
DRepl: Optimizing Access to Application Data for Analysis and Visualization

Latchesar Ionkov
Los Alamos National Laboratory

lionkov@lanl.gov

Michael Lang
Los Alamos National Laboratory

mlang@lanl.gov

Carlos Maltzahn
University of California, Santa Cruz

carlosm@cs.ucsc.edu

Abstract—Until recently most scientific applications pro-
duced data that is saved, analyzed and visualized at later
time. In recent years, with the large increase in the amount of
data and computational power available there is demand for
applications to support data access in-situ, or close-to simula-
tion to provide application steering, analytics and visualization.
Data access patterns required for these activities are usually
different than the data layout produced by the application.
In most of the large HPC clusters scientific data is stored in
parallel file systems instead of locally on the cluster nodes.
To increase reliability, the data is replicated, using standard
RAID schemes. Parallel file server nodes usually have more
processing power than they need, so it is feasible to offload
some of the data intensive processing to them. DRepl replaces
the standard methods of data replication with replicas having
different layouts, optimized for the most commonly used access
patterns. Replicas can be complete (i.e. any other replica can
be reconstructed from it), or incomplete. DRepl consists of
a language to describe the dataset and the necessary data
layouts and tools to create a user-space file server that provides
and keeps the data consistent and up to date in all optimized
layouts. DRepl decouples the data producers and consumers
and the data layouts they use from the way the data is stored on
the storage system. DRepl has shown up to 2x for cumulative
performance when data is accessed using optimized replicas.

Keywords-data storage; data replication; fault tolerance;
exascale; DISC

I. INTRODUCTION

The amount of data produced by scientific applications
increases with the aggregate memory size of the high-
performance supercomputers they run on. Future exascale
systems will require hundreds of petabytes storage just to
satisfy the need for scratch space [1]. It may be prohibitive
to transfer all data produced by exascale simulations outside
of the compute cluster. These issues made in-situ and close-
to analytics and visualization solutions an important research
topic. Analyzing and steering the simulation while it is
running can reduce the resources (both computational and
storage) used. In most cases the visualization and analytics
applications need a small part of the data produced by
the scientific application, but because the data layout is
optimized to increase the performance of the simulation,
finding and reading the required data is slow and may
interfere with the data producer.

To improve data availability and reliability, storage sys-
tems use some form of data replication. Most commonly a

variant of RAID [2] is used. The advantage of using RAID
is that it is well supported, including in hardware. Each
replica uses additional storage and requires more electrical
power, but because all replicas are identical, these systems
usually don’t use the multiple replicas to improve storage
performance. The storage nodes are getting smarter, with
faster CPUs and more cores, even though they are not fully
utilized. With “cheap” and available computational power,
it makes sense to have replicas with different data layouts.
The data producers and data consumers can use the replica
that is best optimized for their access pattern.

DRepl tries to improve the performance of the visual-
ization and analysis tools while keeping the amount of
storage and reliability guarantees the same as when using
other data replication mechanisms. DRepl is transparent to
the applications and doesn’t require any modifications. It
runs as a file server that provides different files for each
layout of the data desired. The data layouts (views) can
be stored in a file (replica) on the underlying parallel file
system (materialized), or can be virtual (non-materialized).
If a view is materialized, reading from its file reads the data
from the real file on the parallel file system. Reading from
non-materialized view uses data from one of the materialized
views and converts the data on the fly. When writing data
to a view, DRepl updates all replicas. Depending on the
concurrency model, the updates can be synchronous or
asynchronous.

DRepl defines a language that is used to describe the
dataset, views and replicas. The description is used to
generate source code to convert between data layouts. The
code produces a user-level 9P2000 [3] file server. This
approach allows support for legacy scientific applications,
without any modifications in their code. As long as one of
the views matches the legacy data layout, the application can
continue to work as before, even if the replicas store the data
in a more portable and convenient layouts, like HDF5 [4]
or NetCDF [5].

DRepl allows flexibility that might be used in future stor-
age architectures that implement burst-buffer [6] schemes.
A burst-buffer is a type of hierarchical file system designed
to reduce the number of checkpoints sent to the parallel
file systems. Sitting between the node and the parallel file
system, the burst-buffer is high-speed temporary storage for

978-1-4799-0218-7/13/$31 c© 2013 IEEE

quick depositing of multiple checkpoints with only a fraction
of them being moved to the parallel file system. Burst-buffer
nodes can run the DRepl file server, providing transparent in-
transit access to the data for the visualization and analytical
applications in the appropriate format.

We implemented a prototype of DRepl and compared it
with a baseline hand-optimized proof-of-concept system.

The results show improvements in the cumulative perfor-
mance when data is stored in multiple replicas and the data
is accessed from the replica that has its layout optimized
for the particular access pattern. Our prototype still needs
more work to get performance closer to the hand-optimized
system.

The chief contribution of DRepl is to provide optimized

access from various applications to the same dataset. DRepl

decouples the data producers and consumers and the data

layouts they use from the way the data is physically stored

on the storage system. The rest of the paper is laid out
as follows, immediately following this introduction is the
Design section details the DRepl language and replication
system. Next is section III which exposes how DRepl
transforms data from the language definition to the various
views and replicas. In section IV performance data is shown
for two implementations of DRepl, one user-space and one
kernel-space, against two other hand coded file servers.
Finally the Related work, Conclusions and Future work
sections finish the presented research.

