NVMES: A Hybrid File System for Improving Random Write
in NAND-flash SSD

Sheng Qiu
Texas A&M University
herbert1984106 @neo.tamu.edu

Abstract—In this paper, we design a storage system consisting of Non-
volatile DIMMs (as NVRAM) and NAND-flash SSD. We propose a file
system NVMFS to exploit the unique characteristics of these devices
which simplifies and speeds up file system operations. We use the higher
performance NVRAM as both a cache and permanent space for data.
Hot data can be permanently stored on NVRAM without writing back
to SSD, while relatively cold data can be temporarily cached by NVRAM
with another copy on SSD. We also reduce the erase overhead of SSD
by reorganizing writes on NVRAM before flushing to SSD.

We have implemented a prototype NVMFS within a Linux Kernel
and compared with several modern file systems such as ext3, btrfs and
NILFS2. We also compared with another hybrid file system Conquest,
which originally was designed for NVRAM and HDD. The experimental
results show that NVMFS improves 10 throughput by an average of
98.9% when segment cleaning is not active, while improves throughput
by an average of 19.6% under high disk utilization (over 85%) compared
to other file systems. We also show that our file system can reduce the
erase operations and overheads at SSD.

I. INTRODUCTION

Solid-State Drives (SSDs) have been widely used in computer
systems. An SSD is a purely electronic device with no mechanical
parts, and thus can provide lower access latencies, lower power
consumption, lack of noise and shock resistance. However, SSDs
also have two serious problems: limited lifetime and relatively poor
random write performance. In SSDs, the smallest write unit is one
page (such as 4KB) and can only be performed out-of-place, since
data blocks have to be erased before new data can be written.
Random writes can cause internal fragmentation of SSDs and thus
lead to higher frequency of expensive erase operations [7], [9].
Besides performance degradation, the lifetime of SSDs can also be
dramatically reduced by random writes.

Flash memory is now being used in other contexts, for example
in designing nonvolatile DIMMs [1], [6]. These designs combine
traditional DRAM, Flash, an intelligent system controller, and an
ultracapacitor power source to provide a highly reliable memory sub-
system that runs with the latency and endurance of the fastest DRAM,
while also having the persistence of Flash (data on DRAM will be
automatically backed up to flash memory on power failure). The
availability of these nonvolatile DIMMs can simplify and enhance
file system design, a topic we explore in this paper.

In this paper, we consider a storage system consisting of Non-
volatile DIMMs (as NVRAM) and SSD. We expect a combination of
NVRAM and SSD will provide the higher performance of NVRAM
while providing the higher capacity of SSD in one system. We
propose a file system NVMFES for such a system that employs both
NVRAM and SSD in one system. Our file system exploits the unique
characteristics of these devices to simplify and speed up file system
operations.

In our file system proposed here in this paper, we employ both
caching and migration at the same time to improve file system
operations. When data is migrated, the address of the data is typically
updated to reflect the new location whereas in caching, the permanent
location of the data remains the same, while the data resides in
higher performance memory. In systems that employ migration, data
location is typically updated as data moves from one location to
another location to reflect its current location. When clean data needs
to be moved to slower devices, data cannot be simply discarded as in

978-1-4799-0218-7/13/$31.00 (© 2013 IEEE

A. L. Narasimha Reddy
Texas A&M University
reddy@ece.tamu.edu

caching systems (since data always resides in the slower devices in
caching systems), but has to be copied to the slower devices and the
metadata has to be updated to reflect the new location of the data.
Otherwise, capacity of the devices together cannot be reported to the
higher layers as the capacity of the system.

In our system, we employ both these techniques simultaneously,
exploiting the nonvolatile nature of the NVRAM to effectively reduce
many operations that would be otherwise necessary. We use the higher
performance NVRAM as both a cache and permanent space for
data. Hot data and metadata can permanently reside in the NVRAM
while not-so-hot, but recently accessed data can be cached in the
NVRAM at the same time. This flexibility allows us to eliminate
many data operations that would be needed in systems that employ
either technique alone.

