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Abstract—Designers of storage and file systems use I/O traces
to emulate application workloads while designing new algorithms
and for testing bug fixes. However, since traces are large, they
are hard to store and moreover inflexible to manipulate. Thus,
researchers have proposed techniques to create trace models
in order to alleviate these concerns. However, the prior trace
modeling approaches are limited with respect to 1) number of
trace parameters they can model, and hence, the accuracy of the
model and 2) with respect to manipulating the trace model in both
temporal and spatial domains (that is, changing the burstiness of a
workload, or scaling the size of the data supporting the workload).
In this paper we present a new algorithm/tool called Paragone
that addresses the above mentioned problems by fundamentally
re-thinking how traces should be modeled and replayed.

I. INTRODUCTION

Leveraging traces to emulate application workloads for
testing out new algorithms or bug fixes has become a common
practice amongst system architects. However, traces are hard
to use because 1) they consume a lot of resources when repre-
senting workloads over an extended period of time 2) they are
hard to change if one wants to emulate new workload behavior
and 3) it is difficult for someone to get a macroscopic view of a
workload with respect to its read/write ratio, random/sequential
ratio etc.

A. Related Work

In order to overcome the above mentioned deficiencies
associated with traces, researchers have proposed creating
models from them [2], [4], [5], [8], [10], [11]. These models
are described using workload parameters such as read/write
ratios, random/sequential ratios etc. Quite often, these param-
eters are passed as input to workload generators like Iozone,
FilelO etc. A sizeable amount of previous work also builds
simple models with one or more of the commonly known trace
parameters [2], [8], [11]. After examining and working with
many traces we have obtained key insights that some of the
primary assumptions made by prior art in modeling traces need
to be re-visited:

1) Use of Average Statistics: Prior trace modeling efforts [2],
[8], [11] indicated that a trace model that preserves the average
statistical values of various workload parameters, is sufficient
for studying system behavior for varying concurrency levels or
system loads. However, in order to drive system studies in data
prefetching, cache admission/eviction and workload migration
[6], [7] there is a need to preserve workload properties like
burstiness, sequentiality etc. This, in turn, makes it necessary
to preserve the specific ordering in I/O sequences than mere
statistics.
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2) Self-Similarity of Traces: Prior work in trace modeling
assumes that workloads exhibit similar behavior in different
regions of a storage LUN/Volume [4], [5]. Our experience
has shown that this assumption varies across applications and
especially does not apply when many virtual disks share an
underlying storage LUN. One cannot simply state that the
workload characteristics observed on a 100GB LUN can be
reproduced on a 10GB LUN, by chopping-off the I/Os to
region beyond 10GB.

3) Manual Detection of Trace Regions: A workload’s be-
havior varies over a period of time (regions). Prior art [2], [8],
[11] expects users to manually partition a trace into regions
in order to evaluate and create region specific trace models.
We found that manually coming up with a region size besides
being time consuming is many a times error prone. In order to
address the challenges listed above, we looked at the existing
trace modeling work, and then asked fundamental questions
about how to a) parse a trace b) represent a trace as a model
and c) re-generate the workload using the created trace model.
We felt that innovation was required in all of these three areas.

II. TECHNIQUES

Figure 3 shows the component diagram of Paragone. In this
section we provide an intuitive overview for these steps with
a special focus on the components where we are proposing
something novel.

Auto-Regression Segmenter: Workload phase changes often
manifest themselves as significant changes in the distributions
of one or more spatial attributes. Paragone leverages the
technique of Auto Regression (AR) for trace chunking. In the
auto regression model for a time series of an I/O attribute X ,
a subset of the time series (X;) is represented as polynomial
function of the same time series minus the most recent data
point (z;—1). The time series window is progressed each time
by a fixed number of I/O’s (sliding window). The trace is
segmented with respect to the corresponding I/O attribute if
the difference (Euclidean distance) between the polynomial
functions of the consecutive partially overlapping time series
vary more than 20%. In other words, for an attribute X each
of the coefficients of the corresponding polynomial function
would represent the contribution of a particular value of X
to the overall function. Any change in the distributions of X
would reflect in either the degree or the coefficients of the
polynomial.

