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Abstract—Data management in large-scale storage systems
involves indexing and search for data objects (e.g., files). There
are hundreds of types of metadata attributed to the data objects:
examples include environmental settings of photograph files and
simulation configurations for simulation output files. To provide
intelligent file search that uses file metadata, we introduce a
novel search structure called Hyper-Cube Trie (HCTrie), that can
handle a few hundred dimensions of data attributes. HCTrie can
utilize the differences in many dimensions effectively: candidates
can be pruned based on differences in all dimensions. To the
best of our knowledge, this is the first approach to restrain
the memory growth to a linear scale against the number of
dimensions, when multiple dimensions are indexed at the same
time. Our prototype has successfully indexed five million data
entries with one hundred attributes in a single data structure.
We show that HCTrie can outperform MySQL in range search
where ranges for less than 100 dimensions are specified in the
search query.

I. INTRODUCTION

Data management is becoming a challenging problem,
especially in High Performance Computing (HPC) where huge
amounts of scientific data must be handled. The number of
files that must be handled reaches billions [16], making data
management difficult. Data are stored in file systems, but
the users cannot always remember the file path name [22].
Consequently, HPC scientists are required to manage their
simulation results using external notes, including long complex
directory and file names [14]. This is becoming a serious issue
as we move toward exascale computing where hundreds of
exabytes of data and billions of files exist in the file system.

To tackle this, there is a growing demand to search by
metadata, rather than by hierarchical file name [17]. Scientific
data typically has many metadata fields, such as configuration
parameters of the measurement and/or the simulation that
derived the data. For example, the WISE All-Sky Data Release
includes 285 fields (columns) in the data set [18]. There is
a demand to search a data entry or file using this scientific
metadata.

There are past proposals to overcome this issue by the use
of a database management system (DBMS) [1], [22]. DBMSes
can construct an index on each column independently. Typi-
cally, some of the columns are selected and indexed based on
the specific query trend for the target application. However,
since using a DBMS to index file systems is not a widely
used technique, such a query trend is not known. Without the

search query trend, a DBMS that constructs indices only on
some columns cannot perform all search functions efficiently.
As an example of inefficient DBMS performance, we note
that a query involving join operations may take 400-1000
seconds [9].

In this paper we tackle the problem of finding an efficient
data structure for file search using scientific metadata and
propose a novel search structure, called HCTrie. Our goal is
an environment where there are a few hundred attributes for
every few billion (10'1) files in the file system. We will use
the attributes for the purpose of file search; this is in general
a multidimensional information search. These few hundred
attributes correspond to the number of dimensions in search.
We assume that the data structure as a whole would not be
able to fit into the primary memory, thus we consider the use
of the memory in secondary storage.

Intuitively, there seems to be no reason to limit the number
of dimensions d to a certain (low) number, even when we
require no performance degradation. No matter how many
dimensions, the complexity (both in time and space) should
be bounded by the number of data entries n, if each internal
branch node in the structure divides the n data in subgroups.
Here, we want to remove the limitation on the number of
dimensions and at the same time, leverage the locality and
the differences in the rich attributes.

Our primary goal is to provide a data structure with feasible
growth in both time and space complexity against the number
of dimensions, d. It is desirable to have a data structure that
is not affected by the number of dimensions. Our secondary
goal is efficient interaction between dimensions. We want to
filter out the candidates in one dimension and at the same time
effectively filter out that same candidates in other dimensions
as well. Also, if we query entries in a combination of ranges
in a few dimensions, we do not want entries outside the range
to be returned, as much as possible.

HCTrie scales well in the number of dimensions, utilizes
the differences in the combination of dimensions, and is effi-
cient in multi-dimensional range search in that the range can
be handled in an aggregate unit of search space hypercube. The
prototype implementation in this paper shows results for range
search on one hundred dimensions, and the implementation
supports up to 512 dimensions.
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Fig. 1. HCTrie: the search space is divided in each dimension to construct
the hypercube search spaces in each level of the tree. Every hypercube space
is registered in the upper level hypercube’s B-Tree, enabling a space efficient
descendant link array.