In order to allow this flexibility that we described above, where
data can be cached or permanently stored on the NVRAM, we employ
two potential addresses for a data block in our file system. The details
of this will be described later in section III.

The primary contributions of this paper are as following:

o This paper proposes a new file system — NVMEFS, which
integrates Nonvolatile DIMMs (as NVRAM) and a commercial
SSD as the storage infrastructure.

o NVMES trades-off the advantage and disadvantage of NVRAM
and SSD respectively. In our design, we utilize SSD’s larger
capacity to hold the majority of file data while absorbing random
writes on NVRAM.

« NVMEFS distributes metadata and relatively hot file data on
NVRAM while storing other file data on SSD. Unlike normal
caching or migration scheme, our design can permanently store
hot data on NVRAM while also temporarily caching the recently
accessed data.

o We show that NVMFS improves 10 throughput by an average
of 98.9% when segment cleaning is not active, while improving
IO throughput by an average of 19.6% when segment cleaning
is activated, compared to several existing file systems.

o We also show that the erase operations and erase overhead at
SSD are both effectively reduced.

The remainder of the paper is organized as follows: We discuss
related work in Section II. In Section III we provide design and
implementation details on our proposed file system which are then
evaluated in Section IV. Section V concludes the paper.

II. RELATED WORK

A number of projects have previously built hybrid storage systems
based on non-volatile memory devices [16], [23], [26]. PFFS [23]
proposed using a NVRAM as storage for file system metadata while
storing file data on flash devices. FRASH [16] harbors the in-memory
data and the on-disk structures of the file system on a number of byte-
addressable NVRAMs. Compared with these works, our file system
explores different write policies on NVRAM and SSD. We do in-
place updates on NVRAM and non-overwrite on SSD.

Rio [11] and Conquest [26] use a battery-backed RAM in the
storage system to improve the performance or provide protections.
Rio uses the battery-backed RAM and avoids flushing dirty data to
disk. Conquest uses the nonvolatile memory to store the file system
metadata and small files. WSP [22] proposes to use flush-on-fail

technique, which leverage the residual energy of the system, to flush
registers and caches to NVRAM in the presence of power failure. Our
work here explores nonvolatile DIMMs to provide a highly reliable
NVRAM that runs with the latency and endurance of the fastest
DRAM, while also having the persistence of Flash.

The current SSDs implement log-structured like file systems [24]
on SSDs to accommodate the erase, write operations of the SSDs.
Garbage collection and the write amplification resulting from these
operations are of significant interest as the lifetime of SSDs is
determined by the number of program/erase cycles [15]. Several
techniques have been recently proposed to improve the lifetime of
the SSDs, for example [10], [14]. The recent work SFS [8] proposed
to collect data hotness statistics at file block level and group data
accordingly. Our work here exploits the NVRAM to first reduce the
writes going to the SSD and second in grouping similar pages into
one block write to SSD to improve garbage collection efficiency.

Several recent studies have looked at issues in managing space
across different devices in storage systems [12]. These studies have
considered matching workload patterns to device characteristics and
studied the impact of storage system organizations in hybrid systems
employing SSDs and magnetic disks. Our hybrid storage system here
employs NVRAM and SSD. Another set of research work proposed
different algorithms for managing the buffer or cache for SSD [19],
[25]. They all intended to temporally buffer the writes on the cache
and reduce the writes to SSD. Our work differs from them since our
file system can permanently store the data on NVRAM, thus further
reducing writes to SSD.

Our work can reduce the erase overhead during GC (Garbage
Collection) which benefits various FTL schemes.

III. DESIGN AND IMPLEMENTATION

NVMES improves SSD’s random write performance by absorbing
small random I0s on NVRAM by only performing large sequential
writes on SSD. To reduce the overhead of SSD’s erase operations,
NVMES groups data with similar update likelihood into the same
SSD blocks. The benefits of our design resides on three aspects:
(Dreduce write traffic to SSD; (2)transform random writes at file
system level to sequential ones at SSD level; (3)group data with
similar update likelihood into the same SSD blocks.

