
SOS: Software-Based Out-of-Order Scheduling for
High-Performance NAND Flash-Based SSDs

Sangwook Shane Hahn, Sungjin Lee, and Jihong Kim
Department of Computer Science and Engineering, Seoul National University, Korea

{shanehahn, chamdoo, jihong}@davinci.snu.ac.kr

Abstract—We propose an efficient software-based out-of-order
scheduling technique, called SOS, for high-performance NAND
flash-based SSDs. Unlike an existing hardware-based out-of-order
technique, our proposed software-based solution, SOS, can make
more efficient out-of-order scheduling decisions by exploiting var-
ious mapping information and I/O access characteristics obtained
from the flash translation layer (FTL) software. Furthermore,
SOS can avoid unnecessary hardware-level operations and man-
age I/O request rearrangements more efficiently, thus maximizing
the multiple-chip parallelism of SSDs. Experimental results on a
prototype SSD show that SOS is effective in improving the overall
SSD performance, lowering the average I/O response time by up
to 42% over a hardware-based out-of-order flash controller.

I. INTRODUCTION

NAND flash-based SSDs are expected to replace a large
share of the traditional HDD market in the near future because
of their several advantages (such as low power consumption,
high performance, and high shock resistance) over HDDs.
In particular, modern high-end SSDs achieve impressive I/O
performance, outperforming HDDs by an order of magnitude.
For example, the I/O bandwidth of PCIe SSDs is more than
12 times higher than enterprise HDDs. Furthermore, the high
cost of SSDs, which was considered a major disadvantage of
SSDs, has been steadily lowered due to the continuous shrinks
of the NAND fabrication process as well as the increased bit
density per single memory cell.
In order to achieve high performance, modern high-end

SSDs exploit multiple-chip parallelism aggressively, since the
bandwidth of a single NAND flash chip is limited to several
tens of megabytes (e.g., 40 MB/s for writes) [1]. By employing
a multi-channel and multi-way architecture that allows several
flash chips to operate concurrently, host I/O requests can
be distributed to multiple chips and executed in parallel.
Therefore, host I/O requests can be serviced quickly.
To decide the execution order of multiple host I/O requests

sent to an SSD, two different approaches are used [1], [2].
In-order scheduled SSDs service incoming I/O requests in the
order of their arrival times, whereas Out-of-order scheduled
SSDs service I/O requests by their data dependencies. By
more aggressively exploiting I/O parallelism, using out-of-
order scheduling can achieve higher performance over in-order
scheduling. Out-of-order scheduling is usually implemented
by a hardware controller because software implementation can
cause a sequential performance bottleneck, which, in turn, can
degrade an achievable speed-up from multiple chips [3].
In this paper, we show that, in modern high-end SSDs,

software-based out-of-order I/O scheduling can be more ef-
ficient than hardware-based out-of-order scheduling. There
are two main motivations for software-based out-of-order

scheduling. First, if out-of-order scheduling is supported by
software, multiple-chip parallelism can be more efficiently
exploited. Furthermore, software-based out-of-order schedul-
ing can eliminate unnecessary write operations more easily
by exploiting available information at the software level. On
the other hand, hardware-based out-of-order controller makes
decisions only with limited hardware-level information only,
and thus it can miss many potential optimization opportunities
during runtime. Second, even though software-based out-of-
order scheduling incurs higher computational overheads than
hardware-based one, its performance penalty is not signifi-
cant. Furthermore, the performance benefit of improving I/O
parallelism is sufficient enough to outweigh the performance
penalty caused by software overheads.

