

Dynamic I/O Congestion Control

in Scalable Lustre File System*

Yingjin Qian*, Ruihai Yi

Satellite Marine Tracking & Control Department of China,

Jiangyin Jangsu, China

Yimo Du, Nong Xiao, Shiyao Jin

State Key Laboratory of High Performance Computing,

NUDT, Changsha Hunan, China

Abstract—This paper introduces a scalable I/O model of

Lustre file system and propose a dynamic I/O congestion control

mechanism to support the incoming exascale HPC systems.

Under its control, clients are allowed to issue more concurrent

I/O requests to servers, which optimizes the utilization of the

network/server resources and improves the I/O throughput,

when servers are under light load; on the other hand, it can

throttle the clients’ I/O and limit the number of I/O requests

queued on the server to control the I/O latency and avoid

congestive collapse, when the server is overloaded. The results of

series of experiments demonstrate the effectiveness of our

congestion control mechanism. It prevents the occurrence of

congestive collapse and on this premise it can maximize the I/O
throughput for the scalable Lustre file system.

Keywords—scalability; clustered file system; Lustre; HPC; I/O

congestion control; response time; QoS; I/O intensive

I. INTRODUCTION

The incoming exascale computing systems pose serious
scalability challenges for any data storage system. The design
of traditional network file systems usually doesn’t consider the
congestion issue raised by systems scaling up. And file system
clients remain oblivious to continually injecting I/O requests to
the network and server I/O system regardless of the congestion
conditions. In the HPC environments, a very large number of
file system clients may impose a heavy I/O load on the shared
file system. The load condition also varies considerably over
time, introducing high, variable response time. All these may
cause more serious congestion problems to the storage systems
and sometimes even result in congestive collapse [1]. Thus, it
is important to design an I/O congestion control mechanism to
control and coordinate the I/O behaviors of individual clients in
the storage systems, especially at large scale.

This paper first introduces a scalable I/O model of
Lustre[2,3] file system, then presents a distributed dynamic I/O
congestion control mechanism. On the premise of avoiding
congestive collapse, it adaptively achieves two conflicting
goals - maximizing the throughput and low controllable latency,
according to the load conditions.

II. LUSTRE I/O MODEL AND CONGESTION PROBLEM

As the leading clustered file system in HPC market, Lustre
can scale effectively to support systems with tens of thousands
of compute nodes. Our research is aiming at the scalable

clustered file system Lustre. Figure 1 shows Lustre’s scalable
I/O model.

Thread pool

OSC OSC OSC
…

client-N client-1 client-0

OSS (object storage server)

Backend File system / Disk System

Request scheduler

Server-side I/O request queue

I/O page

client-side I/O controller

network

I/O service thread

Fig. 1. Lustre I/O Model

Like most network file systems, Lustre uses an RPC model
with timeouts for implementing distributed services. Fig. 1
illustrates its client-server I/O model. The design has already
taken congestion into consideration. On the client side, Lustre
defines tunable client-controlled maximal cached dirty data per
OSC(Object Storage Client) and I/O request concurrency
credits (RCC) to conduct the I/O behaviors of an individual
client. (Please see Reference[4] for glossary definitions of
OSC,OSS,etc) When the amount of dirty data exceeds the
predefined threshold that clients are allowed, I/O becomes
synchronous. Lustre prefers large bulk I/O, and the maximal
size for each bulk data transfer is 1 MB due to the router
limitation. For buffered I/O, the reads and writes are performed
at page granularity. For each OSC, once assemble enough I/O
pages for a data object, it groups them, builds an optimized I/O
RPC request and sends it to OSS(Object Storage Server) over
wire immediately. Due to write behind and read ahead, the
optimized RPCs are mostly built with 1M bulk data. Thus, 1M
I/O is the most common I/O in Lustre. Each client-side OSC
has an I/O controller, functioning as the client I/O request
dispatcher. It controls the fan-out concurrency of I/O requests –
the number of concurrent I/O requests in flight between a client

*Corresponding author coolqyj@163.com. This research is supported by

NSFC61025009 and NSFC61232003.

