To fix inconsistent
file system states, journaling file system keeps track of file
system changes as a journal, and uses it for a recovery. Soft-
update [11], [12] was proposed to provide stronger reliability
guarantees than journaling, and it attacks the meta-data update
problem by guaranteeing that blocks are written to the disk
in their required order without using synchronous disk I/Os;
Seltzer et al. have compared the file system performance of
Soft-update and journaling [13].

Ensuring write ordering is an essential part of both Soft-
update and journaling file systems. Most storage devices have
volatile on-board write buffer to improve storage performance,
and consequently write ordering is not guaranteed. In other
words, the storage devices internally decide as to when the
writes pending in the on-board write buffer are committed to
the physical medium. To enforce write ordering under these
circumstances, storage devices expose a write barrier interface
to the OS. Whenever a storage device receives a write barrier
from the upper layers of the OS, it has to ensure that the
content of the on-board buffer is written to the physical storage
media safely. That is, a write barrier limits the capability of on-
board write buffer, and thus frequent use of write barrier can
degrade the overall file system performance significantly [14].

EXT4 file system is used as a default file system in today’s
Android smartphones, and provides three different data modes
related with file system consistency: write-back, ordered, and
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Fig. 1. Informed Storage Management:solutions are selectively, dynamically,
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journal [15]. With the fastest write-back mode, EXT4 does
not journal user-data at all, and provides only file system
metadata consistency. That is, a crash can cause incorrect data
to appear in files, which were written shortly before the crash.
When the ordered mode (which is the default) is used in
EXT4, once again only the metadata is written to the journal,
but the metadata update happens only after the associated
data blocks have been written to the storage first. With the
safest - but slowest - journal mode, both user-data and file
system metadata are written to the journal first, than written
to their final locations. Within Android version 4.0.4, EXT4
file system is being used with the default data=ordered,
barrier=1 options, and the performance of the option is
between write-back and journal options. In EXT4 file system,
it is not possible to use different journaling options for different
files even if each file may have different levels of reliability
requirements.

III. INFORMED STORAGE MANAGEMENT

Informed Storage Management (ISM) is aimed at providing
a dynamic decision-making framework for mobile system
design, specifically targeted to storage systems. The goal is
maximizing the performance benefits while minimizing the
side-effects of the design choice.

ISM consists of three major components: 1) controllable
software modules that represent different design choices that
can be harnessed on the fly, and whose behavior can be altered
on the fly, 2) a control framework for selecting a software
solution on the fly, and 3) a scavenger that gathers fine-grained
information to feed to the control framework for just-in-time
decision-making. Figure 1 shows this concept.

As a concrete example of ISM, we build Fjord within the
Android platform.

Figure 2 shows the overall architecture of Fjord and its
relationship to the Android system. We add a new controlled
write buffering layer between the file system and block device
layers, and this layer optimizes write requests considering the
general performance characteristics of flash storage. We also
modify Android, Linux page cache, and the file system layers
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to provide fine-grained reliability control. All files are not
equally important, and it is especially true on mobile platforms
because the applications are tightly coupled with the cloud
storage in many cases. Fjord can relax reliability constraint se-
lectively for such files to improve storage performance. On top
of these solutions, Fjord has an Android App, which controls
the solutions based on various dynamic context information.

A. Controlled Write-back Buffering

Figure 3 shows our design for controlled write buffer-
ing layer, which combines non-volatile logging and RAM
buffering together. This layer is designed to improve write
performance and acts as follows. When a write request is given,
it is acted upon based on its size. If the request size is big
enough, the request bypasses our buffering layer because flash
storage can handle big-sized write requests efficiently. Besides,
a big-sized request will consume more space in our buffering
layer. In the Fjord framework, a write request is tagged to
indicate whether the request is for a critical or non-critical
file (this will be explained in the following Section III-B).
Both non-critical and critical small-sized write requests go to
the RAM buffer, but the tagging information is conveyed to
the RAM buffer to guarantee that the critical data are flushed
upon a write barrier from the upper layer. While staying in the
RAM buffer write requests are reordered and merged for better
performance. When data pages are evicted from the RAM
buffer, they can go to the non-volatile logging buffer or the
final flash storage based on the their size. That is, the RAM

buffer acts as a staging area for small write requests; spatially
near, but temporally separated write requests are merged to a
big write request, and directly written to the final location.

B. Fine-grained Reliability Control

One fundamental question is how to distinguish cloud-
backed applications from others. For a long-term view, we
believe that the smartphone OS should provide proper interface
(APIs) to let developers define their applications as cloud-
backed applications. However, such an approach is difficult
to implement for the purposes of this study because it requires
modifications to both the smartphone OS and the applications.
Instead, for the purposes of this study, we maintain a whitelist
(opposite to the concept of blacklist) in our prototype, and
manually configure a particular application as a cloud-backed
application. In the Android system, each application writes
only to well separated individual application storage space
under /data/data/ directory, and thus, by providing the home
directory name of an Android application, we can easily find
all files from the applications. The whitelist serves as the set
of file names that are buffer-able from the point of view of
our fine-grained reliability control.