Based on these observations, we propose a software-based
out-of-order scheduling technique, called SOS, which per-
forms out-of-order scheduling at the software level. SOS
increases the parallelism of multiple chips by rearranging I/O
requests stored in storage queues using the mapping table
information at the software level. This helps us to balance
the size of multiple I/O queues, thereby improving the overall
performance of SSDs. SOS also eliminates unnecessary write
operations by preventing useless write requests for the same
logical page from being serviced. This benefit can be realized
by exploiting both logical and physical page information
available at the software level, which cannot be identified at the
hardware level. We implemented the proposed SOS technique
in an FPGA-based SSD prototype [4], and then evaluated
its effectiveness, using various benchmark programs. Our
evaluation results show that SOS reduces I/O response time
by up to 42% over hardware-based out-of-order scheduling,
while incurring negligible computational overheads.

This paper is organized as follows. In Section II, we first
review in-order and out-of-order scheduling with a main focus
on a hardware-based out-of-order scheduling technique. In
Section III, we explain how SOS overcomes the limitations
of a hardware-based approach. Experimental results are given
in Section IV, and we conclude with a summary in Section V.

II. OUT-OF-ORDER SCHEDULING IN SSDS

A. In-Order Scheduling and Out-of-Order Scheduling

The out-of-order scheduling technique is proposed to im-
prove the parallelism of SSDs by relaxing the ordering con-
straints of multiple I/O requests. The in-order scheduling
technique assigns I/O requests to idle flash chips in the order
of their arrival times. On the other hand, as long as data de-
pendencies are not violated, out-of-order scheduling rearranges

978-1-4799-0218-7/13/$31.00 c©2013 IEEE

time

Read

Erase

Chip0

Write

Chip0

Chip1

Chip2

ReadChip2

WriteChip0

head

tail

tin

Queue

Erase

(a) In-order scheduling

Read

Erase

Chip0

Write

Chip1
Chip2

time

ReadChip2

WriteChip0

Erase
tout

Chip0

head

tail
Queue

(b) Out-of-order scheduling

Fig. 1: A comparison of in-order and out-order scheduling.

I/O requests in a storage queue based on the latencies of I/O
requests, thus greatly improving the parallelism.
Fig. 1 compares out-order scheduling with in-order schedul-

ing. Suppose that there are six I/O requests in a storage queue:
R(C0), E(C0), W(C0), E(C1), W(C2), and R(C2). Here,
R, W, and E indicate the types of flash operations, i.e., page
read, page write, and block erase operations, respectively. C0,
C1, and C2 indicate target chips (i.e., Chip0, Chip1, and
Chip2, respectively) where I/O requests are to be executed.
As depicted in Fig. 1(a), the in-order scheduling technique
picks up I/O requests from a storage queue in the order of
their arrival times and then assigns them to a target chip.
If the chip is busy, it waits until the chip becomes idle.
Unlike in-order scheduling, out-of-order scheduling changes
the positions of I/O requests in a storage queue, as shown in
Fig. 1(b), according to their latencies, and then issues them to
target chips. As a result, out-of-order scheduling reduces the
completion time of I/O requests by tin - tout.
The proposed SOS technique is based on out-of-order

scheduling which has been rapidly adopted in recent SSDs
because of its superior performance. In the following subsec-
tion, we describe the hardware-based out-of-order technique
in detail.

B. Hardware-Based Out-of-Order and Its Limitations

Fig. 2 illustrates the overall architecture of the hardware-
based out-of-order scheduling module which we call HOS
shortly. The host system issues read and write requests (host
I/O requests) with the logical addresses of a file system. After
receiving host I/O requests, the flash translation layer (FTL),
which is an intermediate software layer between a host system
and flash chips [1], divides host I/O requests into several flash
requests with a page size. Then, the FTL performs address
translation that maps the logical page addresses (LPAs) of flash
requests to physical page addresses (PPAs) in flash memory.
Logical-to-physical mapping information is kept in the map-
ping table of the FTL. This address translation is necessary to
overcome the ‘out-place-update’ nature of flash memory [1]. A
target chip in which flash requests are to be served is decided
by the FTL during address translation. The FTL delivers flash
requests with physical addresses to HOS on the hardware
side. For the efficient support of out-of-order scheduling, HOS
maintains multiple queues which are separately managed for
individual flash chips. After receiving flash requests from the
FTL, HOS inserts them to corresponding hardware queues.