978-1-4799-0218-7/13/$31.00 ?2013 IEEE

mailto:coolqyj@163.com

and a server. Each client import is given an I/O service quota,
namely, I/O RCCs. It is a tunable parameter. The I/O request is
allowed to build and put into wire until available credits are
consumed; otherwise, it must wait until more credits are
available. The previous versions of Lustre file system use static
fixed RCC strategy. For efficient use of I/O pipeline, Lustre
keeps 8 I/O RPC requests in flight at most (8 RCCs), by default.

Lustre uses an out-of-band data transfer mode. Under
Lustre’s scalable I/O model, the utilization of network resource
and server memory is well under control due to separating the
bulk RDMA data transfer from the initial I/O request [5].
However, there is still congestive collapse problem, which is
very similar with network congestion phenomenon Nagle
discovered in 1987 [6,7].

Like most distributed systems, timeouts are used for failure
detection in the RPC-based Lustre file system, which are
reported on a per-call basis [8]. When a timeout occurs, certain
forms of recovery action such as reconnections or retries are
triggered. In large scale Lustre clusters suffering heavy I/O
loads, it was observed a huge number of I/O requests queued
on the server. Sometimes, it even triggers lots of the timeouts
and degrads the performance sharply. This scenario often
happens during checkpointing 100% of memory into a shared
storage for HPC clusters. Via investigation, we found that the
server got backed up processing RPC requests due to the slow
speed disk systems, and a long RPC queue builts up as the load
increased, resulting in considerable queuing delay. But the
timeout value set by clients was not long enough to
accommodate the workload changes. And RPCs have already
timed out (repeatedly) and retries had been sent by the time the
RPC request got to the front of the queue. The subsequent
retires exacerbated the network/server loads. They would also
timeout, preventing any real forward progress and creating a
further backlog on the Lustre servers, resulting in serious
performance degradation. Even worse, it may crash the entire
system if not treated appropriately. In the Cray Jaguar system,
to prevent timeouts and retries, the predefined timeout value
was increased as high as 600 seconds to account for worst-case
situations [9]. But this solution has drawbacks. When a server’s
workload becomes less busy, the large timeout value causes the
failure detection mechanism to be less responsive. The client
may need to wait for an excessive time period before reaching
a timeout when the server fails to respond for any reason,
making failure detection promptly impossible. And long
timeouts also increase the recovery and failover time. These
obviously hurt the performance of the entire system. Thus, a
mechanism to limit the number of outstanding I/O requests on
the server is needed to control the latency not exceeding the
timeout value, and thereby to prevent the occurrence of
congestive collapse.

III. DYNAMIC I/O CONGESTION CONTROL

A. I/O Model Analysis

We begin with a theoretical analysis of the I/O model
shown in Fig. 1. It is obvious a multiple producers (clients)-
single consumer (disk) queuing model. The consuming rate is
the IOPS (I/O Operations Per Second) of underlying disk
systems.

In HPC environments, disk performance greatly lags
behind that of CPU, memory, and interconnects. The slow
speed disk systems are the major obstacle to achieving high
performance. For example, in the Cray Jaguar system, its
scalable I/O network can provide over 889 GB/s of bisectional
bandwidth using a high performance IB DDR network; while
the peak bandwidth of a single storage server is only about 400
MB/s. In such environments, network related latencies can be
ignored (usually less than 1 second); but RPC service time on
the server is so large that lots of time is taken waiting for I/O
service in the long queue. For a full pipeline, D is equal to the
sum of Q and N (where D is the number of queued and
serviced requests, Q is the queue depth, and N is the maximal
number of I/O service threads on the server), and the maximal

D can theoretically reach RCCC under the static RCC scheme,
where C is the number of I/O active clients. Thus, the I/O
latencty L can be approximated as

L=(Q+N)/IOPS=D/IOPS=RCCC/IOPS. (1)

Eq. (1) obviously shows that L increases linearly with C.
Thus, the simple static RCC control scheme, using the pre-
configured value, can not achieve good control effect. We
propose a dynamic adaptive congestion control mechanism to
regulate flow based on current congestion levels and control
objective of low controllable I/O latency. The basic idea is that
the server tracks congestion in real time to determine how
many current I/O requests can be issued by a client according
to the latency bound and then return a client a RCC value to
control the its I/O behavior.