II. DESIGN

The goal of DRepl is to provide ways for replicating
scientific datasets in semantically consistent way, so tools
with different access patterns can use a custom replica that
allows the fastest access. In order to do that, DRepl needs
semantic knowledge of the data read or written by the
application.

Some of the existing libraries allow developers to pro-
vide partial, or full description of the scientific dataset.
For example, developers using MPI-IO [7] can specify the
MPI types of the data accessed. HDF5 goes even further,
allowing description of the whole data model, where the
data elements have names and can be organized in groups.
The drawback of using these libraries is that they require
significant changes in the code base. Furthermore, describing
dataset with their API is often quite verbose and not easily
readable.

DRepl is a research project that will allow experimen-
tation with different levels of replica consistency and syn-
chronization. In order to achieve this, we need to decouple
its behavior from the way the application accesses its data.
DRepl also needs to be unobtrusive and yet easy to use by
the application developers and researchers.

Instead of providing an API to define the dataset (or
adopting one of the existing ones), we decided to create a
declarative language that allows definition of dataset, views

of the dataset, as well as, replicas that store the dataset on
persistent storage. Using specific language allows expressive
and easy to understand definition of datasets. In order to
ensure familiarity, we chose syntax similar to the syntax of
type and data declarations shared by many of the popular
languages like C, C++, Java, etc.

We distinguish three major entities related to data and the
way it is used and stored. Dataset is an abstract definition
that describes the data types and data objects that are of
interest of any application, regardless of whether it is a
producer or consumer of the data. View is a subset of the
dataset that defines the parts of the data that are of interest
of particular application, or set of applications. If the data is
accessed as file(s) from the file system, the view may also
define the order the data objects are laid out in the files.
Replica is a subset of the dataset that is persistently stored
on a storage system. A replica is full if it contains all the
data from the dataset, or partial if it contains only part of it.
If stored on a file system, the replica also defines the layout
of the data.

Using separate language allows us to decouple the dataset
definition by the way various tools and applications see
and access the data. The dataset defines the abstract data
model which can span across data generated by multiple
simulations and sources. Each application can have its own
private view of the data, or subset of the data. The actual
layout of the data as stored on the file system can be
decoupled from some (or all) of the applications. Legacy
applications can still read and write data in the format they
use even though the data is stored in HDF5 or other standard
scientific format.

The DRepl language allows definition of datasets, views
and replicas. In order to allow legacy data access, DRepl acts
as virtual file system that contains separate files for each of
the defined views. The data from the dataset is backed to
the specified replicas. The application reads from one of the
view files on the virtual file system and DRepl reads one
or more of the underlying replicas to satisfy the request.
Writing to a view file is translated into one or multiple writes
to the replica files. Figure 1 shows an example of a dataset
produced by two simulations, Sim1 and Sim2 and accessed
by two other applications, Viz1 and A1. The data is stored
in three replicas, with the A, B, C, and D parts having two
copies each. DRepl is managing the three replicas to provide
the custom views the four applications have defined. As you
can see DRepl has a lot of freedom in producing the views
and can optimize for load balancing replicas, to prioritize
the view of an application or to maximize data resilience,
for example.

The rest of this section defines the syntax and the seman-
tics of the DRepl language.

A. DRepl Language

The DRepl language includes definition of datasets, views
and replicas. It allows definition of custom types based on a
set of primitive types, as well as composite types as arrays
and structs. It’s syntax is loosely based on the type and
variable definition in the Go language, which is similar
to the type and variable definitions in C, C++ and Java.
The language is designed to allow representation of native
application datasets with complex views to allow visual-
ization and analytics optimized access to data of interest.
NetCDF [5], HDF5 [4] and the data formats from local large-
scale HPC applications were investigated to ensure good
representation of real datasets.

The content of a DRepl definition file can be divided into
three main sections: dataset definition, view definitions, and
replica definitions.

1) Dataset Section: The dataset section defines the types
that are used in the dataset as well as the variables that make
up the dataset. The dataset section is an abstract description
of the dataset but it doesn’t define the way the elements in
multidimensional arrays are laid out (row-major, row-minor,
z-order, etc.). These specifics are defined when views are
described based on the dataset.

Primitive Types: DRepl defines 7 primitive types:
int8 1-byte signed integer
int16 2-byte signed integer
int32 4-byte signed integer
int64 8-byte signed integer
float32 single-precision floating point number
float64 double-precision floating point number
string[0-9]+ variable size string of characters

DReplFS

ABC

BAC

B

CD

ABCD AB CD

Sim2

Sim1

Viz1 A1

Figure 1: Example of DRepl being used by four applications
and storing the data in three replicas

The suffix of the string type defines the maximum size of
the string that can be stored in variables of the type.

PrimitiveType = "int8" | "int16" |

"int32" | "int64" | "float32" |

"float64" | "string"

Structs: Multiple elements can be arranged in a struct.
A name needs to be assigned to each of the elements.