Hardware

Flash

Memory

Host

System

Host

I/O

Request

Flash

Request

Software

FTL

HOS

Hardware Queues

Logical

Fig. 2: An overall architecture of an SSD with a hardware-

based out-of-order scheduling module.

Whenever an idle chip is found, HOS fetches a flash request
from a corresponding queue and executes it on a target chip.
Even though HOS exhibits higher I/O parallelism than the

in-order scheduling technique, it has two types of serious
problems that limit the overall performance of SSDs.
Skewed queue problem: HOS cannot fully exploit the

potential parallelism of multiple chips. In HOS, write requests
can be distributed as evenly as possible because the FTL can
decide a target chip where requested data are to be written
during address translation. However, (1) when read requests
whose target chips are already decided are flocked in certain
hardware queues or (2) when block erase operations (triggered
by garbage collection) that take a long time for completion are
placed in hardware queues, the lengths of hardware queues
are inevitably skewed. In this paper, we call it a skewed queue

problem. If a skewed queue problem is frequently observed,
it means that multiple chips in a storage device are not fully
utilized. Thus, the performance of SSDs is greatly degraded.
Skewed queue problems occur frequently as the number of

channels and ways in a flash device increases (i.e., as the
number of flash chips that operate in parallel increases). For
example, flash chips that remain idle are rarely observed when
there are relatively small numbers of flash chips. However, the
chip utilization is greatly lowered as the number of flash chips
increases (see Fig. 7). Considering that recent SSDs employ
more flash chips to overcome the decreasing performance of
high-density NAND flash memory, this skewed queue problem
will be a serious bottleneck that limits the SSD performance.
One of the promising approaches that address the skewed

queue problem is to move write requests from busy queues
(i.e., queues that contain lots of requests) to non-busy queues
(i.e., queues that contain few or no requests). However, this
rearrangement of flash requests involves some modifications
on the mapping table which is managed by the FTL. This is
because the physical page addresses of flash requests must be
changed before they are moved to different queues (or different
flash chips). As depicted in Fig. 2, the FTL and HOS are
operated separately, and thus it is difficult for HOS to update
the mapping table in the FTL.
Useless write problem: In out-of-order scheduling, the FTL

sends write requests to HOS as soon as possible so that host
I/O requests are rapidly processed [3]. This improves user-
perceived performance by maintaining sufficient room in hard-
ware queues which can be used for temporarily storing bursty
write requests issued during a short time period. However,
it inevitably incurs lots of useless page writes. For example,
suppose that a write request W0 for a logical page ‘101’ is
issued from a host system. The FTL assigns W0 to Chip0

using its own allocation strategy (e.g., a round-robin policy),

quickly forwarding it to HOS. Further suppose that another
write request W1 for the same logical page ‘101’ is issued
again before W0 is materialized to Chip0. The target chip
of W1 is decided to be Chip1 by the FTL, and it is sent to
HOS. In that case, W0 is uselessly written to Chip0 because
its data become obsolete due to the new data of W1. We call
this problem a useless write problem.

As depicted in Fig. 2, HOS manages flash requests in
hardware queues using only their physical addresses (that
specify a chip, a block, and a page where flash requests are
served). Thus, HOS does not know the logical page numbers
of flash requests in hardware queues. From the perspective
of HOS, W0 is different from W1 even if they have data for
the same logical page ‘101’. For this reason, HOS cannot
eliminate useless page writes (i.e., W0). If the FTL informs
HOS which request is a duplicate one, HOS can remove
useless page writes. But, it is also infeasible because the FTL is
unaware of the status of hardware queues; that is, the FTL does
not know which flash requests still stay in hardware queues.