B. Distributed I/O Congestion Control Algorithm

 Lustre uses an import/export pair to manage the stateful
connections and communication between a client and a server.
Through the import an OSC can send requests and receive
replies to/from an OSS while an OSS can receive, processes
requests and send replies through the corresponding export. In
order to simplify the description, the following data structures
are defined. An import is defined as import = (pages, rcc, urc)
where pages is the number of pending I/O pages managed by
the OSC import; rcc represents the current RCC assigned by
the server; ucr represents used credits by the import. A server
is defined as a tetrad Server = (D, Dlow, Lmax, C) where D and C
are same as the previous definitions; Dlow presents the low
watermark of the number of queued and serviced requests, and
it is used to determine whether the server is under light load
and set to N by default; Lmax is the coarse-grained latency
bound. An I/O RPC is defined as a tetrad RPC = (Ta, Ts, cnr,
arc)where Ta is the time that the RPC request arrivals at the
server; Ts is the RPC service time; cnr is the client requested
credits, and it is estimated according to the division of the
pending I/O pages of the import and maximal pages per I/O
RPC; arc is the returned RCC by the server and it is
piggybacking to the client in the reply message.

 The algorithm is showed in Fig. 2. When try to make I/O to
a server, the client checks whether there are still credits left
first. Only after acquired the credit, the client is allowed to
build an optimized I/O RPC by grouping a vector of I/O pages
and put it into wire through the corresponding import. Upon
the completion of an I/O request, the server calculates the RCC

assigned to the client according to certain control scheme, then
returns it to the client. Upon receipt of an I/O reply from the
server, the client first releases the used credit, then updates its
RCC as the newly feedback value from the server. If current
used credits (ucr) are less then the updated RCC, the client will
keep making I/O requests targeted to the server until no
optimized I/O RPC can be built or use out all available credits.

Algorithm 1 RCC-based Congestion control algorithm

// now: current time.

1: Procedure ClientSendIORequest(import)

2: if import.urc < import.rcc then

3: rpc = BuildIORPC(import);

4: rpc.cnr = import.pages / maxPagesPerRPC;

5: import.urc = import.urc + 1;

6 Send the I/O RPC request to the server.

7: end if

8: end procedure

9: Procedure ServerRecvIORequest(server, rpc)

10: rpc.Ta = now;

11: Enqueue the new I/O request, waiting for service;

12: server.D = server.D + 1;

13: end procedure

14: Procedure ServerSendIOReply(server, rpc)

15: rpc.Ts = now - rpc.Ta;

16: server.D = server.D - 1;

17: rpc.arc = CalcRCC(Server, rpc);

18: Send the I/O reply message with returned RCC;

19: end procedure

20: Procedure ClientRecvIOReply(import, rpc)

21: import.rcc = rpc.arc;

22: import.urc = import.urc - 1;

23: while import.urc < import.rcc && import.pages > 0 do

 ClientSendIORequest(import);

24: end while
25: end procedure

Fig. 2. Congestion control algorithm

C. RCC Assignment Algorithm

Our congestion control algorithm at a high level detects
overload at the server based on the predefined Lmax. The control
principle is that within the latency bound, the server assigns
RCC to clients large enough to maximize the throughput and
stable enough to provide fair I/O service among clients.
According to section A we get following equations:

Lmax = D/IOPS = RCCC/IOPS, Dmax = Lmax IOPS, RCC =

LmaxIOPS/C. (2)

For the persistent stable workload (C and IOPS are almost

constant), the maximal deviation L of controlled I/O latency
can be obtained as follow

;
dL C C

L RCC
dRCC IOPS IOPS

    
 (3)

Here RCC is the RCC fluctuation size. And the ratio of the
deviation, denoted as P, is

max max

L C
P RCC

L IOPS L


  

 (4)