StructType = "struct" "{" { FieldDecl ";" } "}"

FieldDecl = IdentifierList Type

IdentifierList = identifier { "," identifier }

Example:

struct {

a float64

b, c float32

}

Arrays: Array is a numbered sequence of elements of
the same type. Arrays can be single- or multi-dimensional,
of fixed or variable size. Only one of the dimensions of a
multi-dimensional array can be of variable size. Instances
of the variable-sized arrays need to specify a variable that
stores the size of the array.

Variable-sized types can’t be used as element types.

ArrayType = "[" ArrayLengths "]" Type

ArrayLengths = Expression { "," Expression }

The Expression in ArrayLengths can be arith-
metic expression containing integer constants (named or
unnamed), or it can be the name of an already defined integer
variable. In the latter case, the variable contains the size of
the array in that dimension.

In the example below, b is a two-dimensional 5×5 array,
and c is variable-sized array with size stored in the sz

variable.

var sz int32

var b [5,5]float64

var c [sz]float32

Named Types: The user can assign names to the defined
custom types. The names allow usage of ”shortcuts” when
a type is often referenced.

TypeDecl = "type" identifier Type

2) Types:

Type = identifier | CustomType

CustomType = ArrayType | StructType

Unlike most languages, DRepl allows types to be refer-
enced before they are defined, so there is no need for forward
declaration mechanisms.

Variables and Constants: A variable is a named in-
stance of a type. The names of the variables need to be
unique.

Constants are named values that can’t change. They don’t
use storage space.

VarDecl = "var" IdentifierList Type

IdentifierList = identifier { "," identifier }

ConstDecl = "const" identifier "=" Expression

Dataset: A dataset is the top-level construct in a
dataset section. Dataset is a collection of types, variables
and constants.

Dataset = "dataset" "{"

{ TypeDecl | VarDecl | ConstDecl } "}"

The example below defines a one-dimensional array
whose elements have three 32-bit float values:

dataset {

const N = 1000000

type Point struct {

a, b, c float32

}

var data [N]Point

}

3) View Section: Views define subsets of the dataset. Data
in a view can be accessed by read and write operations on
the virtual file provided by the DRepl file server. If a view is
stored as part of a replica, the view is materialized. Reading
data from materialized views is fast, but there is performance
penalty when the data is modified due to the need to update
replicas.

No new types can be defined in the view section, unless
they are sub-types of types defined in the dataset section.
The user can define substructs, i.e. structs that contain only
some of the fields of a dataset struct, or slices – parts of an
array type defined in the dataset section.

The variables define in the view are based on dataset
variables, providing full, or partial content of the dataset
variable. Each view variable is of the same type as the
variable it is based on, or compatible sub-type.

View Substruct:

ViewSubstruct = "{" { ViewFieldDecl ";" } "}"

ViewFieldDecl = IdentifierList ViewType

Example of usage of a view substruct:

var b [] {

b

} = data

The view variable b defines an array with the same size
as the dataset array data, but each element of the array
contains only the field b from the original data elements.

View Slice: The view slice contains only some of the
elements of an original dataset array.

ViewSlice = "[" SliceLengths "]"

SliceLengths = Expression { "," Expression }

The Expression in the slice length definition can be
arithmetic expression containing temporary variable names
that are used to express which elements from the array are
included in the slice. For example, the snippet below defines
a view variable that contains every 5th element of the data
array.

var d[i] = data[i*5]

Named View Types: As in the dataset section, the user
can assign a name to any defined view type, in order to
simplify the view definition. The example below shows the
definition of type Subpoint that is based on dataset type
Point but contains only fields a and c.

type Subpoint {

a, c

} Point

4) More Complex Examples: A view variable d that
contains only the b fields of every 3rd element of data:

var d [i] {

b

} = data[i*3]

The same result with defining view type:

type PointB { b } Point

var d [i]PointB = data[i*3]

The temporary variables used for defining slices don’t
have to be used for the same dimension across the slice
definition. For example, in order to reverse the column and
row order in a two dimensional array, one can use:

var d [i,j] = a[j,i]

View Declaration: The view declaration defines a view.
Each view has a name that corresponds to the name of the
virtual file that allows access to the data in the layout defined
in the view definition body. Additionally, a number of flags
can be specified that control the element order in arrays as
well as if the view can be used to update the dataset. The
data in the dataset can’t be updated via read-only views.

ViewDecl = "view" identifier ReadOnlyFlag

ElementOrderFlag "{"

{ ViewTypeDecl | VarTypeDecl } "}"

ViewDecl = "view" FileName

ReadOnlyFlag = "read-only" | <nothing>

ElementOrderFlag = "rowmajor" | "rowminor" |

"default"

The view can be defined in the same file as the dataset,
or it can be defined in a separate file and the file name can
be specified to include to content of the file while parsing
the dataset definition.

In future, the view declaration will also allow flags that
allow control over the endianness of the data in the view.