II. HCTRIE

HCTrie can be thought of as a simple extension of
Quadtree [21]. The major difference is that the descendant
pointer array is implemented in a B-Tree [7], [15]. This way,
only the necessary descendant pointers in the 2% space are
held, although there is the regular B-Tree memory overhead'.
Furthermore, efficient utilization of the secondary memory
storage device (e.g., HDDs) can be achieved with the notion
of disk pages.

HCTrie divides the search space into d-dimensional hy-
percubes. Each hypercube at depth i corresponds to the 2°-
divided interval in each of the d-dimensions. Each hypercube
is labeled with a number derived by each decomposition in
dimension, whether it is HIGH(1) or LOW(0) within the parent
hypercube. If it has only a single dimension, it is equivalent
to Trie [10], so HCTrie can be thought of as a Trie on d-
dimensional hypercubes.

The notion of 3-D HCTrie is illustrated in Figure 1. The
left side of the figure depicts the division of the search space
into halves in all dimensions, producing smaller hypercubes in
each level of HCTrie. Only the lowest hypercubes in HCTrie
(called leaf hypercubes) have pointers to the data entries.

B-Trees serve as the link array from the ascendent hy-
percube to the descendent hypercubes. This enables efficient
memory space usage, without spending the memory for a large
number of empty pointers, even with high dimensionality. For
example, despite the fact that there are 2'°° subspaces when
d = 100, at most n subspaces need to be stored in the B-Tree.
(Note, we assume n < 2¢.) If the division in a level of HCTrie
does not sufficiently distinguish the n data entries, the number
of subspaces registered in that level’s B-Tree is smaller, and
the difference is treated in a deeper level of HCTrie.

In order to put a hypercube in the B-Tree, it is necessary
to have an order relation between hypercubes. HCTrie simply
extracts the ¢-th bit from keys in all dimensions. Figure 2
illustrates the makelabel() function. The makelabel() function
appears in Algorithm 1 in Line 4.

IEach storage space overhead within B-Tree nodes is guaranteed to be less
than half of the disk page size, except the root node [15].
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Fig. 2. Makelabel() in HCTrie. Each bit in the dimension keys (i.e., k1 =
2,ko = 6, and k3 = 3) constitutes a label of a hypercube search space. For
example, Lo is the label of the corresponding hypercube in the level 0, L1 is
the one in the level 1, and so on.

TABLE 1L NOTATIONS AND DESCRIPTIONS

Notation

Description

d the number of dimensions.

w the maximum length of key in all d dimensions.
w = max?_, length(k;)

the order of B-Tree. (i.e., the number of branches.)
the number of data entries.

the search query, i.e., K = (k1, k2, ..., kq),

where k; is the search key in the i-th dimension.
the range of the search query. K'® and K¢ are

the beginning and the end of the range.

= (K K°)

A. Algorithms and complexity

Table I describes the notation used in this paper.

Algorithm 1 HCTrie Lookup.

1: procedure HCTRIELOOKUP(K = (k1, k2, ..., kq))
i < 0, hg + HCTrie.root
for (i < w A h; is not leaf) do
L; < makelabel (K, 1)
hiy1 < h;.B-Tree lookup (L;)
1— 14+ 1
end for
return h;
end procedure

VORI NE WD

Algorithm 2 HCTrie Range Search.
1: procedure HCTRIERANGESEARCH(R = (K°, K¢))

2 S «— 9,Q < Q UHCTrie.root

3 for all h;, € Q do

4: L; « makelabel (K*, h;.level)
5: L; «— makelabel (K¢, h;.level)
6: b « h;.BTreeLeafHead (L)

7 do

8 if (b.data is a hypercube) then
9: hi+1 «— b.data

10: Q «— QU hip

11: else

12: S «— S U b.data

13: end if

14: b « h;.BTreeLeafNext (b)