However, in the storage clusters with large number of
nodes, the clients participate or depart I/O processes

dynamically and the IOPS is affected by the workloads
presented upon the underlying disk systems. C and IOPS are
both not constant. To resolve this problem, for the number of
I/O active clients C, each export tracks the number of its own
pending I/O requests (q) to determine whether it is I/O active.
Once the export becomes active when q becomes 1 for the first
time, server’s C is increased by 1. But C is not decreased
immediately when the number drops to zero, as the
corresponding client may remain I/O active when its RCC is 1.
Instead, C is updated until the export receives the periodical
ping message from the client per 25s and detects that it lasts
I/O inactive status for more than a certain time length (denoted
as STL). IOPS is time-averaged measured periodically and its
value is made equal to the division of finished I/O operations
and the efficient I/O time in certain time window. Combined
with preconfigured Lmax and the bound of IOPS, the server can
theoretically bound the maximal allowed D, thereby limiting
the server’s memory used to buffer initial I/O requests. And
under these bounds, we perform a best-effect RCC assignment.

Algorithm 2 RCC assignment algorithm

1: Procedure CalcRCC(server, rpc)

2: if server.D < server.Dlow then

3: rcc = rpc.cnr;

4: else

5: rcc = server.Lmax *IOPS/server.C;

6: Le = server.D / IOPS;

7: Lc = max(Le, rpc.Ts);

8: if Lc > server. Lmax then

9: rcc = rcc – 1;

10: end if

11: end if

12: rcc = max(min(rcc, RCCmax), RCCmin);

13: return rcc;
14: end Procedure

Fig. 3. RCC assignment algorithm

The algorithm to assign RCC is described in Fig. 3. When
D is lower than the preconfigured Dlow which indicates that the
server is under light load, give credits with the client required
value cnr. Otherwise, according to the preconfigured Lmax and

measured IOPS, first calculate the maximal allowed D：
LmaxIOPS and then obtain RCC in average via dividing by C
to maintain fairness. When the estimated I/O latency Le or the
measured RPC’s service time Ts exceeds Lmax, the returned
RCC is slightly decremented by 1. At last, in order to avoid
the RCC value too big or too small, the upper and lower
bounds are defined as: RCCmin ≤ RCC ≤ RCCmax and RCCmin ≥
1. And the RCC for each import is initialized as RCCmin.

In the following, we give guideline on how to set the
timeout value based on the preconfigured latency bound.
According to the RCC assignment algorithm, we can get

1RCC  for the stable workload. Thus:

max

, .
C C

L P
IOPS IOPS L

  
 . (5)

Then the timeout value Ttimeout can be set as follow.

 Ttimeout = λLmax+Lnet (6)

Where λ is the amplification factor and λ ≥ 1+P; Lnet is the
maximal network-related latency and its value is set based on
the known capacity of the networking; Lmax is set according to

the system scale, required responsiveness and performance.
They are all set by the adminstrator. Theoretically, Eq. (6)
ensures that most of I/O RPCs’ timeouts will not be expired.

IV. EXPERIMENTAL EVALUATION

Based on the simulations on Lustre simulator [10], we
implement our congestion control mechanism and evaluate it
on the Tianhe-1 supercomputer system [11].

For easy of description, we use FIX(n,c) to represent the
static RCC control scheme that the RCC is fixed at n, and use
CC(Lmax,c) to represent adaptive RCC control scheme that the
latency bound is set to Lmax. In both definitions, c represents the
number of the clients taking part in the experiment.

All our experiments involve synthetic workloads. We
mainly focus on writes, using IOR benchmark as the workload
generator to simulate the checkpointing process (the reads are
similar). The default IOR setting is that keep the aggregate file
size constant at 512G and I/O per client is 512G/c in average;
the I/O mode is File Per Processor (FPP); the transfer size is
1M and perform fsync after write close. If not specified, the
common parameters for congestion control are set as follows:

RCCmin=1，RCCmax=32，Dlow=128，STL=60s.

First we evaluate the impact of variety of RCC on the
performance by two series of experiments.