Distributions lack information on the temporal order of
the values taken by an attribute X. Ordering is important
when it comes to synthetic regeneration of workloads for
validation of prefetch algorithms and in simulating the exact
disk bottlenecks. Markov chain has been known for a long
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Fig. 1. Seek distance densities and dimension mapper detected boundaries

time as a technique for order preservation. The size of the
Markov chain however, would be quadratic in the number of
attributes and the range of values per attribute. Hence the
use of Markov chain would limit the number of workload
attributes one can model. This limitation leads to two new
challenges: 1) Summarize continuous values of attributes into
discrete categories 2) Reduce the number of spatial attribute
by modeling the “key” trace attributes. Former would reduce
the complexity by a factor whereas the later would reduce it
by a order of magnitude. These challenges create a need for
the following logical blocks in Paragone.

Dimension Mapper: For attribute categorization Paragone
adopts a simple method of densities for all the modeled
attributes. In this method contiguous area of identical attribute
value densities is considered as a bucket and assigned an id.
Figure 1 shows the various buckets for seek distances formed
by Paragone over its density graph. Discretization of attributes
based on their density maps relaxes the scaling overheads
associated with the size of the Markov chain.

Paragone Atom: We leveraged a variant of independent
component analysis (ICA) that is widely used in the informa-
tion/coding theory area called the Mutual Information [1] (MI)
for the redundant dimension elimination. Figure 2 illustrates
categorical values (derived from the Dimension Mapper) taken
by I/O Size and LUN offsets over a small time interval in the
UMASS (Table II) trace. For every single category taken by
an I/O size there are one or more fixed categories taken by
the LUN offsets. MI treats every attribute as being a time
varying signal. Paragone overlays two signals at a time to
find the degree of coherence in their patterns. This degree of
coherence between the two signals is termed as mutual in-
formation. Paragone leverages the Hierarchical Agglomerative
Clustering (HAC) to preserve inter-attribute coupling within
the non-redundant dimensions. Post clustering, each of the I/O
attribute values are mapped to one of the distributions like
Gaussian, Normal, Gamma, Uniform, Linear and Constant. If
the underlying distributions do not fit any of these distributions,
Paragone models them using piece-wise similar empirical
distributions (EPdf). In Section IV we highlight the importance
of these methods within the Paragone Atom experimentally.

Trace Regenerator: It reads what-if configurations from a
Paragone config file, manipulates the Paragone trace model
in-memory and regenerates a new workload trace. At present
Paragone supports the following what-if capabilities:

1) Multi-threading: Since the model is read-only, several
non-blocking calls can be made independently to the same
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Markov state simultaneously by spawning multiple threads

2) Time scaling: This implies running the entire trace
x times faster/slower by issuing the requests in the trace
according to the scaled timestamps

3) Space scaling: This will be discussed in Section IV.
Replay is done by a separate tool, which is not a part of
Paragone.

In Paragone, an average trace I/O regeneration time is in
the order of microseconds. Once generated, Paragone can send
the I/O to the underlying block device using its trace replay
interface, which is yet another user space application in the
same VM.

III. PARAGONE ATOM IMPLEMENTATION DETAILS

In this section we discuss the specific implementation
details of Paragone Atom which is the prime model building
component of Paragone.

Paragone Atom: Atom leverages the Mutual Information (MI),
Markov models, Hierarchical Agglomerative Clustering (HAC)
and Empirical PDFs (EPdf).

Mutual Information: Atom constructs a multi-dimensional
matrix with each of the spatial attributes as dimensions and
their categories as the respective dimension ranges. A cell in
the matrix corresponds to an I/O with spatial attribute values
represented by its position in the matrix. If an I/O A precedes
I/0 B in the workload trace, we create a directed link from
cell A to cell B. Probability of a directed edge from A to B is
computed as the ratio of its edge weight and the sum total of
weights of edges outgoing from A. When an I/O reaches cell
B the cell count of B is incremented by 1.