Fjord also distinguishes file system metadata from user-
data, and applies relaxed reliability semantics only for the
user-data of the files within the whitelist. It can be done of
course by file systems, but for the purposes of this study, we
take a different approach. Instead of modifying the file system
code, we modify the page cache related function of Linux
kernel, generic perform write(), within mm/filemap.c.
The function is called when a file is written by the file system
write APIs, and it eventually copies the written data to a page
frame in the Linux page cache. Since the page in this case is
holding user-data of a file, we annotate this information within
the page data structure. For this purpose, we add a new page
bit flag (include/linux/page-flags.h) and set the bit within
the generic perform write() function.

In addition to the controlled write-back buffering, Fjord
includes a simple but very effective mechanism, which is
selectively ignoring fsync() requests only for non-critical files
within the whitelist. We modify ext4 sync file() function
within fs/ext4/fsync.c file to return without syncing the file
when the file is marked as buffer-able.

IV. EVALUATION

To see the performance effect of Fjord on various hardware,
we choose two smartphones: Google Nexus One having An-
droid 2.3.7 and Samsung Galaxy Note N7000 with Android
4.0.4. The Nexus One has a single-core 1 GHz Qualcomm
QSD8250 Snapdragon processor, 512MB RAM, and 512MB
internal flash storage while the Galaxy Note has a dual-core
1.4GHz Samsung Exynos processor, 1GB main memory, and
16GB eMMC storage; both phones have external memory
card slots. We also choose two typical storage devices for
smartphones: 1) the eMMC device used in the Galaxy Note
phone, and 2) 8GB sized class 10 microSDHC card from
Samsung.

We assign 16MB for the RAM buffer2, and 128MB for

2We have evaluated with different sizes of the RAM buffer, and there were
no meaningful differences in the observed results.
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Fig. 4. Email: (i) Native, (j) Logging, (k) RAMBuf, (l) Both, (m) FjordRAM, (n) FjordBoth. Fjord eliminates between 41 - 55% of the execution time.
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Fig. 5. RL Benchmark: (i) Native, (j) Logging, (k) RAMBuf, (l) Both, (m) FjordRAM, (n) FjordBoth. Fjord eliminates between 59 - 73% of the execution time.

the non-volatile logging buffer. All other configurations use
Android Open Source Project (AOSP) [16] defaults: EXT4
file system and CFQ I/O scheduler, etc.

We compare the performance for six different storage
software configurations: (i) the original storage (Native), (j)
only the logging buffer is enabled (Logging), (k) only the
RAM buffer is enabled (RAMBuf), (l) Both the RAM and
the logging buffers are enabled (Both), (m) Fjord selective
buffering is used with the RAM buffer (FjordRAM), and
(n) Fjord selective buffering is used with both the RAM
and the logging buffers (FjordBoth). Note that the first four
configurations do not sacrifice reliability while the last two
configurations (FjordRAM and FjordBoth) sacrifice reliability
for chosen application files. All tests have been repeated 3
times, and the average numbers are reported in our results; the
variations were small enough to be ignored.

Our first test case is the default Email App of Android OS.
Email is perhaps the most popular application on smartphones,
and its performance is highly reliant on network as well as
local storage performance because it downloads emails to the
local storage. To obtain repeatable results, we prepare an email
account having about 150 emails in its inbox. We launch
Email App, input information about the email account, and
then measure the initial email downloading time. The time is
measured by monitoring CPU usage rate; CPU rate is between
50-90% during email downloading, and drops down to around
10% when the task completes. We automate the measurement
process by using Android Monkey Runner framework [17] as
well as our custom utility, which monitors CPU utilization in
the background.

Figures 4 (a), (b), and (c) show the measured run-times on
the Galaxy Note with the eMMC, Galaxy Note with microS-
DHC, and Nexus One with microSDHC, respectively. Let us
first consider the native results on the different platforms (“(i)”
on the x-axis). On the Galaxy Note, the result with eMMC
(Figure 4-(a)) is faster (34.6 seconds) than the result with

microSDHC card (Figure 4-(b), 39.9 seconds) as expected.
Interestingly, the old Nexus One (Figure 4-(c)) shows the
shortest execution time (34.2 seconds) than the newer and
faster Galaxy Note phone. The difference could be due to
several reasons: Linux Kernel, Android OS, or Email App
itself.

Next we consider the results with the logging solution
(“(j)” on the x-axis). Small sized (≤ 4KB) write requests are
written sequentially to the non-volatile logging buffer regard-
less of its final destination address. The solution improves the
performance very effectively, and it is more effective with
microSDHC card because its performance is more sensitive
to the write pattern.