1 2 4 8 16 32 64

RCC

175

180

185

190

I/
O

 B
an

d
w

id
th

 (
M

B
/s

)

Fig. 4. Evaluation of the static RCC scheme with different n values (c=1)

The first experiment is made by individual client writing
data with static RCC varying from 1 to 64, as shown in Fig. 4.
The results illustrate that the I/O bandwidth increases slightly
from 178MB/s to 187MB/s with the increasing RCC. The
reason is that the number of working I/O service threads
follows with the increasing of the value of static RCC. And this
increases the I/O concurrency between a client and a server,
thus improve the performance.

Fig. 5 shows the second experiment results. When RCC is
set to 1, the I/O bandwidth of FIX(1,1024) and FIX(1,512)
drops to as low as 105MB/s and 103 MB/s respectively; While
the RCC increases to 32, the bandwidth improves to 192MB/s
and 177MB/s, respectively. The results clearly illustrate that
the RCC has great impact on the performance. The higher RCC
is, the better it ensures the stream sequentiality. The low RCC
destroys the sequentiality of client’s I/O, resulting in excessive
disk seeks. It is the main factor leading to performance
degradation. From Fig. 5(a) and 5(c), we can also observe that
the increasing queue depth on the server has no negative
impact on performance under Lustre’s scalable I/O model.

However, with 32 RCC 1024 clients, the maximal queue depth
increases to more than 32,000 and the average I/O latency
increases to considerable 145s. Thus, the considerable high
latency introducing by high RCC must be controlled.

1 2 4 8 16 32

RCC

120

100

180

160

140

128

64

32

16

8

4

32768

16384

8192

4096

2048

1024

512

I/
O

 B
an

d
w

id
th

 (
M

B
/s

)
A

v
er

ag
e

I/
O

 l
at

en
cy

 (
se

co
n
d
)

#
 Q

u
eu

e
d
ep

th

512 clients

1024 clients

(a)

(b)

(c)

Fig. 5. Evaluation of the static RCC scheme with different n values at large

scales (c=512,1024).

Then, we evaluate the congestion control mechanism using
adaptive RCC scheme.

First, we measure the performance for individual client
comparatively with two test cases FIX(8,1) and CC(25,1).
From the RPC trace, we observed that the client’s RCC of
CC(25,1) reaches to 32 immediately after the first I/O RPC.
The performance data is nearly same as the result with 32 RCC
in Fig. 4 and has slight improvement compared FIX(8, 1). The
results show that the efficiency of the storage server generally
increases as the concurrency on the server is increased and the
I/O congestion control mechanism can optimize performance
under light load.

Another set of experiments were carried out to evaluate the
congestion control mechanism at large scale.

Fig. 6 shows the trace of CC(60,1024), compared with the
one of FIX(8,1024). It plots the dynamic variation over time of
various measured items including the queue depth on the server,
I/O latency, the measured IOPS, the number of I/O active
clients C and the assigned RCC by the server, etc, as shown in
Fig. 4 (a), (b), (c), (d), (e), respectively. Table 1 presents the
collate information of 2 test cases, including the start and end
time, mean/standard deviation/maximal values of I/O latencies
in the stable phase (where C is almostly constant.) and the
overall bandwidth. The results illustrate that the maximal
deviation of controlled latency follows Eq. (5), and the I/O
latency is well under control. Compared with FIX(8,1024), the
performance improves 9%. And compared with FIX(4,1024)
and FIX(1,1024) as shown in Fig 5, the performance improves
more than 15% and 62%, respectively.

TABLE I. I/O LATENCY STATISTICS IN THE STABLE PHASE FOR VARIOUS TEST CASES AND OVERALL BANDWIDTH

Test Case

Stable Phase Overall

Bandwidth

(MB/s)
Start End

I/O Latency

Mean. Std. Max. Lmax L P

FIX(8,1024) 522 s 1893 s 55.8 s 1.90 s 59 s N/A N/A N/A 156.13

CC(60,1024) 409 s 1659 s 58.3 s 3.25 s 66 s 60 s 6 s 10% 170.13

0 500 1000 1500 2000 2500 3000 3500 4000

Time line (second)

32

16

8

#
 R

C
C

1200

1000

800

600

400

200

#
 I

/O
 a

ct
iv

e
cl

ie
n

ts

180

160

140

120

100

M
ea

su
re

d
 I

O
P

S

60

40

20

0

I/
O

 l
at

en
cy

 (
se

co
n

d
)

