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Abstract—This paper introduces a scalable I/O model of 

Lustre file system and propose a dynamic I/O congestion control 

mechanism to support the incoming exascale HPC systems. 

Under its control, clients are allowed to issue more concurrent 

I/O requests to servers, which optimizes the utilization of the 

network/server resources and improves the I/O throughput, 

when servers are under light load; on the other hand, it can 

throttle the clients’ I/O and limit the number of I/O requests 

queued on the server to control the I/O latency and avoid 

congestive collapse, when the server is overloaded. The results of 

series of experiments demonstrate the effectiveness of our 

congestion control mechanism. It prevents the occurrence of 

congestive collapse and on this premise it can maximize the I/O 
throughput for the scalable Lustre file system. 

Keywords—scalability; clustered file system; Lustre; HPC; I/O 

congestion control; response time; QoS; I/O intensive 

I. INTRODUCTION  

The incoming exascale computing systems pose serious 
scalability challenges for any data storage system. The design 
of traditional network file systems usually doesn’t consider the 
congestion issue raised by systems scaling up. And file system 
clients remain oblivious to continually injecting I/O requests to 
the network and server I/O system regardless of the congestion 
conditions. In the HPC environments, a very large number of 
file system clients may impose a heavy I/O load on the shared 
file system. The load condition also varies considerably over 
time, introducing high, variable response time. All these may 
cause more serious congestion problems to the storage systems 
and sometimes even result in congestive collapse [1]. Thus, it 
is important to design an I/O congestion control mechanism to 
control and coordinate the I/O behaviors of individual clients in 
the storage systems, especially at large scale. 

This paper first introduces a scalable I/O model of 
Lustre[2,3] file system, then presents a distributed dynamic I/O 
congestion control mechanism. On the premise of avoiding 
congestive collapse, it adaptively achieves two conflicting 
goals - maximizing the throughput and low controllable latency, 
according to the load conditions. 

II. LUSTRE I/O MODEL AND CONGESTION PROBLEM 

As the leading clustered file system in HPC market, Lustre 
can scale effectively to support systems with tens of thousands 
of compute nodes. Our research is aiming at the scalable 

clustered file system Lustre. Figure 1 shows Lustre’s scalable 
I/O model. 
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Fig. 1. Lustre I/O Model 

Like most network file systems, Lustre uses an RPC model 
with timeouts for implementing distributed services. Fig. 1 
illustrates its client-server I/O model. The design has already 
taken congestion into consideration. On the client side, Lustre 
defines tunable client-controlled maximal cached dirty data per 
OSC(Object Storage Client) and I/O request concurrency 
credits (RCC) to conduct the I/O behaviors of an individual 
client. (Please see Reference[4] for glossary definitions of 
OSC,OSS,etc) When the amount of dirty data exceeds the 
predefined threshold that clients are allowed, I/O becomes 
synchronous. Lustre prefers large bulk I/O, and the maximal 
size for each bulk data transfer is 1 MB due to the router 
limitation. For buffered I/O, the reads and writes are performed 
at page granularity. For each OSC, once assemble enough I/O 
pages for a data object, it groups them, builds an optimized I/O 
RPC request and sends it to OSS(Object Storage Server) over 
wire immediately. Due to write behind and read ahead, the 
optimized RPCs are mostly built with 1M bulk data. Thus, 1M 
I/O is the most common I/O in Lustre. Each client-side OSC 
has an I/O controller, functioning as the client I/O request 
dispatcher. It controls the fan-out concurrency of I/O requests – 
the number of concurrent I/O requests in flight between a client 
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and a server. Each client import is given an I/O service quota, 
namely, I/O RCCs. It is a tunable parameter. The I/O request is 
allowed to build and put into wire until available credits are 
consumed; otherwise, it must wait until more credits are 
available. The previous versions of Lustre file system use static 
fixed RCC strategy. For efficient use of I/O pipeline, Lustre 
keeps 8 I/O RPC requests in flight at most (8 RCCs), by default. 

Lustre uses an out-of-band data transfer mode. Under 
Lustre’s scalable I/O model, the utilization of network resource 
and server memory is well under control due to separating the 
bulk RDMA data transfer from the initial I/O request [5]. 
However, there is still congestive collapse problem, which is 
very similar with network congestion phenomenon Nagle 
discovered in 1987 [6,7]. 