Mutual Information (MI) between two spatial attributes X
and Y is defined as:

MI(X;Y) =Y Zw’yﬂf)gm .
yeY zeX

where p(X,Y) is the joint probability distribution function of
X and Y, and p(X) and p(Y) are the marginal probability
distribution functions of X and Y respectively. p(X=x,Y=y)
is computed as the number of times attribute X takes bucket
id x, attribute Y takes bucket id y, divided by total number of
I/O’s in the trace. Paragone Atom computes MI between every
pair of attributes. Transitive pairs (two or more attributes) with
equal MI values are grouped together to form an MI group.
Hence an MI group can have two or more attributes. In all of
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the traces analyzed by us (Table II) we found that either MI
groups show very high or extremely low (below 1) MI values.
For those groups with high MI, Paragone Atom chooses a
representative attribute and drops the rest. In the case of groups
with negligible MI values, Atom includes every attribute that
has not appeared in groups with high MI value.

Markov Models: The multi-dimensional matrix constructed
by the Dimension Mapper is the representation of the Markov
chain in Paragone. Post MI, Paragone collapses the cell counts
for the deleted cells into the corresponding non-deleted cells.
Every transition either between the two deleted cells or be-
tween a deleted and a non-deleted cell is re-mapped to a self-
transition to the corresponding non-deleted cell.

HAC and EPDF We use the HAC’s single link algorithm. The
algorithm terminates when optimum number of clusters have
been obtained using the Davies Bouldin index. Post clustering,
Paragone fits data corresponding to each attribute within a
cluster to the best known distribution function. After mapping
to the best known function, Paragone reproduces some I/Os
within the same cluster and compares them with actual data
points offline. An error within 10% in terms of the spread of
the data items is considered fine. In case the error is beyond
10%, Paragone uses a built in library of Matlab called the
“empirical Pdfs” to segment attribute values within a cluster
and fit piecewise similar functions.

IV. EVALUATION

In this section we present four sets of experiment results
that 1) evaluate the benefits of various Paragone optimizations
2) validate how Paragone preserves trace sequentiality 3)
validate how Paragone preserves I/O burstiness and 4) assess
Paragone’s accuracy in space scaling. We ran both the original
traces and the Paragone model regenerated traces via a Linux
based VM client with 2GB memory, 100MBps network and
storage server, with SAN support, 6GB memory, 1 TB volume
with 7500 rpm disks and 1GBps network. We took care to
ensure that the storage server state was reset in order to prevent
biasing of the results due to cache warm up and on-disk data
layout differences. We replayed original as well as regenerated
traces using a trace replayer written by our group.

We define a penalty figure for each metric in (Table I) as
the root mean square of the horizontal distance between the
CDFs for original and regenerated workloads. We avoided the
use of metric averages as a similarity measure because they
tend to summarize interesting time varying trends into values
which can give a fake illusion of accuracy.

Experiment 1: Baseline

We ran three different variants (called V1, V2 and V3) of
Paragone on five different traces from Table II. V1 with

Markov Model ~ Manipulation
functions
A 4
| |
Paragone Trace e | Trace replayer |
Atom Regenerator v
Statistical
model file
TABLE 1. METRICS AND PENALTY FIGURES (%) FOR BASELINE
. Penalty figures as %
Metrie Algo- | \sRp | MSR-W | UMASS | 0G2 | AN2
— ) Vi 3 6 3 5 7
Per disk write IO size (A) VS " 5 " s 0
v3 1 10 3 8 5
Per disk read IO size (B) \\g ]; ]z l;‘ 23 1?
V3 9 12 10 11 6
e Vi 7 5 3 3 3
Read Size () v2 14 10 12 15 10
v3 8 10 12 12 8
e VI 7 B 7 3 7
Write Size(D) V2 14 12 9 14 9
V3 8 12 11 10 6
Vi 5 B 7 3 3
Read Latency (E) V2 23 21 24 12 17
V3 14 17 10 8 1
Write Latency (F) 1//; 12 zz 12 1? 18
v3 1 24 13 9 10
Read ahead total (G) X; 2; 2? Zi lg };
V3 14 17 10 8 1
Read ahead Sequential (H) zé 2? Ig |(3J I;J i;
V3 18 10 9.7 10 1
Read ahead Random (I M g - " 2 M
v3 17 2 103 1 9
Cache working set size (J) X; ]-/2¢ 12 li 2; 12
V3 12 14 109 16 12
— Vi 5 B 5 6 7
Cache hit ratio (K) v ; 1 0 e 2
V3 14 13 9 10 8
Vi 7 5 3 2 5
read Ops (L) v2 10 10 1 15 9
V3 10 9 9 10 9
- Vi 5 7 7 3 55
Wiite Ops (M) V2 1 8 13 13 10
v3 9 8 9 8 8
CPU Utilization (N) z; ]; ]f l; 13 :
v3 1 10 10 7 6
TABLE II. DESCRIPTION OF TRACES
Label Workload Trace Trace | Trace Paragone
Type dur. size source % space
(weeks) | MB saving
MSR-P | proj dir 2 1600 [3] 94
MSR-W | Webserver 2 276 [3] 96
UMASS | Financiall 0.5 155 9] 90
0Gl Gas & Oil 20Hrs 137 customer | 85
0G2 Gas & Oil 1 256 customer | 95
ANI1 Animation 0.2 201 customer | 90
AN2 Animation 1 197 customer | 85
HT1 Terasort 0.1 387 customer | 90
AS1 log analytics | 1.3 256 customer | 96