5) Replica Section: Replica sections define how the data
from the views is stored on the underlying storage system.
Replica is a sequence of one or more views. Each replica has
a name that corresponds to a filename on the file system. The
replicas can be complete or incomplete. A complete replica
contains all the data from the dataset. If the views included
in the replica contain only part of the dataset, the remaining
data is appended at the end of the replica file to ensure a
complete replica. The layout of the additional data is not
defined and may change with the implementation.

Each materialized view has to belong to at least one
replica. The views that are not part of any replica are non-

materialized and when they are read, the data is transformed
on-the-fly from one or more of the materialized views. On
writes to non-materialized views DRepl updates all relevant
replicas.

ReplicaDecl = "replica" identifier

CompleteFlag "{"

{ ReplicaView} "}"

ReplicaDecl = "replica" FileName

CompleteFlag = "complete" | <nothing>

ReplicaView = "view" identifier

III. IMPLEMENTATION

The DRepl implementation consists of three main mod-
ules: DRepl language parser, replication engine and a file
server (dreplfs). The parser receives description of the
dataset, views and replicas, and produces internal represen-
tation of the view and replica layouts. The representation is
passed to the replication engine, which uses it to perform
translation to and from the view representations to the
replicas’ format.

We have two implementations – a user-space and a
user/kernel space combined solution. The first implemen-
tation (Fig. 2) is written in the Go language and uses the 9P
file protocol to create a file server in user-space. The second
implementation (Fig. 3) runs the parser in user-space, but the
replication engine and the file system are written as Linux
kernel file systems and run in the kernel. The user-space
implementation can run on more operating systems, but has
performance disadvantages.

 DRepl

dataset {
 var p struct { a,
b, c float32 }
}

view default { var p =
p }
view viz {
 var pa { a } = p
 var pba { b, a } =
p
}

replica default { view
default }
replica viz { view viz }

Parser

Replication
EngineDReplFS

Replicas
Replicas

Replicas
OS

SimulationVizualization

viz

default

S viz:000000

S default:000004

dest

S viz:000004

S default:000000

dest

S viz:000000
dest

dest
T viz:000004

field

field

T viz:000000
dest

T default:000000

dest

field
dest

dest

S default:000008dest

dest

field

field

field

Dataset
Description

Conversion
Map

Figure 2: DRepl user-space implementation

Currently the prototype doesn’t support dynamic addition
and removal of views and replicas. This feature is easy to
implement and will be added in near future.

 DRepl

dataset {
 var p struct { a,
b, c float32 }
}

view default { var p =
p }
view viz {
 var pa { a } = p
 var pba { b, a } =
p
}

replica default { view
default }
replica viz { view viz }

Parser

Replicas
Replicas

Replicas

 OS

Simulation

Vizualization

viz

default

S viz:000000

S default:000004

dest

S viz:000004

S default:000000

dest

S viz:000000
dest

dest
T viz:000004

field

field

T viz:000000
dest

T default:000000

dest

field
dest

dest

S default:000008dest

dest

field

field

field

Dataset
Description

Conversion
Map

Replication
Engine kdreplfs

Figure 3: DRepl hybrid implementation

A. Transformation Rules

The replication engine uses the internal representation of
the collection of views and replicas to implement the core of
the DRepl functionality. The internal representation for each
view consists of a list of byte regions (blocks) as well as
transformation rules on how to transform the data to related
data regions in the other views. In case of unmaterialized
view, the transformation rules describe which regions from
other materialized views are used to retrieve the data for the
region.

While processing the dataset description, for each variable
in the dataset, the DRepl parser locates all related variables
in the view. For each pair of related variables it produces
a map describing how to transform data from one variable
to the other. If a view is marked as read-only, the maps
describing how to transform its variables to others are not
created.

1) Block Types: The layout of the views is defined
as a list of Blocks. All blocks have an offset from the
beginning of the view, size, source block (if it belongs to
unmaterialized view), or a list of destination blocks.

There are three types of blocks required to describe a
DRepl view. The simplest block, SBlock, defines region
that is always read or replicated as a whole entity. All
primitive types are described as SBlocks, but in some cases
the optimizer can coalesce multiple adjacent SBlocks into
a single, bigger SBlock. A TBlock is a collection of other
blocks. It corresponds to a struct composite type in the
DRepl language. Finally, ABlock defines an (multidimen-
sional) array of identical blocks.

2) Conversion Map: The conversion map consists of
block descriptions. Each block has defined size and list of
blocks its data transforms to.

type Block struct {

offset int64

size int64

list of Block

}

For example, Figure 4 shows the conversion map for a
dataset description:

dataset {

var p struct {

a, b, c float32

}

}

view default {

var p = p

}

view viz {

var pa { a } = p

var pba { b, a } = p

}

default

viz

T 0004pba

T 0000pa S 0000

S 0008

S 0004

T 0000p

S 0000

S 0004

S 0008

field a

field b

field a

field a

field b

field c

dest
dest

dest

dest

dest

dest

dest

Figure 4: Example of a conversion table of two views

In this figure you can see that the default view is in the
lower box, with a TBlock that holds the variables a,b,c. The
top box is the viz view. Variable a in the default view gets
two references from the viz view, while element b gets one
reference and element c gets no references from the viz view.