Like most distributed systems, timeouts are used for failure 
detection in the RPC-based Lustre file system, which are 
reported on a per-call basis [8]. When a timeout occurs, certain 
forms of recovery action such as reconnections or retries are 
triggered. In large scale Lustre clusters suffering heavy I/O 
loads, it was observed a huge number of I/O requests queued 
on the server. Sometimes, it even triggers lots of the timeouts 
and degrads the performance sharply. This scenario often 
happens during checkpointing 100% of memory into a shared 
storage for HPC clusters. Via investigation, we found that the 
server got backed up processing RPC requests due to the slow 
speed disk systems, and a long RPC queue builts up as the load 
increased, resulting in considerable queuing delay. But the 
timeout value set by clients was not long enough to 
accommodate the workload changes. And RPCs have already 
timed out (repeatedly) and retries had been sent by the time the 
RPC request got to the front of the queue. The subsequent 
retires exacerbated the network/server loads. They would also 
timeout, preventing any real forward progress and creating a 
further backlog on the Lustre servers, resulting in serious 
performance degradation. Even worse, it may crash the entire 
system if not treated appropriately. In the Cray Jaguar system, 
to prevent timeouts and retries, the predefined timeout value 
was increased as high as 600 seconds to account for worst-case 
situations [9]. But this solution has drawbacks. When a server’s 
workload becomes less busy, the large timeout value causes the 
failure detection mechanism to be less responsive. The client 
may need to wait for an excessive time period before reaching 
a timeout when the server fails to respond for any reason, 
making failure detection promptly impossible. And long 
timeouts also increase the recovery and failover time. These 
obviously hurt the performance of the entire system. Thus, a 
mechanism to limit the number of outstanding I/O requests on 
the server is needed to control the latency not exceeding the 
timeout value, and thereby to prevent the occurrence of 
congestive collapse. 

III. DYNAMIC I/O CONGESTION CONTROL 

A. I/O Model Analysis 

We begin with a theoretical analysis of the I/O model 
shown in Fig. 1. It is obvious a multiple producers (clients)-
single consumer (disk) queuing model. The consuming rate is 
the IOPS (I/O Operations Per Second) of underlying disk 
systems. 

In HPC environments, disk performance greatly lags 
behind that of CPU, memory, and interconnects. The slow 
speed disk systems are the major obstacle to achieving high 
performance. For example, in the Cray Jaguar system, its 
scalable I/O network can provide over 889 GB/s of bisectional 
bandwidth using a high performance IB DDR network; while 
the peak bandwidth of a single storage server is only about 400 
MB/s. In such environments, network related latencies can be 
ignored (usually less than 1 second); but RPC service time on 
the server is so large that lots of time is taken waiting for I/O 
service in the long queue. For a full pipeline, D is equal to the 
sum of Q and N (where D is the number of queued and 
serviced requests, Q is the queue depth, and N is the maximal 
number of I/O service threads on the server), and the maximal 

D can theoretically reach RCCC under the static RCC scheme, 
where C is the number of I/O active clients. Thus, the I/O 
latencty L can be approximated as 

L=(Q+N)/IOPS=D/IOPS=RCCC/IOPS.                    (1) 

Eq. (1) obviously shows that L increases linearly with C. 
Thus, the simple static RCC control scheme, using the pre-
configured value, can not achieve good control effect. We 
propose a dynamic adaptive congestion control mechanism to 
regulate flow based on current congestion levels and control 
objective of low controllable I/O latency. The basic idea is that 
the server tracks congestion in real time to determine how 
many current I/O requests can be issued by a client according 
to the latency bound and then return a client a RCC value to 
control the its I/O behavior. 

B. Distributed I/O Congestion Control Algorithm 

 Lustre uses an import/export pair to manage the stateful 
connections and communication between a client and a server. 
Through the import an OSC can send requests and receive 
replies to/from an OSS while an OSS can receive, processes 
requests and send replies through the corresponding export. In 
order to simplify the description, the following data structures 
are defined. An import is defined as import = (pages, rcc, urc) 
where pages is the number of pending I/O pages managed by 
the OSC import; rcc represents the current RCC assigned by 
the server; ucr represents used credits by the import. A server 
is defined as a tetrad Server = (D, Dlow, Lmax, C) where D and C 
are same as the previous definitions; Dlow presents the low 
watermark of the number of queued and serviced requests, and 
it is used to determine whether the server is under light load 
and set to N by default; Lmax is the coarse-grained latency 
bound. An I/O RPC is defined as a tetrad RPC = (Ta, Ts, cnr, 
arc)where Ta is the time that the RPC request arrivals at the 
server; Ts is the RPC service time; cnr is the client requested 
credits, and it is estimated according to the division of the 
pending I/O pages of the import and maximal pages per I/O 
RPC; arc is the returned RCC by the server and it is 
piggybacking to the client in the reply message. 