MI+HAC+EPdf, V2 with only MI+Gaussian distribution, and
V3 with MI+HAC+Gaussian distribution. Our goal is to prove
that the various algorithmic steps (Section III) taken in the
Paragone atom are indeed very essential. Table I lists the
penalty figures for the various metrics for the three variants.
V1 is the algorithm presently implemented in the Paragone
Atom and reports penalty figures only as high as 5% in the
average case. This implies over 95% accuracy. As in table
I, V1 also compressed the trace by minimum of 85% and
in most cases even higher. V2 and V3 are the non-optimized
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versions of Paragone Atom which lack one or more techniques
described in Section III. V2 shows penalty figures as high as
25%. V3 performs better than V2 but as we see V1 gives the
best results.

Comparative approach implementation We have attempted
to compare Paragone re-generated workloads in the subsequent
experiments with those generated by benchmarks using a
technique very similar to that published in this field [10]. The
algorithm described in [10] chunks the trace every 10 seconds
into segments. Post chunking, the paper adopts an incremental
method of merging similar segments based on a threshold
to reduce workload emulation overheads. Since we are not
comparing the emulation overheads here, we operated at 10
seconds segments. Post segmentation the model extracts pa-
rameters like: I/O sizes, Read/Write%, Random/Sequential%.
In the paper [10] there is no mention of whether the values of
model parameters are fed as Averages or emulated using em-
pirical distributions within the load generators like File Bench.
In the absence of an ability in these benchmarks (Iozone/File
Bench) to the best of our knowledge to emulate distributions
we resort to using averages. We used our own I/Ozone like
internal benchmark and patched it with functionalities at par
to the latest I/Ozone version offerings so that the inputs and
the behavior are comparable.

Experiment 2: Sequentiality Modeling Sequentiality refers
to accessing consecutive block addresses in a LUN. Typically
sequential patterns are interleaved by other sequential or
random accesses. This is quite true in the case of multiple
VM’s mapped to the same storage LUN (multi-tenancy) or
several simultaneous client streams accessing the LUN (multi-
threading). Figure 4(a) shows LUN access patterns in a Tera-
sort application running on a Hadoop cluster (HT1) accessing
our storage. Access patterns within different LUN regions
are self-similar but quite different across locations and are
interleaved over time. For regeneration, one has to satisfy
the following key properties 1) group regions of self-similar
access patterns 2) model the length of sequential access as a
distribution 3) model request arrival rates within and across
self-similar regions.

Firstly, we regenerated the HT1 workload using our internal
benchmark with technique described above as shown in the
Figure 4(c). Property 1 was simulated by manually detecting
and creating multiple files each corresponding to a region
of self-similar access patterns. Each file was mapped to a
new benchmark instance. Neither lozone/File Bench nor our

internal benchmark accepts seek distance as an input. As a
result the LUN offset location for each random I/O in the LUN
region was randomly chosen by the benchmark. We extracted
the penalty figures for the original, Paragone regenerated and
regenerated using the comparative approach and observed that
penalty figures for the benchmark were as high as 25% when
compared to the original.