10000

8000

6000

4000

2000

0

#
 Q

u
eu

e
d

ep
th

CC(60,1024)

FIX(8,1024)

(a)

(b)

(c)

(d)

(e)

Fig. 6. CC(60,1024) trace

In the end, we conduct a set of experiments to evaluate our
mechanism involving multiple OSSs. The procedure is as
follow: A shared file is striped over 32 OSSs; Lmax is set to 60s;
total client number is 1024; use IOR shared access mode and
perform fsync after write close; I/O per client is 512M, to each
OST is 16M; two cases were carried out: CC(60,1024) and
FIX(8,1024); all the other setting are same as previous. We
observed that the I/O behavior of each storage server was
similar to previous tests. And the measured overall I/O
performance of CC(60,1024) is 5.66 GB/s. The performance
improves about 10% in contrast to 5.16 GB/s of FIX(8, 1024).

To avoid unnecessary timeouts which may induce
congestive collapse under heavy load in experiments, for static
RCC scheme the timeout value is set to 300s; while for the
congestion control mechanism with adaptive RCC scheme λ is
set to 1.5 and Lnet is set to 5s. They both don’t trigger any

timeouts. But according to Eq. (6), we know the timeout value
of the latter is much less than the former. This proves indirectly
that the mechanism can improve the system responsiveness.
All these experimental results demonstrate that our algorithm
can maximize the throughput on the premise of avoiding
congestive collapse and verify the effectiveness of the
congestion control mechanism.

V. CONCLUSIONS

This paper proposes a RCC-based I/O congestion control
mechanism for the scalable Lustre file system. Experimental
evaluations indicate that under light load, the server can
optimize performance by maximizing the concurrency level
between a client and a server; under heavy load, it avoids
congestive collapse by controlling the RCC assignment based
on the latency bound to throttle clients’ I/O, in the meanwhile it
maximizes the throughput by minimizing interference among
parallel I/O streams. Further challenges lie ahead as data
intensive supercomputer systems scale from petaflops to
exaflops over the coming decade or two. However, the larger
the scale is, the more prone to induce I/O congestion problem.
This paper provides file system designers with insight into how
I/O congestion of network file system is addressed and how
scalability is achieved in the Lustre file system.

REFERENCES

[1] S. Floyd, K. Fall, “Promoting the use of end-to-end congestion control

in the Internet,” IEEE/ACM Transactions on Networking 7(4)(1999)

458-472.

[2] Lustre File System: High-Performance Storage Architecture and
Scalable Cluster File System White Paper,

http://www.sun.com/offers/details/LustreFileSystem.html.

[3] Peta-Scale I/O with the Lustre File System White Paper,
http://www.sun.com/offers/details/Peta-Scale_wp.html.

[4] Lustre Manul. https://wiki.hpdd.intel.com/display/PUB/Documentation.

[5] Yingjin Qian, Eric Barton, Tom Wang, et al, “A Novel network request
scheduler for a large scale storage system,” J. Computer Science –

Research and Development 23(2009) 143-148.

[6] J. Nagle, “On Packet Switches with Infinite Storage,” IEEE
Transactions on Communication 35(4)(1987) 435-438.

[7] Andrew S. Tanenbaum, Computer Networks, Fourth Edition, Prentice

Hall, 2003, Section 5.3.

[8] Kenneth P. Birman, Bradford B Glade, Consistent Failure Reporting in
Reliable Communication Systems, Tech. Rep. TR93-1349, May 1993.

[9] Nicholas Henke, “Stabilizing Lustre at Scale on the Cray XT,” in: CUG

2008 proceedings, http://cug.org/5-
publications/proceedings_attendee_lists/2008CD/S08_Proceedings/page

s/Authors/16-19Thursday/Henke-Thursday16B/Henke-Thursday16B-
paper.pdf.

[10] Lustre simulator, https://bugzilla.lustre.org/show_bug.cgi?id=%2013634.

[11] TOP 500 Supercomputers, http://www.top500.org.

http://www.top500.org/