Both of skewed queue problem and useless write problem
could be addressed if more advanced functions are added to
hardware modules. For example, if all the functions of the FTL
are implemented as hardware, the information sharing between
a scheduling module and a mapping module can be easily
done. This approach, however, greatly increases the hardware
cost. Furthermore, it is still unknown whether the efficient
hardware implementation of the FTL is possible or not. As
another candidate, more rich interfaces can be added between
the FTL and HOS for more efficient information sharing
between two modules. However, this will increase the design
complexity of a storage device. For instance, storage designers
need to consider more complicated hardware/software code-
sign issues.

III. DESIGN AND IMPLEMENTATION OF SOS

Software-based out-of-order scheduling is a feasible solu-
tion that addresses both the skewed queue problem and the
useless write problems without additional hardware resources
and high design cost. If the out-of-order scheduling module is
implemented as software, it can directly access the mapping
table of the FTL, overcoming the skewed queue problem.
Thus, the inter-queue request rearrangement can be easily
made. The useless write problem can be easily addressed as
well because the out-of-order module figures out which flash
requests are useless by looking up software queues and the
mapping table in the FTL.

Running the out-of-order module as software inevitably
incurs additional computational overheads. According to our
implementation study, however, the its overheads were not
significant; the time taken for executing the software out-of-
order module was less than 10 µsec per flash request even in
an embedded processor running at 400 MHz. Considering the
benefits of increasing the performance of a storage device,
software overheads are negligible and cannot be a serious
obstacle in realizing the benefits of software-based out-of-
order scheduling.

Hardware LevelSoftware Level

Host

System
Low-level

Flash

Controller

Software-Based

Out-of-Order Scheduling

Queue

Size

Leveler

Write

Hit

Manager

Dynamic

Scheduler

Flash
Translation

Layer

Software

Queues

Write

Buffer

CacheHost

I/O

Request

Flash

Memory

Fig. 3: An overall architecture of an SSD with software-based

out-of-order scheduling

A. Overall Architecture of SOS

Fig. 3 shows the overall architecture of an SSD with the
proposed SOS technique. The data of a host I/O request arrive
from a host system are stored in a write buffer cache first,
and then the FTL divides host data into several flash requests
with a page size. After mapping the logical addresses of flash
requests to physical addresses in NAND flash memory, the
FTL stores the data of flash requests to corresponding queues.
The dynamic scheduler monitors the status of flash chips.
Whenever an idle chip is observed, the dynamic scheduler
dispatches a flash request from a corresponding queue and
then sends it to the low-level flash controller responsible for
executing flash requests on target chips.
The two modules, a queue size leveler and a write hit

manager, have important roles in SOS. First, the queue size
leveler detects a skewed queue problem and then rearranges
flash requests so that they are evenly distributed across queues.
On the other hand, the write hit manager is designed to
eliminate useless write problems by canceling unnecessary
writes.

B. Queue Size Leveler

The queue size leveler (QSL) is designed to balance the
size of multiple I/O queues. Although the FTL distributes
flash write requests to multiple chips as evenly as possible
by considering I/O parallelism, the deviation of the size of
multiple I/O queues becomes significantly high due to the
following two reasons: (1) localized read requests and (2)
block erase requests. First, unlike write requests, read requests
must be served by a flash chip where requested data have
been written before. For this reason, the FTL cannot decide
target chips where read requests are served during address
translation. If lots of read requests flock to a certain queue,
other requests in the same queue are inevitably delayed.
Second, a block erase operation that is triggered by garbage
collection takes a very long time (e.g., 3 ms) in comparison
to read (e.g., 400 µs) and write (e.g., 1 ms) operations. Thus,
if a block erase operation is placed on a certain queue, newly
arrived requests must wait until a block erase operation is
completed. As a result, the size of a queue increases.
The queue size leveler of SOS solves such a skewed queue

problem because write requests can be easily moved to other
queues by modifying the mapping table of the FTL even if
they are already enqueued. Some readers may think that the
FTL in HOS can handle the skewed queue problem effectively
if the FTL knows the status of hardware queues; the FTL can
assign incoming flash requests to non-busy queues, so as to
make the distribution of flash requests on queues more even.