The conversion map for a replica is constructed by con-
catenating the conversion maps for all the views that belong
to it.

3) Updating Data: The dataset can be updated via a
write operation to one of the view files. The write

operations receive as arguments the file offset, the number
of bytes written and the data. The replication engine finds
all Blocks that belong to the specified range and applies the
conversion rules specified in the blocks.

4) Reading Data through Non-materialized View: Non-
materialized, read-write views still have conversion maps
created. Using the (offset, count) pair, the appropriate blocks
are found from the conversion map and the data is copied
from one or more of the materialized views.

B. Replica Layout

Each replica is a separate file, or directory, with name
specified when the replica is declared. If any of the views
of the replica contains variable-sized data, the replica is a
directory with multiple files in it. Otherwise, data for all
views is stored in the same file.

The data from the views are laid out in the order they are
declared in the replica definition. Each view starts at offset
divisible by 8, and padding is added between the views if
the previous view’s size is not divisible by 8.

1) Primitive Types: Each of the primitive types starts at
offset that naturally aligns to its type.

type alignment size
int8 1 1
int16 2 2
int32 4 4
int64 8 8
float32 4 4
float64 8 8
stringN 2 2 + N

The string content is preceded by an int16 value that
specifies the actual length of the string.

2) Structs: The fields in a struct are laid out sequentially
without any explicit padding between them, or at the end of
the struct. The alignment rules for the type of the first field
define the alignment requirements for the struct.

3) Arrays: Elements of an array are laid out sequentially
without any padding between them or at the end of the array.
The alignment rules of the element type define the alignment
requirements for the array type.

4) Variable-size data: Because POSIX file systems don’t
allow insertion of data in the middle of file, DRepl needs
to split replicas that contain variable-size data into multiple
files. A variable-sized type is laid out using the same rules
as any other type. The data defined after the variable-sized
type is stored in a new file.

DRepl uses numerical names for the files comprising
a replica, starting from 0 and increasing by 1 after each
variable-sized data is laid out.

Currently the DRepl prototype doesn’t implement
variable-size data types.

IV. RESULTS

While evaluating the user-space prototype, we wanted to
make sure we isolate implementation choices (like program-
ming language, file protocol, etc.) from the performance
inherent to our design choices.

We created a simple dataset and tested the bandwidth
when reading and writing from it. We wrote a description
of the dataset and three views in the DRepl language and
measured the performance using DReplfs to access the
data. Additionally, we created a hand-optimized file system
written in the same programming language and file protocol
that implements the same dataset. Comparing DReplfs with
the optimized implementation allows the evaluation of the
performance penalty due to the complexity of the DRepl
language and any inefficiencies in the replication engine
implementation. Lastly, we compared the performance to
using a proxy file system, implemented again using the
same programming language and file protocol, but directly
translating the access to the files it serves to the underly-
ing file system. This comparison allows us to isolate the
performance of the chosen programming language and file
protocol from the overhead added from maintaining views
and replicas in DRepl.

A. Dataset

We used a simple dataset in which the scientific applica-
tion stores three values for each “point” of the simulation.
The number of “points” is configurable. We ran our exper-
iments with 168 million points.

struct Point {

a float

b float

c float

}

Point data[N]

B. Views

We define three views (data layouts) of the dataset:
1) Array of Structures (aos):

Point data[N]

2) Structure of Arrays (SOA): Most of the legacy ap-
plications, especially the ones written in FORTRAN, store
separate arrays for each value.

float a[N]

float b[N]

float c[N]

3) Visualization (Partial): In most cases the visualization
requires only some of the values. We chose a visualization
view that contains only an array of the b values.

float b[N]

C. File servers that provide multiple data views

When the file servers are mounted, they provide access to
three views of the data:

SOA Data in legacy format (structure of arrays). First 4∗
N bytes contain the data for the array a, followed
by 4 ∗ N bytes for array b, and then 4 ∗ N bytes
for array c.

aos Data in natural format (array of structures). Con-
tains N elements, each 12 bytes long with the
values of a, b and c for that element.

b Data in the visualization (partial) format. Contains
N elements, each 4 bytes long with values only of
b.

We ran sets of experiments varying the following param-
eters:

Replica number
We tried three different combinations of replicas:
one replica for each view, two replicas containing
SOA and b views (aos view is unmaterialized), and
one replica containing the SOA view (aos and b
views unmaterialized).

Synchrony of updates
We tried synchronous vs. asynchronous updates. At
least one of the replicas is updated synchronously
before the write operation completes. Reading per-
formance is not affected by the synchrony param-
eter.

Read and write operations access all data in the view
sequentially.

The experiments were performed on 4 socket, 4 core
servers (total 16 cores) with 32GB of RAM. We used
separate SSD disks for each of the replica files. The OS
buffer cache was cleaned between every experiments. We
also performed the tests on rotational disks and the results
were very similar.