A. Hybrid Storage Architecture

In NVMFS, the memory system is composed of two parts, tradi-
tional DRAM and Nonvolatile DIMMs. Figure 1 shows the hardware
architecture of our system. We utilize the nonvolatile DIMMs at-
tached to the memory bus and accessed through virtual addresses
as NVRAM. All the page mapping information of NVRAM will
be stored at a fixed location in NVRAM. We will detail this later
in section III-E. It’s noted that we bypass page cache in our file
system, since CPU can directly access NVRAM which can provide
the same performance as DRAM based page cache. To access the
file data on SSD, we use logical block addresses (LBAs), which will
be translated to the physical block addresses (PBAs) by the FTL
at the SSD. Therefore, NVMFS has two types of data addresses at
file system level — virtual addresses for NVRAM and logical block
addresses for SSD. In our design, we can store two valid versions
for hot data on NVRAM and SSD respectively. Whenever the data
become dirty, we keep the recent data on NVRAM and invalidate the
corresponding version on SSD. We will introduce how we manage
the data addresses of our file system in section III-E.

B. Data Distribution and Write Reorganization

The key design of NVMFS relies on two aspects: (a)how to
distribute file system data between the two types of devices —
NVRAM and SSD; (b)how to group and reorganize data before
writing to SSD so that we can always perform large sequential writes
on SSD.

File system metadata are small and will be updated frequently,
thus it’s natural to store them on NVRAM. To efficiently distribute

Memory Bus

Memory System

DRAM
(main memory)

Nonvolatile DIMMs
i storage)
SSD
(persistent storage)

Persistent storage

Fig. 1. Hybrid Storage Architecture

file data, we track the hotness of both clean and dirty file data. We
implemented two LRU (Least Recently Used) lists — dirty and clean
LRU lists, which are stored as metadata on NVRAM. Considering the
expensive write operations of SSD, we prefer to store more dirty data
on NVRAM, expecting them to absorb more update/write operations.
Whenever the space of NVRAM is not sufficient, we replace file data
from clean LRU list. However, we also do not want to hurt the locality
of clean data. We balance this by dynamically adjusting the length
of dirty and clean LRU lists. The total number of pages within clean
and dirty LRU lists is fixed, equalling to the number of NVRAM

pages.

Insert to MRU Dirty LRU List

Aﬂ& writeback
to'SSD

------------ e

XX [
Clean LRU List

ReadHit pio 9 Dirty and Clean LRU lists

Figure 2 shows the clean and dirty LRU lists as well as the
related operations. When writing new file data, we allocate space
on NVRAM and mark them as dirty, then insert at the MRU (Most
Recently Used) position of dirty LRU list. Read/write operations on
dirty data will update their position to MRU within the dirty LRU
list. For clean data, read operations update their position to MRU of
clean LRU list, while write operations will migrate the corresponding
NVRAM pages from clean LRU list to the MRU of dirty LRU list.

Unlike existing page cache structure which flushes dirty data to the
backed secondary storage (such as SSDs) within a short period, our
file system can store dirty data permanently on NVRAM. NVMFS
always keeps the pointer to the most recent data version. We can
choose when and which data to flush to SSD dynamically according
to the workloads. We begin to flush dirty data to SSD whenever
the NVRAM pages within the dirty LRU list reaches a high bound
(i.e. 80% of dirty LRU list is full). This process continues until the
NVRAM pages within the dirty LRU list reaches a low bound (i.e.
50% of dirty LRU list is full). The flushing job is executed by a
background kernel thread.

Large
L Sequential
~~ Write tp SSD
——————————————— T
OO
il
|— ————Newly allocated sequential SSD pages-— |
SSD

Fig. 3.