15: while bkey < LY

16: end for

17: return S
18: end procedure

Algorithm 1 is the function to look up the corresponding
hypercube. It inputs d-dimensional keys K = (k1, ko, ..., kq),
and returns the corresponding hypercube, h;. The algorithm
starts at level 0O, taking the root hypercube of HCTrie. The
maximum depth is bounded by the number of bits in the
dimension keys, w. For example, if the “long long unsigned
int” is the longest type of field in the d keys, then w = 64. At
each level 4, the i-th bit in the keys are extracted to compose
a corresponding hypercube label L;, as illustrated in Figure 2.
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Fig. 3. Database size, including the index and data file size. “MYI/index”
shows the index, and “MYD/data” shows the data. The MyISAM engine
was used for MySQL. The labels are formatted as “name/# of data en-
tries/(# of columns)/cardinality”. “MySQL/IM/(101)/c5” was calculated from
“MySQL/1M/(64)/c5”, since MySQL supports only a maximum of 64 indices.
The difference between the index size of MySQL and HCTrie can be attributed
to the number of trees: MySQL has larger number of relatively small trees, and
HCTrie has one larger tree. With five million dataset with cardinality 5 and
128, the index file and the data file sizes in HCTrie were both approximately
515 MiB, 1 GiB in total.

L; is then used to search the B-Tree of the i-th hypercube to
find the descendant hypercube (at level i + 1).

Algorithm 2 shows the range search function. The input R
stores the beginning of the range, K°, and the end of the range,
K*¢. The range search function conducts a breadth first search
from the HCTrie root using the queue (). Within the breadth
first search, the B-Tree in the current hypercube h; is searched
for the label L7 that corresponds to the start of the range K°
in the appropriate level (h;.level). From L{ through L¢, the
B-Tree is traversed while the B-Tree key is in the range. The
collected data entries are returned through S.

The worst-case scenario for the space complexity in HC-
Trie is that every difference in data entries makes a branch
of factor 2, and all of these branches are realized by B-Trees
which consist of only the root node in all hypercubes. The
number of branches (and, equivalently, the number of nodes)
in the binary tree that classifies n entries is (2n — 1). A disk
page is consumed for each of these branches, and the size of
the disk page can be derived as Bd, since B d-dimensional
keys must be held in a disk page. Hence, the space complexity
is O(Bdn). This means that HCTrie scales linearly in growth
of both d and n.

Note that HCTrie can benefit from the use of improved
versions of B-Trees. For example, a B*-Tree [7] can be used
to improve the memory efficiency guarantee, or a Streaming
B-Tree [5] can be used to speed up the update and range search
performance.

III. EVALUATION
A. Random Synthetic Data

We evaluate our prototype of HCTrie against MySQL, on
a random synthetic dataset. Figure 4 illustrates the sample
random data entry. The random synthetic data consists of a 64-
bit unsigned “id” attribute and one hundred 8-bit “ti” attributes

id (uint64, 8B): 999
til (int8, 1B): 1 ti2 (int8, 1B): 4 ti3 (int8, 1B): 1 ti4 (int8, 1B): 2
ti5 (int8, 1B): 3 ti6 (int8, IB): O ti7 (int8, 1B): 3 ti8 (int8, IB): 4

ti97 (int8, 1B): 1 ti98 (int8, 1B): 1 i99 (int8, 1B): 2 ti100 (int8, 1B): 1

Fig. 4. A sample data entry from the random synthetic data. Each attribute
is shown as a list of attribute name, type, length in bytes, and the value.
The value takes a random value from the range [0..4] to simulate the low
cardinality of scientific metadata.

(“ti” stands for tiny integer). The size of a data entry is thus
108 bytes.

The “id” attribute is a sequentially assigned number, and
serves also to indicate the location of data in the data file. For
example, the data entry with “id” 100 can be found at the file
offset of 10800 bytes. We assume that the “id” is not used in
querying a data entry, since to find the location of the data is
the major purpose of the index.