D. User-space file servers

We compared performance of three user-space file servers
that provide access to the data in the three different views:

dreplfs
Our prototype that receives a dataset, view and
replica definitions in the DRepl language, converts
it to the internally used conversion tables, provides
access to the views as virtual files, storing the data
in the specified replica files. DReplfs is imple-
mented in Go and uses the 9P2000 file protocol
(go9p [8] library).

dsfs
A hand-optimized file server that provides access
to the three views mentioned as virtual files and
allows storage of the data to one, two or three
replicas, each containing one of the views. Dsfs

is implemented in Go and uses the 9P2000 file
protocol (go9p library).

ufs
A “proxy” file server that provides access to the
files on the file system over the 9P2000 protocol.
Ufs is implemented in go and uses the 9P2000 file
protocol (go9p library).

DReplfs and dsfs have an option that allows the transfor-
mations to the replicas to be performed asynchronously. Ufs
doesn’t allow replication.

Converting data from one view to another can be very
inefficient. For example, if a program writes to the first
400 bytes of file SOA, updating the first 100 values of a,
the operation needs to be converted to 100 writes to file
aos, each writing 4 bytes with stride 12 bytes. Even using
functions like writev can be slow, because of the time and
resources required to prepare the data for the call. Using
processors close to the data can improve the performance
somewhat. In order to improve it even further, we use mmap
to map the content of the materialized views to memory.
The conversion between different views then is equivalent to
conversion of data in memory. All three implementations use
mmap to read and write to the files, instead of the standard
POSIX I/O calls.

1) Raw Performance: Figure 5 shows reading perfor-
mance. The read performance when reading from material-
ized replica is roughly equal for all tested file servers. Read-
ing from unmaterialized replica is about 15 times slower
for dreplfs and three times slower for dsfs. The conversion
from materialized to unmaterialized view needs to be done
before the read operation can return, so the asynchronous
mode doesn’t provide any performance increases.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

Array of Structs

3 R
eplicas

Struct of Arrays

3 R
eplicas

Partial
3 R

eplicas

Array of Structs

2 R
eplicas

Struct of Arrays

2 R
eplicas

Partial
2 R

eplicas

Array of Structs

1 R
eplica

Struct of Arrays

1 R
eplica

Partial
1 R

eplica

B
a

n
d

w
id

th
 (

M
B

/s
)

dreplfs-sync
dsfs-sync

dreplfs-async
dsfs-async

ufs

Figure 5: Read performance

Figure 6 shows writing performance. The hand-optimized
file server is about three times faster than dreplfs. There is
big advantage in running the replication asynchronously. The
penalty of maintaining more than one replicas is pronounced
more in dreplfs than the hand-optimized file server.

2) Combined Performance: In order to evaluate the per-
formance advantage of creating multiple replicas and reading

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

Array of Structs

3 R
eplicas

Struct of Arrays

3 R
eplicas

Partial
3 R

eplicas

Array of Structs

2 R
eplicas

Struct of Arrays

2 R
eplicas

Partial
2 R

eplicas

Array of Structs

1 R
eplica

Struct of Arrays

1 R
eplica

Partial
1 R

eplica

B
a

n
d

w
id

th
 (

M
B

/s
)

dreplfs-sync
dsfs-sync

dreplfs-async
dsfs-async

ufs

Figure 6: Write performance

from the most optimal, we emulate two separate cases:

single replica
The simulation application writing the data to a
single replica (containing the AOS view) and the
visualization application reading the partial view
from it;

two replicas
Replicas containing the AOS and the b views are
created, the simulation application reads the data
from the AOS replica, the visualization application
is reading from the partial replica.

Figure 7 shows cumulative bandwidth for accessing the
dataset from one or two replicas. Even though the write
performance is decreased when maintaining two replicas,
the cumulative performance is improved by the fact that the
read operations use the optimized replica.

 0

 20

 40

 60

 80

 100

 120

 140

 160

dreplfs 1 replica dreplfs 2 replicas dsfs 1 replica dsfs 2 replicas

B
a

n
d

w
id

th
 (

M
B

/s
)

Read
Write

Figure 7: Cumulative bandwidth for accessing one and two
replicas

E. Kernel-space file server

We compared performance of the our kernel implemen-
tation of the DRepl file system (kdreplfs) with conventional
POSIX file system.

1) Raw Performance: Figure 8 shows reading perfor-
mance. Our tests have shown that there is no difference
between asynchronous and synchronous mode (in both cases

the conversion needs to finish before we return the data), so
the figure doesn’t have the asynchronous results. Reading
from materialized view is about nine times faster than
reading from unmaterialized view. Further optimizations of
the replication engine should might decrease the difference
between them.

The POSIX read performance is shown only in com-
parison to the 3 replicas configurations, because in these
configurations and the POSIX case the data is read directly
from the filesystem and no unmaterialized view processing
is required.

 0

 200

 400

 600

 800

 1000

Array of Structs

3 R
eplicas

Struct of Arrays

3 R
eplicas

Partial
3 R

eplicas

Array of Structs

2 R
eplicas

Struct of Arrays

2 R
eplicas

Partial
2 R

eplicas

Array of Structs

1 R
eplica

Struct of Arrays

1 R
eplica

Partial
1 R

eplica

B
a

n
d

w
id

th
 (

M
B

/s
)

kdreplfs
POSIX

Figure 8: Kdreplfs read performance

Figure 9 shows writing performance. The asynchronous
mode is usually faster than the synchronous one, although
there are cases when that’s not the case. In asynchronous
mode, the kdreplfs needs to allocate additional memory in
the kernel and copy the data buffer so the replication engine
can continue to work even after the write call returns to the
user process. The memory allocation adds some overhead.
Our implementation makes sure that at least one replica has
the data committed before the execution is returned to the
user space. That may slow down the asynchronous mode
even further.