Migrate Dirty NVRAM Pages to SSD

As shown in Figure 3, the dirty NVRAM pages will become clean
after migrating to SSD and will be inserted to the LRU position of the
clean LRU list. We can facilitate the subsequent read/write requests
since we still have valid data versions on NVRAM. Moreover, we
can easily replace those data on NVRAM by only reflecting their
positions on SSD. In our file system, the file inode always points to

the appropriate data version. For example, if file data have two valid
versions on NVRAM and SSD respectively, the inode will point to the
data on NVRAM. We have another data structure called “page_info”
which records the position of another valid data version on SSD.
It is noted that we won’t lose file system consistency even if we
lose this “page_info” structure, since file inodes consistently keep
the locations of appropriate valid data version. We will discuss file
system consistency in section III-D

C. Non-overwrite on SSD

We employ different write policies on NVRAM and SSD. We
do in-place update on NVRAM and non-overwrite on SSD, which
exploits the devices’ characteristics. The space of SSD is managed
as extents of 512KB, which is also the minimum flushing unit for
migrating data from NVRAM to SSD. Each extent on SSD contains
128 normal 4KB blocks, which is also the block size of our file
system. When dirty data are flushed to SSD, we organize them
into large blocks (i.e. 512KB) and allocate corresponding number
of extents on SSD. As a result, random writes of small 10 requests
are transformed into large write requests (i.e. 512KB).

To facilitate allocation of extents on SSD, we need to periodically
clean up internal fragmentation within the SSD. During recycling, we
can integrate several partial valid SSD extents into one valid SSD
extent and free up the remaining space. This ensures that we can
always have free extents available on SSD for allocation, which is
similar to the segment cleaning process of log-structured file systems.
It’s noted that the FTL component of SSD still manages the internal
garbage collection of SSD. As described earlier, we always write
sequentially to SSD in units of 512KB, therefore the procedure of
block erase at FTL is expected to benefit from our design. We will
show how NVMFS impacts it in section I'V-C.

SSD space
A
(\
[Extent1 I Extent 2 I I ExtentN]
Extent_info{
[Blockl I Block 2 I IBIocklZS] Inode_list(];
- File_offset[];

4KB f \
Frag_flag;
’

Fig. 4. Space management on SSD

Figure 4 shows the space organization of SSD. Given the logical
block number, it’s easy to get its extent’s index and offset within
that extent. To facilitate extent recycling, we need to keep some
information for each block within a candidate extent, for example, the
inode and file offset each valid block belongs to. We also keep a flag
which indicates whether this extent is fragmented. This information is
kept as metadata in a fixed space on NVRAM. In our current design,
two conditions have to be satisfied in order to invoke the recycling:
(a)the fragmentation ratio of SSD is over a configurable threshold
(ideal extent usage/actual extent usage); (b)the number of free SSD
extents is fewer than a configurable threshold. The first condition
ensures that we do get some free space after recycling whenever the
free extents are not sufficient.

D. File System Consistency

File system consistency is always an important issue in file system
design. In this section, we describe the consistency issue related with
data migration and segment cleaning process for our design.

As described in section III-B, NVMFS invokes flushing process
whenever the dirty LRU list reaches a high bound (i.e. 80% of
dirty LRU list is full). The flushing process chooses 512KB data
each round from the end of dirty LRU list and prepares a new SSD
extent (512KB), then composes the data as one write request to SSD,
finally updates the corresponding metadata. The metadata updating
involves inserting the flushed NVRAM pages into clean LRU list

and recording the new data positions (on SSD) within “page_info”
structure mentioned in the previous section. It’s noted that the inodes
(unchanged) still point to valid data on NVRAM until they are
replaced from clean LRU list. If system crashes while flushing data to
SSD, inodes still point to valid data versions on NVRAM. We simply
drop previous operations and restart migration. If system crashes
after data flushing but before we update the metadata, NVMFS is
still consistent since inodes point to valid data version on NVRAM.
The already flushed data on SSD will be recycled during segment
cleaning. If system crashes in the middle of metadata update, the LRU
list and “page_info” structure may become inconsistent, NVMFES will
reset them. To reconstruct the LRU list, NVRAM scans the inode
table, if the inode points to a NVRAM page, we insert it to dirty
LRU list while keeping clean LRU list empty.