 The algorithm is showed in Fig. 2. When try to make I/O to 
a server, the client checks whether there are still credits left 
first. Only after acquired the credit, the client is allowed to 
build an optimized I/O RPC by grouping a vector of I/O pages 
and put it into wire through the corresponding import. Upon 
the completion of an I/O request, the server calculates the RCC 



 

 

assigned to the client according to certain control scheme, then 
returns it to the client. Upon receipt of an I/O reply from the 
server, the client first releases the used credit, then updates its 
RCC as the newly feedback value from the server. If current 
used credits (ucr) are less then the updated RCC, the client will 
keep making I/O requests targeted to the server until no 
optimized I/O RPC can be built or use out all available credits. 

Algorithm 1 RCC-based Congestion control algorithm 

// now: current time. 

1: Procedure ClientSendIORequest(import) 

2:  if import.urc < import.rcc then 

3:     rpc = BuildIORPC(import); 

4:     rpc.cnr = import.pages / maxPagesPerRPC; 

5:                  import.urc = import.urc + 1; 

6     Send  the I/O RPC request to the server. 

7:  end if 

8: end procedure 

 

9: Procedure ServerRecvIORequest(server, rpc) 

10:   rpc.Ta = now; 

11:  Enqueue the new I/O request, waiting for service; 

12: server.D = server.D + 1; 

13: end procedure 

 

14: Procedure ServerSendIOReply(server, rpc)  

15:   rpc.Ts = now - rpc.Ta;   

16: server.D = server.D - 1;  

17: rpc.arc = CalcRCC(Server, rpc); 

18: Send the I/O reply message with returned RCC; 

19: end procedure 

 

20: Procedure ClientRecvIOReply(import, rpc) 

21:    import.rcc = rpc.arc; 

22:    import.urc = import.urc - 1;  

23:    while import.urc < import.rcc && import.pages > 0 do 

 ClientSendIORequest(import); 

24:     end while 
25: end procedure 

Fig. 2. Congestion control algorithm 

C. RCC Assignment Algorithm 

Our congestion control algorithm at a high level detects 
overload at the server based on the predefined Lmax. The control 
principle is that within the latency bound, the server assigns 
RCC to clients large enough to maximize the throughput and 
stable enough to provide fair I/O service among clients. 
According to section A we get following equations: 

Lmax = D/IOPS = RCCC/IOPS, Dmax = Lmax IOPS, RCC = 

LmaxIOPS/C.                                                                            (2) 

For the persistent stable workload (C and IOPS are almost 

constant), the maximal deviation L of controlled I/O latency 
can be obtained as follow 

;
dL C C

L RCC
dRCC IOPS IOPS

    
                                          (3) 

Here RCC  is the RCC fluctuation size. And the ratio of the 
deviation, denoted as P, is 

max max

L C
P RCC

L IOPS L


  

                                                         (4) 

However, in the storage clusters with large number of 
nodes, the clients participate or depart I/O processes 

dynamically and the IOPS is affected by the workloads 
presented upon the underlying disk systems. C and IOPS are 
both not constant. To resolve this problem, for the number of 
I/O active clients C, each export tracks the number of its own 
pending I/O requests (q) to determine whether it is I/O active. 
Once the export becomes active when q becomes 1 for the first 
time, server’s C is increased by 1. But C is not decreased 
immediately when the number drops to zero, as the 
corresponding client may remain I/O active when its RCC is 1. 
Instead, C is updated until the export receives the periodical 
ping message from the client per 25s and detects that it lasts 
I/O inactive status for more than a certain time length (denoted 
as STL). IOPS is time-averaged measured periodically and its 
value is made equal to the division of finished I/O operations 
and the efficient I/O time in certain time window. Combined 
with preconfigured Lmax and the bound of IOPS, the server can 
theoretically bound the maximal allowed D, thereby limiting 
the server’s memory used to buffer initial I/O requests. And 
under these bounds, we perform a best-effect RCC assignment. 