The results with the RAM based write buffer are shown
as the third bars from the left with the legend “(k)” on the
x-axis in Figures 4-(a)-(c). The RAM buffer could also help
to change the write pattern to be more sequential, but its
capability is limited by write barriers because it has to flush out
all its content to the non-volatile storage to obey write barrier
semantics, and EXT4 file system generates write barriers very
frequently.

The fourth bars from the left represent the results with
both the volatile RAM and the non-volatile logging buffers.
All written data go to the RAM buffer first, and move to non-
volatile logging buffer selectively. It can be seen that the results
are worse than the logging only solution. This is because the
results for the logging only solution (bars with the legend “(j)”
on the x-axis) do not include garbage collection overhead since
the reported numbers for that experiment are obtained when
there is enough free space in the logging buffer.

The next two bars (legends “(m)” and “(n)” in Figures 4-
(a)-(c)) show the results with our precise write buffer con-
trolling mechanisms. For cloud-backed applications, the local
dirty file content (which is really the meta-data of the App
for manipulating the real data objects in the cloud) is not



that critical because the real content needed by the App (e.g.,
widgets displayed by a browser) are safely in the cloud, and
can be easily recovered over the network. By allowing non-
critical dirty data to stay in the RAM buffer, the storage write
amount can be reduced, and the performance can be improved
significantly. On the Galaxy Note, the written data amount
is reduced from about 35MB to 11MB for both (m) and (n)
result bars in Figures 4-(a)-(c). The rightmost bars in Figure 4
(solid black bars in each graph cluster) show the results with
our final integrated solution; the run-time has been reduced by
53%, 55%, 41% on three smartphone/ storage configurations,
respectively.

Our second test case is a database benchmark named
RL Benchmark: SQLite [18]. This benchmark measures the
database performance of Android system by running synthetic
database queries. In the latest study about Android application
performance [4], the database is known to be a key perfor-
mance contributor, and thus, this benchmark is very useful
to see the performance effects of our storage solution. This
benchmark is freely available, and produces repeatable results.
Figure 5 shows very similar trend to the email results in
Figure 4, but there are a few points worthy of elaboration.

The first point is shown in Figure 5 (a); RAM buffer-
ing only and both RAM / logging buffering solutions show
worse performance than the native performance on Galaxy
Note with eMMC. This is due to the CPU and memory
copy overheads since the total amount of storage access is
unchanged. RAM buffering necessarily incurs some processing
overhead compared to the Native configuration but the hope
is that the improvement in storage performance will more
than compensate for this overhead. The write performance of
the eMMC device is less sensitive to request ordering, and
thus RAM buffering on the eMMC device results in worse
performance than the Native configuration.

The second interesting point is regarding FjordRAM and
FjordBoth solutions: the measured run-times are almost the
same for FjordRAM and for FjordBoth solutions (legends
“(m)” and “(n)”, respectively, on the x-axis in Figures 5-(a)-
(c)). Recall that there is a clear difference between the two
solutions for the Email test case. Non-volatile logging requires
additional space in the storage, and it may not be readily
available always. This result suggests that FjordRAM solution
could be a convenient alternative to FjordBoth when storage
space is limited.

The final point is that our integrated storage solution re-
moves the dependencies on storage sophistication; Nexus One
with microSDHC card is about 50% slower than Galaxy Note
with eMMC for this benchmark in the Native configuration.
However, with Fjord, Nexus One becomes even slightly faster
than Galaxy Note. This is a good example showing that
when we have the right OS support (Fjord), we can achieve
better performance than using a hardware solution (eMMC) to
circumvent the performance issues of mobile flash storage.

V. CONCLUSION

Due to size, power, and cost considerations, smartphones
will continue to deploy low-end flash memories as the primary
storage. Therefore, it is important to consider what can be
done in the OS to enhance the performance of flash based

storage systems. In this paper, we propose multiple solutions
from different levels of storage software stack to improve
the storage performance of mobile platforms. Based on the
understanding of low-end flash storage devices, we re-design
two typical storage solutions (logging and RAM buffering) for
smartphones. We also introspect on the right level of reliability
requirement for cloud-backed applications on smartphones. We
modify Linux page cache and file system layers to provide fine-
grained control for caching and buffering, and demonstrate that
we can effectively improve the performance of chosen cloud-
backed applications without compromising the integrity of
other applications or the Android system itself. Finally, we im-
plement our integrated solution into real Android smartphones,
and show that the solution can effectively improve application
performance. For example, Email downloading time improves
almost by a factor of two compared to the Native configuration.
Even though we are focusing on smartphone storage in this
paper, we believe that some ideas have potentials beyond
smartphones for other types of storage systems.
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