Host I/O Request 1

W0R0 R1 R2 W1 W2 W3 W4

Host I/O Request 2

R0

R1

W0

W4

W1 R2

W2

W3

Chip0 Chip1 Chip2 Chip3

(a) Before I/O request re-
arrangements

R0

R1

W1 R2

W2

W3

W0 W4

W0

W4 Rearrangement

Chip0 Chip1 Chip2 Chip3

(b) After I/O request rear-
rangements

Fig. 4: An example of resolving the skewed queue problem.

However, this cannot be an ultimate solution to the skewed
queue problem. Suppose that lots of localized read requests
come after many writes are added to hardware queues. In that
case, the skewed queue problem cannot be avoided because
write requests already inserted into queues cannot be moved
to other queues in HOS.

In SOS, QSL is triggered by the dynamic scheduler when-
ever an empty queue is found. QSL sees if there are other
queues that have more than one write request. If it finds write
requests, it moves to an empty queue after an update on the
physical page address in the mapping table. Then, the dynamic
scheduler forwards the newly moved request to the low-level
flash controller.

Fig. 4 illustrates an example of how QSL addresses the
skewed queue problem. There are two host I/O requests. One is
a read request and the other is a write request. Fig. 4(a) shows
that the read request consists of three flash read operations,
R0, R1, and R2. The write request requires five flash write
operations, W0, W1, W2, W3, and W4. We assume that there
are four flash chips, Chip0, Chip1, Chip2, and Chip3,
which can operate in parallel. Fig. 4(b) illustrates that two of
the three flash read requests, R0 and R1, flock to Chip1 and
the five flash write requests are evenly distributed to four chips
in a round-robin fashion. Thus, the completion of the host
write request is delayed until flash write requests in Chip0

are finished. As shown in Fig. 4(c), with QSL, two flash write
requests, W0 and W4, are moved from Chip0 to Chip1 and
Chip2, and the time taken to complete the host write request
can be reduced by two write operation times.

C. Write Hit Manager

In order to prevent obsolete data from being written use-
lessly, the write hit manager (WHM) of the SOS technique
detects duplicate writes and eliminates them so that they are
not unnecessarily written to flash memory.

When a write request arrives, the FTL first divides a host
write request into several flash write requests with a page size
and then performs address translation that decides a physical
page address where a requested page is to be written. The
mapping table in the FTL is composed of ‘logical-to-physical’
mapping entries that indicate physical page addresses (PPAs)
to which logical page addresses (LPAs) are mapped. Each
mapping entry has an additional flag, called a completion flag,
which indicates whether or not a requested logical page is
completely written to a physical page. Before a flash write
request is enqueued into a queue, the completion flag of a

Chip0

R(20)

E(10)

Chip1 Chip2

Q0 Q1 Q2

W[101]

Mapping Table

LPA PPA

…
101

...

…
100 > 310

...

…
0

...

Fig. 5: An example of eliminating a useless write operation.

logical page entry in the mapping table is set to ‘0’. After the
flash write request is finished, the completion flag is set to ‘1’.
When an overwrite occurs on a certain logical page, the

completion flag of that page can be ‘0’ or ‘1’. If the completion
flag is ‘1’, the FTL inserts a flash write request into a target
queue after address translation, making the completion flag
‘0’. On the other hand, if the completion flag is ‘1’, it means
that a flash write request for the same logical page is already
stored in a certain queue. In this case, the FTL invokes the
write hit manager, WHM, and then passes the physical page
address of a previously requested page to WHM. Using this
physical page address, WHM easily knows which queue has a
previously requested page. WHM then removes that page from
a corresponding queue. After removing an unnecessary page
write request, the FTL inserts a newly arrived write request
into a queue, updating the mapping table.
Fig. 5 illustrates how WHM eliminates unnecessary page