Segment cleaning is another point prone to inconsistency. The
cleaning process chooses one candidate extent (512KB) per round and
migrates the valid blocks (4KB) to NVRAM, then updates the inodes
to point to the new data positions, finally frees the space on SSD. If
system crashes during data migration, NVMEFS inodes still point to
the valid data on SSD. If system crashes during the inodes update,
NVMEFS maintains consistency by adopting transaction mechanism
(inodes update and space freeing on SSD are one transaction) similar
to other log-structured file systems.

E. File System Layout

The space layout of NVMES is shown in figure 5. The metadata
and memory mapping table are stored on NVRAM. The metadata
contains the information such as size of NVRAM and SSD, size of
page mapping table, etc. The memory mapping table is used to build
some in-memory data structures when mounting our file system and
is maintained by memory management module during runtime. All
the updates to the memory mapping table will be flushed immediately
to NVRAM.

Storage Sp:

Metadata File system space

X iyl

Super block

Memory mapping
table

Inode table

Bitmap Files

On NVRAM On NVRAM or SSD-

Fig. 5. Storage Space Layout

The file system metadata which includes super block, inode table
and block bitmap are stored on NVRAM while the file data are stored
either on NVRAM or SSD based on their usage pattern. The block
bitmap indicates whether the corresponding NVRAM or SSD block is
free or used. In NVMES, we always put hot file data on NVRAM and
cold file data on SSD. In our current implementation, the total size
of virtual memory space for NVRAM addresses is 27 bytes (range:
ffff000000000000 - fEF7ftfTtfttf), which is unused in original Linux
kernel. We modified the Linux kernel to let the operating system be
aware of the existence of two types of memory devices — DRAM
and NVRAM, attached to the memory bus. We also added a set of
functions for allocating/deallocating the memory space of NVRAM.
This implementation is leveraged from previous work in [27].

In NVMEFS, the directory files are stored as ordinary files. To
address the inode table, we store the pointer to the start address
of inode table in the super block. Within the inode table, we use
a fixed size entry of 128 bytes for each inode, and it is simple
to get a file’s metadata through its inode number and the start
address of the inode table. The inode will store several pieces of
information including block count of NVRAM, block count of SSD,
block pointer array and so on. The block pointer array is similar as
the direct/indirect block pointers used in EXT2. The difference is
that we always allocate indirect blocks on NVRAM so that it is fast
to index the requested file data even when the file is large which

140000000
120000000
100000000

B NVMFS™ ext3 ¥ birfs B nilfs2 ¥ conquest

Number of Sectors

iozone fio postmark filebench

Fig. 6. Write traffic to SSD under different workloads and file systems

requires retrieving indirect blocks. The block address is 64 bits and
the NVRAM addresses are distinct from the SSD block addresses.
To build our file system, we can use the command like “mount -t
NVMES -o init=4G /dev/sdbl /mnt/NVMFS”. In the example, we
attached 4GB Nonvolatile DIMMs as the NVRAM, and tell NVMFS
the path of the SSD device, finally mount it to the specified mount
point.

IV. EVALUATION

To evaluate our design, we have implemented a prototype of
NVMES in Linux. In this section, we present the performance of
our file system in three aspects: (l)reduced write traffic to SSD;
(2)reduced SSD erase operations and erase overhead; (3)improved
throughput on file read and write operations.

A. Methodology

We use several benchmarks including IOZONE [5], Postmark [17],
FIO [4] and Filebench [3] to evaluate the performance of our file
system. For IOZONE, it creates a single large file and performs
random writes on it. For Postmark, the write operations are in terms
of appending instead of overwriting. For FIO, it performs random
updates on randomly opened files chosen from thousands of files.
For Filebench, it does mixed read and write on thousands of files
which simulate a file server.