The POSIX write performance is shown only in com-
parison to the one replica configuration, because in these
configurations and the POSIX case the data is written
directly to the file system and no replication of the data
is required.

2) Combined Performance: Figure 10 shows cumulative
bandwidth for accessing the dataset from one or two replicas.
Even though the write performance is decreased when main-
taining two replicas, the cumulative performance is improved
by the fact that the read operations use the optimized replica.
The graph also shows the POSIX performance when the data
is written in the SOA format and then read in chunks and
converted to the AOS format in memory (the chunk size is
524288 points).

V. RELATED WORK

There has been quite a body of work using middle-ware
to optimize reading or writing of application data. PLFS [9]

 0

 200

 400

 600

 800

 1000

Array of Structs

3 R
eplicas

Struct of Arrays

3 R
eplicas

Partial
3 R

eplicas

Array of Structs

2 R
eplicas

Struct of Arrays

2 R
eplicas

Partial
2 R

eplicas

Array of Structs

1 R
eplica

Struct of Arrays

1 R
eplica

Partial
1 R

eplica

B
a

n
d

w
id

th
 (

M
B

/s
)

kdreplfs-sync
kdreplfs-async

POSIX

Figure 9: Kdreplfs write performance

 0

 200

 400

 600

 800

 1000

 1200

 1400

kdreplfs 1 replica kdreplfs 2 replicas POSIX

B
a

n
d

w
id

th
 (

M
B

/s
)

Read
Write

Figure 10: Cumulative bandwidth for accessing one and two
replicas

is a transparent layer optimized for writing of parallel
application checkpoints. It allows each process of a parallel
application to believe it is writing to the a single file while
the PLFS middle-ware separates these writes to disjoint
files, extensions to this work are focused on increasing read
performance. ADIOS [10] is an API that allows efficient
data reordering that is transparent to the application but
requires modification of the application to use the API.
Further work with ADIOS [11] has reordered data using
space filling curves for faster access. MPI IO also has the
concept of defined views and requires modification of the
parallel application, but provides collective I/O operations
and strided access of data. MPI I/O has two-phase I/O option
which allows reordering of data as it is being accessed.
Semantic file systems try to represent the data by the
information contained in the file rather then its position in
the file system. The SFS semantic file system [12] was a
layer on top of NFS that would create files based on user
defined transducers. The transducers would allow retrieval of
pieces of files, although this work was not focused on large
application data. The ATTIC [13] system allowed transparent
access to compressed files. UNIX systems have presented
changing information through virtual files, examples such
as /dev, /proc [14] and also in Plan 9 [15], this is analogous

to in-situ access to the state of various data structures in
the kernel. Long distance visualization [16] uses multi-
resolution data views to allow reasonable response times.
In this scenario, when looking for an area of interest the
resolution is sub-sampled to allow fast scanning, and when
an area of interest is selected the high resolution data is then
streamed in. None of the related work combines multiple
semantic views with replicas to provide the configurability
and resilience of our proposed solution.

ArrayQL [17] provides language designed for similar
purposes as DRepl, although it is based on SQL and is
probably more unfamiliar to the developers in the HPC
community.

There is work done on creating adaptive layout strategies
based on the data access patterns [18]. These techniques
improve the I/O performance but don’t help if the data needs
to be read in-transit by visualization or analytical tools.

VI. CONCLUSION

DRepl provides a novel method for optimized access to
application datasets that are read and written with multiple
contrasting patterns. DRepl decouples the data producers
from the data consumers and additionally from the physical
data layouts used on the storage system. Initial investigations
showed increased performance in both read and writes
on various physical media. A prototype file system was
implemented in both user and kernel-space and the language
was designed and specified to allow construction of multiple
dataset views. These views are displayed as separate but
consistently updated files from the DRepl file server.

DRepl’s approach allows flexibility on where the conver-
sion between replicas is being performed. The file server can
be run locally on the node that runs the scientific application,
on the parallel file system nodes, or on nodes that perform
I/O aggregation and forwarding. It works well with legacy
scientific applications without imposing changes in their
code.

Using multiple complete replicas of the data increases the
reliability of the storage system. Also in a realistic work
flow where multiple readers and writers are access the data,
DRepl will improve the cumulative performance due to the
performance gained from the read operations accessing the
optimized replica.

VII. FUTURE WORK

Development is continuing with DRepl, our next step
is to test with real applications and workflows. When full
application support is verified we are planning to work on
optimizing it for highly parallel loads. We need to do more
work on the replication engine performance so we can get
it closer to the one we achieve with the hand-optimized file
server.