Each of the “ti” attributes can take a value from -127 to
127. However in this comparison, we suppress the number
of distinct value to 5, simulating the low cardinality of the
scientific metadata. The value is random from O to 4.

B. Range Search Performance

Figure 5 shows the performance measurement against
MySQL, on one million random synthetic data. It was con-
ducted on a host with Intel Xeon E3-1230 (3.20GHz) with
16GB memory and with the Intel SSD SSDSC2CT12. The
MySQL version was 5.5.29, using the default configuration.
We used the mysql command to measure the query execution
time in MySQL, which includes an SQL parse time and
communication time. Since we assumed out of index queries,
and because MySQL limits the number of indices to 64, we
did not create a MySQL index. The InnoDB MySQL engine
was used.

In the evaluation, range query searches were issued over
one hundred dimensions. Our prototype implementation sup-
ports only search ranges that correspond to the binary divided
search space boundaries. The range of the query for each
dimension was [0..3] when specified, and [0..127] when un-
specified.

The z-axis of Figure 5 describes the number of unspecified
dimensions. For example, the point z = 20 means that the first
20 dimensions are unspecified (i.e., [0..127]), and the latter 80
dimensions are specified with the range [0..3].

With up to 70 unspecified dimensions, HCTrie outper-
formed MySQL. MySQL took about 1.5 seconds, and HCTrie
took less than 0.5 seconds. The line labeled “HCTrie-Firstl”
is the time taken to search the index structure. The line labeled
“HCTrie-First2” includes the time taken by the range match
check. Since HCTrie may still return candidates that do not fall
into the query range, it is necessary to load the entire data entry
and check the matching status. In our prototype implementa-
tion, when the query range is larger and many candidates are
in the range, the loading of data entries impacted the overall
performance. For example, the line labeled “HCTrie-First2”
in Figure 5 took more time than MySQL at 80 unspecified
dimensions with 11,452 candidates. In our case of cardinality
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Fig. 5. Range query performance evaluation on
one million 100-dimensional data entries with the
cardinality 5. z-axis is the number of unspecified
dimensions from the first in the dimension order.
The rest of the dimensions are specified with the
range [0..3]. “HCTrie-Firstl” shows the time taken
to return candidates, and “HCTrie-First2” includes,
in addition, the time taken to load the entire data and
check the matching status. “# of Rows” indicates the
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Fig. 7. Range query performance evaluation on
one million 100-dimensional data entries with the
cardinality 5. z-axis is the number of unspecified
dimensions randomly chosen in the dimension order.
The averages of 100 times are shown with standard
deviations. MySQL data is just projected from the
previous figure for comparison. The result is similar
and only slightly better than Figure 5.

number of results using the right y-axis. MySQL
performed at around 1.5 seconds, while HCTrie
returned candidates (“HCTrie-First1”) in around 0.14
seconds.

5 in each dimension, all the candidates found were in the query
range.

With 90 unspecified dimensions, only 10 dimensions are
specified for the range search query, thus the number of
matching data entries increases significantly. The line with
the label “# of Rows” indicates the number of matching
data entries as the result of the query, using the right y-axis.
As the query range becomes larger and the matching entries
increase, the performance of HCTrie degrades, due to the
aforementioned data loading and the last check. Our prototype
implementation took around 29 and 87 seconds for 90 and 95
unspecified dimensions, respectively.

Line “HCTrie-Firstl” in Figure 5 remains constant at
around 0.15 seconds. This shows that for more than 10 unspec-
ified dimensions, HCTrie had to check all the B-Tree leaf slots.
In other words, HCTrie only took around 0.15 seconds to check
one million data entries to see if the differentiating part indexed
for the data entry matched the query range. Performance is
affected only by the number of candidates found. Note that
candidates out of the query range may be returned, depending
on the characteristics of the dataset.