Algorithm 2 RCC assignment algorithm 

1: Procedure CalcRCC(server, rpc) 

2:             if server.D < server.Dlow then 

3:      rcc = rpc.cnr; 

4:             else 

5:     rcc = server.Lmax *IOPS/server.C; 

6:     Le = server.D / IOPS; 

7:     Lc = max(Le, rpc.Ts); 

8:                   if Lc > server. Lmax then 

9:                       rcc = rcc – 1; 

10:     end if 

11:          end if 

12:          rcc = max(min(rcc, RCCmax), RCCmin); 

13:          return rcc; 
14: end Procedure 

Fig. 3. RCC assignment algorithm 

The algorithm to assign RCC is described in Fig. 3. When 
D is lower than the preconfigured Dlow which indicates that the 
server is under light load, give credits with the client required 
value cnr. Otherwise, according to the preconfigured Lmax and 

measured IOPS, first calculate the maximal allowed D：
LmaxIOPS and then obtain RCC in average via dividing by C 
to maintain fairness. When the estimated I/O latency Le or the 
measured RPC’s service time Ts exceeds Lmax, the returned 
RCC is slightly decremented by 1. At last, in order to avoid 
the RCC value too big or too small, the upper and lower 
bounds are defined as: RCCmin ≤ RCC ≤ RCCmax and RCCmin ≥ 
1. And the RCC for each import is initialized as RCCmin. 

In the following, we give guideline on how to set the 
timeout value based on the preconfigured latency bound. 
According to the RCC assignment algorithm, we can get 

1RCC   for the stable workload. Thus: 

max

, .
C C

L P
IOPS IOPS L

  
  .                                                           (5) 

Then the timeout value Ttimeout can be set as follow. 

      Ttimeout  = λLmax+Lnet                                                           (6) 

Where λ is the amplification factor and λ ≥ 1+P; Lnet is the 
maximal network-related latency and its value is set based on 
the known capacity of the networking; Lmax is set according to 



 

 

the system scale, required responsiveness and performance. 
They are all set by the adminstrator. Theoretically, Eq. (6) 
ensures that most of I/O RPCs’ timeouts will not be expired. 

IV. EXPERIMENTAL EVALUATION 

Based on the simulations on Lustre simulator [10], we 
implement our congestion control mechanism and evaluate it 
on the Tianhe-1 supercomputer system [11].  

For easy of description, we use FIX(n,c) to represent the 
static RCC control scheme that the RCC is fixed at n, and use 
CC(Lmax,c) to represent adaptive RCC control scheme that the 
latency bound is set to Lmax. In both definitions, c represents the 
number of the clients taking part in the experiment. 

All our experiments involve synthetic workloads. We 
mainly focus on writes, using IOR benchmark as the workload 
generator to simulate the checkpointing process (the reads are 
similar). The default IOR setting is that keep the aggregate file 
size constant at 512G and I/O per client is 512G/c in average; 
the I/O mode is File Per Processor (FPP); the transfer size is 
1M and perform fsync after write close. If not specified, the 
common parameters for congestion control are set as follows: 

RCCmin=1，RCCmax=32，Dlow=128，STL=60s. 

First we evaluate the impact of variety of RCC on the 
performance by two series of experiments. 
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Fig. 4. Evaluation of the  static RCC scheme with different n values (c=1) 

The first experiment is made by individual client writing 
data with static RCC varying from 1 to 64, as shown in Fig. 4. 
The results illustrate that the I/O bandwidth increases slightly 
from 178MB/s to 187MB/s with the increasing RCC. The 
reason is that the number of working I/O service threads 
follows with the increasing of the value of static RCC. And this 
increases the I/O concurrency between a client and a server, 
thus improve the performance. 

Fig. 5 shows the second experiment results. When RCC is 
set to 1, the I/O bandwidth of FIX(1,1024) and FIX(1,512) 
drops to as low as 105MB/s and 103 MB/s respectively; While 
the RCC increases to 32, the bandwidth improves to 192MB/s 
and 177MB/s, respectively. The results clearly illustrate that 
the RCC has great impact on the performance. The higher RCC 
is, the better it ensures the stream sequentiality. The low RCC 
destroys the sequentiality of client’s I/O, resulting in excessive 
disk seeks. It is the main factor leading to performance 
degradation. From Fig. 5(a) and 5(c), we can also observe that 
the increasing queue depth on the server has no negative 
impact on performance under Lustre’s scalable I/O model. 

However, with 32 RCC 1024 clients, the maximal queue depth 
increases to more than 32,000 and the average I/O latency 
increases to considerable 145s. Thus, the considerable high 
latency introducing by high RCC must be controlled. 
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Fig. 5. Evaluation of the static RCC scheme with different n values at large 

scales (c=512,1024). 

Then, we evaluate the congestion control mechanism using 
adaptive RCC scheme. 

First, we measure the performance for individual client 
comparatively with two test cases FIX(8,1) and CC(25,1). 
From the RPC trace, we observed that the client’s RCC of 
CC(25,1) reaches to 32 immediately after the first I/O RPC. 
The performance data is nearly same as the result with 32 RCC 
in Fig. 4 and has slight improvement compared FIX(8, 1). The 
results show that the efficiency of the storage server generally 
increases as the concurrency on the server is increased and the 
I/O congestion control mechanism can optimize performance 
under light load. 