In all benchmarks, we compare the performance of NVMFS to
that of other existing file systems, including EXT3, Btrfs, Nilfs2
and Conquest (also a hybrid file system) [26]. The first three file
systems are not designed for hybrid storage architecture. Therefore
we configure 4GB DRAM-based page cache for them. The NAND
flash SSD we used is Intel’s X25-E 64GB SSD.

B. Reduced 10 Traffic to SSD

In this section, we calculated how much IO data are written to
SSD while running different workloads for our NVMEFS and other
file systems. As explained in section III, our NVMFS persistently
keeps metadata and hot file data on NVRAM without writing to SSD.
However, other file systems have to periodically flush dirty data from
page cache to SSD in order to keep consistency. Therefore, NVMFS
is expected to reduce write traffic to SSD.

Figure 6 shows the write traffic to SSD (number of sectors) across
different workloads. For all the workloads, the IO request size is
4KB. We can see our file system has less write traffic to SSD across
all the workloads.

C. Reduced Erase Operations and Overhead on SSD

The erase operations on SSD are quite expensive which greatly
impact both lifetime and performance. The overhead of erase oper-
ations are usually determined by the number of valid pages that are
copied during the GC (Garbage Collection).

To evaluate the impact on SSD’s erase operations, we collected
I/O traces issued by the file systems using blktrace [2] while running
our workloads described in section IV-A, and the traces were run on
an FTL simulator, which we implemented, with two FTL schemes
-(@)FAST [20] as a representative hybrid FTL scheme and (b)page-
level FTL [18]. In both schemes, we configure a large block 24GB

NAND flash memory with 4KB page, 256 KB block, and 10% over-
provisioned capacity. Figure 7 shows the total number of erases and
corresponding erase cost for the workload processed by each file
system.

We can see that NVMEFS has fewer number of erases and less erase
overhead under all situations. Our benefits come from two aspects:
Dless write traffic to SSD; 2)large sequential writes to SSD.

D. Improved 10 Throughput

In this section, we evaluate the performance of our file system in
terms of IO throughput. We use the workloads described in section
IV-A. For our file system and nilfs2, we measure the performance
under both high (over 85%) and medium disk utilizations (50%-70%)
to evaluate the impact of segment cleaning overhead. The segment
cleaning is activated only under high disk utilization. For other file
systems that do in-place update on SSD, there is little difference for
varied disk utilizations.

Figure 8 shows the IO throughput while the segment cleaning is
not activated with our file system and nilfs2. To evaluate the impact
of segment cleaning on our file system and nilfs2, we also measured
the performance under high disk utilization (over 85%). Figure 9
shows the throughput when disk utilization is over 85% for all the
tested file systems and workloads. We can see obvious performance
reduction for both NVMFS and nilfs2, while other file systems have
little change compared with that under 50%-70% disk utilization.
Compared with nilfs2, our file system performs much better across
all the workloads, especially under FIO workload. To further explore
this, we calculated the number of blocks (4KB) recycled and the
cleaning efficiency while running different workloads under NVMFS
and nilfs2. For cleaning efficiency, we measure it using the formula
“1 - (moved_valid_blocks / total_recycled_blocks)”.

Figure 10 and 11 show the total number of recycled blocks and
the cleaning efficiency respectively while running different workloads
under NVMFS and nilfs2. We can see for all the workloads NVMFS
recycled much fewer blocks compared with nilfs2. As shown in figure
11, we also see NVMEFS has higher cleaning efficiency relative to
nilfs2. This is benefit from our grouping policy on dirty data before
flushing to SSD.

V. CONCLUSIONS

In this paper, we have implemented a new file system — NVMFS,
which integrates NVRAM and SSD as hybrid storage. NVMFS
dynamically distributed file data between NVRAM and SSD which
achieved good IO throughput. Our file system transformed random
writes at file system level to sequential ones at SSD level. As a result,
we reduced the overhead of erase operations on SSD and improved
the GC efficiency.