Overall, if more than 30 out of 100 dimensions can be
specified, HCTrie is more beneficial to use than MySQL, in our
search case. Our query was loose: the range of [0..3] is speci-
fied where only [0..4] is possible. Still, differences in different
dimensions can effectively be used to prune the candidates
quickly, and thus contributes to the search performance.

Furthermore, the line “HCTrie-First1” shows that the index
structure returns candidates quickly and indicates that what
takes time is the data loading and the last check. We may
be able to use HCTrie similar to Bloom filter [13], where
candidates can be narrowed down quickly.

Figure 6 illustrates an experiment with the unspecified
dimensions at the end. For example, x = 40 means that
the first 60 dimensions are specified (i.e., [0..3]) and the
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Fig. 8. Range query performance evaluation on five million (not one million,
compared to previous experiments) 100-dimensional data entries with the
cardinality 5. z-axis is the number of unspecified dimensions from the first in
the dimension order. MySQL performed at around 7.6 seconds, while HCTrie
returned candidates (HCTrie-Firstl) in around 1.7 seconds.

last 40 dimensions are unspecified (i.e., [0..127]). Since the
first dimensions are specified, the most significant bits of the
hypercube labels are specified, thus contributing to the B-Tree
lookup speed. This, in turn, also contributes to the overall
performance.

Figure 7 shows the randomly chosen unspecified dimension
case. The results were only slightly better than the worst case
(i.e., Figure 5 where first portion was unspecified) in our
experiment.

Figure 8 illustrates the case of Figure 5 with five mil-
lion data entries. It shows that the advantage of HCTrie is
approximately 6 seconds in most cases, which is a further
improvement compared to Figure 5.

IV. RELATED WORK

An extensive list of access methods is summarized by
Gaede and Giinther [11]. Past studies on multidimensional
search structure mainly focus on only a few dimensions,



typically two or three, and generally less than ten. They
typically have 2¢ growth in space for d-dimensions, like a
natural extension of Quadtree would, because of their need
to provision a pointer array for all possible numbers of d-
dimensional spaces.

B-Trees are a one-dimensional access method that is widely
used today, both in DBMSes (e.g., MySQL) and in file
systems (e.g., Btrfs [20]). The fact that only one dimension
can be indexed leads to the problem of composite indexing
in a DBMS, where the combinations of columns need to be
considered.

Binary Space Partitioning (BSP), a family of structures or
a notion of dividing a space by hyperplanes, is widely used in
computer graphics [19]. Also, families of Quadtree [21] and
R-Tree [3], [4], [12] handle multidimensional keys. However,
they target only two or three dimensions, and do not suit
indexing one hundred dimensions.

While a family of Quadtree [21] conducts a simple and
intuitive division of multi-dimensional space, it supports only
a low number of dimensions for the multi-dimensional search,
such as two or three dimensions. If the number of dimensions,
d, increases by hundreds, the size of the pointer array in
Quadtree grows with 27 (e.g., 219 ~ 103Y), which does not
scale.

K-d-Trees [6] have a good scalability against the number
of dimensions d: they have the advantage that the number of
dimensions does not impact scalability. However, they lose
the data entry’s locality, hence it deteriorates on range search
performance. The average cost of range search in a K-d-Tree is
dominated by the overwork (i.e., a redundant and theoretically
avoidable cost), and the complexity has been given by Duch
and Martinez [8].

B-Trie [2] combines B-Trees and Trie. However, it assumes
only a single dimensional string key, and does not support
multidimensional keys.

V. CONCLUSION

We have presented a novel multidimensional search struc-
ture called HCTrie. HCTrie can support a hundred of dimen-
sions, which is progress compared to today’s support of only
several dimensions in multidimensional search structures.

On a 100-dimensional random synthetic dataset which
simulates the low cardinality of scientific metadata, HCTrie
showed better performance than MySQL, when a range is
specified in more than 30 dimensions.

This novel structure is expected to be beneficial in file
system search, in which we will combine many types of
functions to provide a new type of file search.
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