Another set of experiments were carried out to evaluate the 
congestion control mechanism at large scale.  

Fig. 6 shows the trace of CC(60,1024), compared with the 
one of FIX(8,1024). It plots the dynamic variation over time of 
various measured items including the queue depth on the server, 
I/O latency, the measured IOPS, the number of I/O active 
clients C and the assigned RCC by the server, etc, as shown in 
Fig. 4 (a), (b), (c), (d), (e), respectively. Table 1 presents the 
collate information of 2 test cases, including the start and end 
time, mean/standard deviation/maximal values of I/O latencies 
in the stable phase (where C is almostly constant.) and the 
overall bandwidth. The results illustrate that the maximal 
deviation of controlled latency follows Eq. (5), and the I/O 
latency is well under control. Compared with FIX(8,1024), the 
performance improves 9%. And compared with FIX(4,1024) 
and FIX(1,1024) as shown in Fig 5, the performance improves 
more than 15% and 62%, respectively.  



 

 

TABLE I.  I/O LATENCY STATISTICS IN THE STABLE PHASE FOR VARIOUS TEST CASES AND OVERALL BANDWIDTH 

Test Case 

Stable Phase Overall 

Bandwidth 

(MB/s) 
Start End 

I/O Latency 

Mean. Std. Max. Lmax L  P 

FIX(8,1024) 522 s 1893 s 55.8 s 1.90 s 59 s N/A N/A N/A 156.13 

CC(60,1024) 409 s 1659 s 58.3 s 3.25 s 66 s 60 s 6 s 10% 170.13 

 

 

0      500    1000    1500    2000   2500    3000    3500    4000 

Time line (second) 

32 

16 

8 

 

#
 R

C
C

 

1200 

1000 

800 

600 

400 

200 

 

#
 I

/O
 a

ct
iv

e 
cl

ie
n

ts
 

180 

160 

140 

120 

100 

 

M
ea

su
re

d
 I

O
P

S
 

60 

40 

20 

0 

 

I/
O

 l
at

en
cy

 (
se

co
n

d
) 

10000 

8000 

6000 

4000 

2000 

0 

 

#
 Q

u
eu

e 
d

ep
th

 

CC(60,1024) 

FIX(8,1024) 

(a) 

(b) 

(c) 

(d) 

(e) 

 

Fig. 6. CC(60,1024) trace 

In the end, we conduct a set of experiments to evaluate our 
mechanism involving multiple OSSs. The procedure is as 
follow:  A shared file is striped over 32 OSSs; Lmax is set to 60s; 
total client number is 1024; use IOR shared access mode and 
perform fsync after write close; I/O per client is 512M, to each 
OST is 16M; two cases were carried out: CC(60,1024) and 
FIX(8,1024); all the other setting are same as previous. We 
observed that the I/O behavior of each storage server was 
similar to previous tests. And the measured overall I/O 
performance of CC(60,1024) is 5.66 GB/s. The performance 
improves about 10% in contrast to 5.16 GB/s of FIX(8, 1024).  

To avoid unnecessary timeouts which may induce 
congestive collapse under heavy load in experiments, for static 
RCC scheme the timeout value is set to 300s; while for the 
congestion control mechanism with adaptive RCC scheme λ is 
set to 1.5 and Lnet is set to 5s. They both don’t trigger any 

timeouts. But according to Eq. (6), we know the timeout value 
of the latter is much less than the former. This proves indirectly 
that the mechanism can improve the system responsiveness. 
All these experimental results demonstrate that our algorithm 
can maximize the throughput on the premise of avoiding 
congestive collapse and verify the effectiveness of the 
congestion control mechanism. 

V. CONCLUSIONS 

This paper proposes a RCC-based I/O congestion control 
mechanism for the scalable Lustre file system. Experimental 
evaluations indicate that under light load, the server can 
optimize performance by maximizing the concurrency level 
between a client and a server; under heavy load, it avoids 
congestive collapse by controlling the RCC assignment based 
on the latency bound to throttle clients’ I/O, in the meanwhile it 
maximizes the throughput by minimizing interference among 
parallel I/O streams. Further challenges lie ahead as data 
intensive supercomputer systems scale from petaflops to 
exaflops over the coming decade or two. However, the larger 
the scale is, the more prone to induce I/O congestion problem. 
This paper provides file system designers with insight into how 
I/O congestion of network file system is addressed and how 
scalability is achieved in the Lustre file system. 
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