writes using a simple scenario. Here, we assume that there are
three flash chips, denoted by Chip0, Chip1, and Chip2, and
three queues Q0, Q1, and Q2 for Chip0, Chip1, and Chip2,
respectively. Q0 has three flash requests R(20), E(10), and
W(100), while Q1 contains one flash request E(200). Q2
has one flash request R(300). R, W, and E indicate page
read, page write, and block erase operations, respectively. The
number in the parenthesis refers to a physical page number for
page read or write operations and, for a block erase operation,
this number indicates a physical block number.
Suppose that a page write request for a logical page ‘101’

comes to the FTL. The FTL first looks up the completion flag
of the logical page ‘101’ in the mapping table. As depicted
in Fig. 5, the completion flag is ‘0’. This means that a write
request for the logical page ‘101’ already exists in a queue and
it is not finished yet. The FTL easily figures out the physical
page address (i.e., 100) of the previously requested page, and
then informs WHM of that number so that it eliminates the
obsolete page. As shown in Fig. 5, WHM notices that W(100)
in Q0 has obsolete data for the logical page ‘101’ and removes
it from Q0. Finally, the FTL maps a newly arrived page to a
physical page ‘301’ and sends it to Q2.

IV. EXPERIMENTAL RESULTS

A. Experimental Setup

In order to evaluate the performance of the proposed
techniques on a real platform, we implemented the pro-
posed software-based out-of-order scheduling technique in our
FPGA-based SSD prototype, called BlueSSD [4]. BlueSSD
supports 4 buses and 4 ways, so it has 16 flash chips that
can operate in parallel. A NAND flash memory chip used for
our evaluation is Micron’s MT29F4G08ABADAWP. A block
contains 64 pages and the size of a page is 2 KB.
The benchmarks used for our evaluation include two micro-

benchmarks, Bonnie++ and Postmark, and three real-world

0

20

40

60

80

100

Bonnie++ Postmark Financial1 Financial2 Websearch

N
o

rm
a

li
ze

d
 R

es
p

o
n

se
 T

im
e

(%
)

IOS HOS SOS(QSL) SOS(WHM) SOS

Fig. 6: Normalized I/O response times over IOS.

workloads, Financial1, Financial2, and WebSearch. To repeat
the same workload patterns under a variety of storage con-
figurations, we extracted block-level I/O traces while running
benchmarks in a real system and then replayed them in our
prototype SSD platform for evaluation.
We compared the performance of the proposed SOS tech-

nique with two existing techniques, in-order scheduling and
hardware-based out-of-order scheduling techniques which are
denoted as IOS and HOS, respectively. In our evaluation,
IOS is implemented as a software module. Implementing the
hardware modules of HOS is not easy due to its inherent
characteristic. Thus, we realized HOS by rearranging the
sequences of I/O requests in I/O traces according to the
out-of-order scheduling algorithm. The rearranged I/O traces
were replayed, using the in-order scheduling algorithm. This
evaluation methodology was somewhat advantageous to HOS

because the performance overhead caused by out-of-order
scheduling was excluded.

B. Performance Evaluation

Fig. 6 shows the I/O response times under five different SSD
settings, which were normalized to IOS. Here, SOS(QSL) is
SOS with the queue size leveler (QSL), while SOS(WHM)

is SOS with the write hit manager (WHM). SOS is SOS with
both QSL and WHM. 4 buses and 4 channels were used for our
evaluation, so that 16 flash chips can be operated concurrently.
As depicted in Fig. 6, SOS(QSL) exhibited 16% to 42%

lower I/O response time than that of HOS. SOS(QSL) out-
performed IOS by up to 56%. As expected, this performance
benefit of SOS(QSL) can be realized by improving the
parallelism of multiple chips in a storage device. For a more
detailed analysis, we analyzed the ratio of the per-chip average
idle time to the benchmark execution time. Here, the per-chip
idle time is the length of the time during which a flash chip
remains idle while other flash chips are busy. Fig. 7 shows
our experimental results while varying the number of flash
chips from 1 to 16. The higher the per-chip average idle
time ratio, the more the skewed queue problem was observed
which reduces the multiple-chip parallelism. When the number
of flash chips was 1, the skewed queue problem was rarely
observed in HOS and SOS(QSL). However, in the case of
HOS, as the number of flash chips increased to 16, the per-
chip average idle time ratio sharply increased by up to 23.5%.
Conversely, the degree of I/O parallelism was maintained in