In Paragone, seek distances as well as the request inter-
arrival times are parameterized. Interleaving of accesses at
different LUN offsets are handled by means of transitions
between Markov states. In Figure 4(b) (Paragone model re-
generated trace) we see that the spatial as well the temporal
aspects of the workload are well preserved with the penalty
figures for the specific metrics being only as high as 8%.

Experiment 3: I/O Burst Modeling In multi-tenant deploy-
ments, taking care of the workload bursts is a major challenge.
Workload OG1 (Table II) is from a customer dealing with oil
and gas.

Figures 6 and 5(a) show a staircase pattern of request
arrivals in OG1. Each step represents a burst. Vertical distance
between two consecutive steps represents a no-activity or idle
interval. In order to faithfully reproduce the burst pattern we
need to satisfy the following properties: 1) model the step
lengths as a distribution 2) model the length of the idle or low
activity periods as a distribution.

Benchmarks do not model request inter-arrival times and
mostly follow a closed loop arrival model. We modified our
internal benchmark to expose Gaussian as well as Poisson
pattern of arrivals as a function argument. Figure 6, shows
requests generated by the benchmark, using the comparative
approach discussed above. There are no distinct burst and
idle periods in Figure 6, as two periods interleave too often
in a 10 seconds time window in the original workload. We
also found it impractical to switch benchmark instances with
different request arrival distributions in less than 10 seconds.
This fetched the benchmark a minimum regeneration penalty
figure of 15%. Paragone models the entire trace interval as one
model because, though auto-regression detects that inter-arrival
times (during the bursty and idle periods) follow different
distributions, the distributions themselves do not change. A
transition to and from idle period (OG1) to a bursty period
is modeled as a separate distribution by the Paragone Atom
which takes care of the above mentioned properties of burst
modeling. Figure 5(a) overlay the Paragone reproduced request
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arrival patterns over the original trace. The maximum penalty
figures for the Paragone regenerated trace was as low as 5%.

Experiment 4: Space Scaling Given a trace, Paragone can
scale it up or down spatially or temporally and addresses some
of the existing limitations of scaling in the state of the art
[12]. During trace scale up, we expect the same region of the
LUN to expand so that the disk/network bandwidth or file
access related bottlenecks start showing up. Due to the space
limitation we only show results of workload scaled down for
a trace segment of MSR-W workload in Figure 5(b).

Scaling down a trace would mean reducing the total
number of files stored on the LUN by x% with corresponding
reduction in the I/O load. In this experiment we use a scaling
factor of 0.5. The LUN offset categories of the workload
derived by the Dimension Mapper for the original trace in
Figure 5(b) are re-mapped to newer scaled down offsets by
the regenerator. During this regeneration, Paragone reduces
the intensity of I/O’s by the scaling factor analogous to the
reduction in the number of workload clients. Since the seek
distance and request I/O size metrics are preserved, if any I/O
request generated by the regenerator falls beyond the resized
boundary for any LUN location, it is ignored (foul I/O). Figure
5(c) shows the corresponding scaled trace. It was observed that
Paragone generated almost half the number of I/O in the same
interval in this case.

In reality, we can only assume that if the LUN size
decreases/increases by a factor of x, the number of files and
hence the request intensity will approximately scale by factor

of x. Paragone is unique and first of its kind in regenerating a
scaled up/down trace to benefit storage engineering activities.

V. CONCLUSION

In this paper we presented an algorithm/tool called
Paragone that advances the state of the art in block I/O trace
modeling by solving the following key challenges: 1) How to
preserve the sequential patterns present in a trace in the model
representing the trace 2) How to preserve I/O bursts and 3)
How to manipulate the trace model to scale between the size
of datasets (LUNSs) in the actual trace versus the different sizes
the users want to emulate via the model. In this paper we have
combined a number of existing statistics based data analysis
techniques in a novel manner to create Paragone. We tested
our algorithm using many traces and our results show that our
techniques in general lead to less than 5% error in the accuracy
of the trace model. In future, we plan to extend our work to
file I/O traces.
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