REFERENCES

[1] “Agigaram ddr3 nvdimm.” [Online]. Available: http://www.agigatech.
com/ddr3.php

[2] “Bufs: a linux file system.” [Online]. Available: http://linux.die.net/
man/8/blktrace

[3] “Filebench benchmark.” [Online]. Available: http://sourceforge.net/apps/
mediawiki/filebench/index.php

[4] “Fio benchmark.” [Online]. Available: http:/freecode.com/projects/fio

[5] “Iozone filesystem benchmark.” [Online]. Available: http://www.iozone.
org/

[6] “Non-volatile dimm.” [Online]. Available: http://www.vikingtechnology.
com/non-volatile-dimm

[7]1 L. Bouganim, B. T. J6énsson, and P. Bonnet, “uflip: Understanding flash
io patterns,” in CIDR, 2009.

[8] H. C. Changwoo Min, Kangnyeon Kim and Y. I. E. Sang-Won Lee,
“Sfs: Random write considered harmful in solid state drives,” in FAST,
2012.

[9] F. Chen, D. A. Koufaty, and X. Zhang, “Understanding intrinsic char-
acteristics and system implications of flash memory based solid state
drives,” in SIGMETRICS, 2009.

[10] F. Chen, T. Luo, and X. Zhang, “Caftl: a content-aware flash translation
layer enhancing the lifespan of flash memory based solid state drives,”
in FAST, 2011.

" ENVMFS rext3 Hbtrfs M nilfs2
18
300000 = NVMFS - ext3 = birfs mnilfs2 = conquest = NVMFS = ext3 = btrfs mnilfs2 = conquest ::
§ 250000 35
‘i; 200000 8 30
H S25
£ 150000 & 20
= 100000 “1s
10
50000 5
0 - . -
iozone fio postmark filebench iozone fio postmark filebench iozone fio postmark filebench iozone fio postmark filebench
(a)erase count for page-level FTL (b)erase count for FAST FTL (c)erase cost for page-level FTL (d)erase cost for FAST FTL

Fig. 7. Erase count and erase cost for page-level and FAST FTL

180000 120

ENVMFS ©ext3 mbtrfs_mnilfs2 ®conquest

ENVMFS = ext3 mbtrfs mnilfs2 mconquest

» 3
=3

=]
=)

@
-3

-3
=3

@
£
3
2
2
5
2
8
E

N
=)

N
o

R
THHH

)

0
NVMFS ext3 btrfs. nilis2 conquest NVMFS ext3 btrfs. nilfs2 conquest write read write read
(a)Throughput of IOZONE (b)Throughput of FIO (¢)Throughput of Postmark (d)Throughput of Filebench

Fig. 8. 1O throughput under different workloads for 50% - 70% disk utilization

45000 ENVMFS 7ext3 mbirfs mnilfs2 T =NVMFS = ext3 mbtrfs mnilfs2 q
0
40000
35000
8 30000 s

15000 H 3 25000
£ 20000
£ 15000
10000
5000

nilfs2 conquest NVMFS ext3 btris nilfs2 conquest write read write read
(d)Throughput of I0ZONE (b)Throughput of FIO (c)Throughput of Postmark (d)Throughput of Filebench

EE

Thmughpul (KBIS)
Throughput (MB/S)
Throughput (MB/S)

Fig. 9. 10O throughput under different workloads for over 85% disk utilization

1

7000000 -

8000000 -
6000000 -
4000000 -
2000000 -

4000000 -
2000000 -

jumber of blocks (4KB)

2000000 -
1000000 |

0 - [[
NVMFS nilfs2 NVMFS nilfs2 NVMFS nilfs2 NVMFS nilfs2
(a)IOZONE (b)FIO (c)Postmark (d)Filebench

5000000 -

Number of blocks (4KB)
=]
tumbe of blocks »AKB)
-

Fig. 10. Total number of recycled blocks while running different workloads under NVMFS and nilfs2