Benchmark Bonnie++ Postmark Financial1 Financial2 WebSearch

Hit ratio 11.7% 14.3% 17.6% 9.2% 7.1%

TABLE I: Write hit ratios with SOS(WHM).

0

5

10

15

20

25

1 2 4 8 16

P
er

-c
h

ip
 A

v
er

a
g

e

Id
le

 T
im

e
R

a
ti

o
 (

%
)

Number of Chips

Bonnie++

Postmark

Financial1

Financial2

Websearch

(a) HOS

0

5

10

15

20

25

1 2 4 8 16

P
er

-c
h

ip
 A

v
er

a
g

e

Id
le

 T
im

e
R

a
ti

o
 (

%
)

Number of Chips

Bonnie++

Postmark

Financial1

Financial2

Websearch

(b) SOS(QSL)

Fig. 7: Per-chip average idle time ratio.

SOS(QSL) regardless of the number of flash chips; the idle
time ratio was lower than 2%.
Fig. 6 shows that SOS(WHM) improves I/O response times

by 5% to 17% over HOS by eliminating the number of useless
page writes. We analyzed how many page writes are canceled
by the write hit manager in storage queues. Table I displays the
write hit ratios of five different benchmarks. Here, the write
hit ratio represents the ratio of the number of eliminated page
writes to the number of original page writes sent from a host
system. As shown in Table I, we observed that 7.1%-17.6%
of original page writes can be removed by SOS(WHM).
We finally evaluated the performance improvement when

two different techniques, QSL and WHM, are used together.
The benefits of two techniques were maintained when they
were simply integrated. As shown in Fig. 6, the integrated
version of QSL and WHM, SOS, reduced I/O response time
by up to 42% and 56% over HOS and IOS, respectively.

V. CONCLUSION

We proposed a new software-based out-of-order technique,
called SOS. We introduced two kinds of serious problems, a
skewed queue problem and a useless write problem, which
inevitably occur when a scheduler’s decision is made only
at the hardware level. By effectively exploiting the infor-
mation available at the software level, the proposed SOS
technique overcomes the problems of hardware-based out-of-
order scheduling without significant computational overheads.
Our evaluation results showed that SOS improved I/O response
times by up to 42% over HOS.

VI. ACKNOWLEDGEMENT

This work was supported by the National Research Foun-
dation of Korea (NRF) grant funded by the Ministry of Edu-
cation, Science and Technology (MEST) (No. 2012-0006417).
This research was supported by WCU (World Class Univer-
sity) program through the National Research Foundation of
Korea funded by the Ministry of Education, Science and Tech-
nology (R33-2012-000-10095-0). The ICT at Seoul National
University and IDEC provided research facilities for this study.

REFERENCES

[1] N. Agrawal et al.,“Design Tradeoffs for SSD Performance,” in Proc. USENIX
Annual Technical Conference, 2008.

[2] J. U. Kang et al.,“A Multi-Channel Architecture for High-Performance NAND
Flash-Based Storage System,” J. Systems Architecture, vol. 53, no. 9, pp. 644-658,
2007.

[3] E. H. Nam et al.,“Ozone (O3): An Out-of-Order Flash Memory Controller Archi-
tecture,” IEEE Trans. Computers, vol. 60, no. 5, pp. 653-666, 2011.

[4] S. Lee et al.,“BlueSSD: An Open Platform for Cross-Layer Experiments for NAND
Flash-Based SSDs,” in Proc. International Workshop on Architectural Research
Prototyping, 2010.