0.35 03 0.45 0.48
0.3 0.295 0.4 0.47
0.29 0.35 0.46
0.25 0.285)
03 0.45
02 0.28 0.95 -
0.275 P 0.44
0.15 0.27 o2 043
01 0.265 - i 042
0.26 - 0.1 -
005 0.255 - 0.05 0.41
0 . 0.25 - 0 . 0.4
NVMFS nilfs2 NVMFS nilfs2 NVMFS nilfs2 NVMFS nilfs2
(a)IOZONE (b)FIO (c)Postmark (d)Filebench

Fig. 11. Cleaning efficiency while running different workloads under NVMFS and nilfs2
[11] P. M. Chen, W. T. Ng, S. Chandra, C. Aycock, G. Rajamani, and [20] S.-W. Lee, D.-J. Park, T.-S. Chung, D.-H. Lee, S. Park, and H.-J. Song,

D. Lowell, “The rio file cache: surviving operating system crashes,” “A log buffer-based flash translation layer using fully-associative sector
in ASPLOS, 1996. translation,” ACM Trans. Embed. Comput. Syst., vol. 6, no. 3, 2007.
[12] J. Guerra, H. Pucha, J. Glider, W. Belluomini, and R. Rangaswami, “Cost ~ [21] S. Lee, D. Shin, Y.-J. Kim, and J. Kim, “Last: locality-aware sector
effective storage using extent based dynamic tiering,” in FAST, 2011. translation for nand flash memory-based storage systems,” SIGOPS Oper.
[13] A. Gupta, Y. Kim, and B. Urgaonkar, “Dftl: a flash translation layer Syst. Rev., vol. 42, no. 6, pp. 3642, Oct. 2008.
employing demand-based selective caching of page-level address map- [22] D. Narayanan and O. Hodson, “Whole-system persistence,” in ASPLOS,
pings,” in ASPLOS, 2009. 2012.
[14] A. Gupta, R. Pisolkar, B. Urgaonkar, and A. Sivasubramaniam, “Lever- [23] Y. Park, S.-H. Lim, C. Lee, and K. H. Park, “Pffs: a scalable flash
aging value locality in optimizing nand flash-based ssds,” in FAST, 2011. memory file system for the hybrid architecture of phase-change ram
[15] X.-Y. Hu, E. Eleftheriou, R. Haas, I Iliadis, and R. Pletka, “Write and nand flash,” in SAC, 2008. i) _
amplification analysis in flash-based solid state drives,” in SYSTOR, [24] M. Rosenblum and J. K. Ousterhout, “The design and implementation of
2009. a log-structured file system,” ACM Trans. Comput. Syst., vol. 10, no. 1,
[16] J. Jung, Y. Won, E. Kim, H. Shin, and B. Jeon, “Frash: Exploiting pp. 26-52, Feb. 1992. .
storage class memory in hybrid file system for hierarchical storage,” [25]1 G. Soundararajan, V. Prabhakaran, M. Bale.lknshnan,”apd T. Wobber,
Trans. Storage, vol. 6, no. 1, pp. 3:1-3:25, Apr. 2010. “Extending ssd lifetimes with disk-based write caches:Z in FAST, 2010.
[17] J. Katcher, “Postmark: A new file system benchmark,” technical Report [26] A.-I. A. Wang, G. Kuenning, P. Reiher, and G. Popek, “The conquest ﬁls
TR3022. Network Applicance Inc. October 1997. ;‘ystemzs]t3etter perflorrznance;hroug;loag dgsfépegsmte;&ggm hybrid design,
[18] A. Kawaguchi, S. Nishioka, and H. Motoda, “A flash-memory based rans. storage, vol. z, nO. 3, pp. —>40, Aug. -
file syster%l,” in Proceedings of the USENIX 1995 Technical Co%‘erence [27] X. Wu a;nd A. L. N. Reddy, “Scmfs: a file system for storage class
Proceedings, 1995. memory,” in SC, 2011.

[19] H. Kim and S. Ahn, “Bplru: a buffer management scheme for improving
random writes in flash storage,” in FAST, 2008.