DRepl can be used for easier conversion of data produced
by legacy applications to standard scientific formats like

HDF-5. Once the legacy layout is defined in the DRepl
dataset language, it is easy to produce a HDF-5 dataset from
it. We are planning to write a HDF-5 back-end to our DRepl
file server, that allows unmodified legacy application to store
and read the dataset from HDF-5 file.

We need to do more investigations on whether DRepl has
enough features to cover all legacy formats that we need to
support. One important feature that is missing is the ability
to specify the endianness of the data in the file. We may
also need to extend the support for data alignment.

When running in asynchronous mode, DRepl doesn’t
provide any guarantees when the data in the other replicas
will become up-to-date. We are planning to experiment with
update-on-close (i.e. once the file that is used to update the
dataset is closed, all replicas are synced).

In order to improve the performance when using non-
materialized views, we need to define which of the replicas
is closest to the view. One approach would be to base the
closeness function on the number of blocks that need to be
used for the conversion. The “closest view” can be coarse-
grained (for the whole non-materialized view), or finer-
grained (for each variable in the view).

The data layout knowledge can be used to improve the
performance of prefetching schemes and make decisions
on what striping approaches to use for the replica files
on the parallel file systems. We are planning to do more
investigations in that field in the future.

We will also modify dreplfs so the users can create and
destroy views and replicas on the fly without restarting it.
That would allow faster and more flexible operation when
the analysis and visualization are not used very often.

VIII. ACKNOWLEDGMENTS

We would like to thank Jim Ahrens, and Scott Brandt
for there helpful insights for this paper. This work was per-
formed at the Ultrascale Systems Research Center (USRC)
which is a collaboration between Los Alamos National
Laboratory and the New Mexico Consortium (NMC).

This work was supported in part by the U.S. Department
of Energy’s National Nuclear Security Administration under
contract DE-AC52-06NA25396 with Los Alamos National
Security, LLC.

This paper has assigned LANL publication number: LA-
UR-11-11589.

REFERENCES

[1] G. Grider, “Exa-scale FSIO Can we get there? Can we afford
to?” presented at the 7th IEEE International Workshop on
Storage Network Architecture and Parallel I/Os, 2011.

[2] D. A. Patterson, G. Gibson, and R. H. Katz, “A case
for redundant arrays of inexpensive disks (RAID),” in
Proceedings of the 1988 ACM SIGMOD international
conference on Management of data, ser. SIGMOD ‘88.
New York, NY, USA: ACM, 1988, pp. 109–116. [Online].
Available: http://doi.acm.org/10.1145/50202.50214

[3] “Introduction to the 9p protocol,” Plan 9 Programmer’s
Manual, vol. 3, 2000.

[4] T. H. Group, “Hierarchical data format version 5.” [Online].
Available: http://www.hdfgroup.org/HDF5

[5] U. P. Center, “Network common data form.” [Online].
Available: http://unidata.ucar.edu/software/netcdf/

[6] N. Liu, J. Cope, P. Carns, C. Carothers, R. Ross, G. Grider,
A. Crume, and C. Maltzahn, “On the role of burst buffers in
leadership-class storage systems,” in Mass Storage Systems
and Technologies (MSST), 2012 IEEE 28th Symposium on.
IEEE, 2012, pp. 1–11.

[7] R. Thakur, W. Gropp, and E. Lusk, “A case for using MPI’s
derived datatypes to improve I/O performance,” in Proceed-
ings of the 1998 ACM/IEEE conference on Supercomputing
(CDROM), ser. Supercomputing ’98. Washington, DC,
USA: IEEE Computer Society, 1998, pp. 1–10. [Online].
Available: http://dl.acm.org/citation.cfm?id=509058.509059

[8] L. Ionkov, “Package for implementing 9p servers and clients
in Go.” [Online]. Available: http://code.google.com/p/go9p

[9] J. Bent, G. Gibson, G. Grider, B. McClelland,
P. Nowoczynski, J. Nunez, M. Polte, and M. Wingate,
“PLFS: a checkpoint filesystem for parallel applications,”
in Proceedings of the Conference on High Performance
Computing Networking, Storage and Analysis, ser. SC ’09.
New York, NY, USA: ACM, 2009, pp. 21:1–21:12. [Online].
Available: http://doi.acm.org/10.1145/1654059.1654081

[10] J. F. Lofstead, S. Klasky, K. Schwan, N. Podhorszki, and
C. Jin, “Flexible IO and integration for scientific codes
through the adaptable IO system (ADIOS),” in Proceedings
of the 6th international workshop on Challenges of large
applications in distributed environments, ser. CLADE ’08.
New York, NY, USA: ACM, 2008, pp. 15–24. [Online].
Available: http://doi.acm.org/10.1145/1383529.1383533

[11] Y. Tian, S. Klasky, H. Abbasi, J. Lofstead, and R. Grout,
“Edo: Improving read performance for scientific applications
through elastic data organization,” in Proceedings of the IEEE
International Conference on Cluster Computing, ser. Cluster
’11. IEEE, 2011.

[12] D. K. Gifford, P. Jouvelot, M. A. Sheldon, and J. W. O’Toole,
Jr., “Semantic file systems,” in Proceedings of the thirteenth
ACM symposium on Operating systems principles, ser. SOSP
’91. New York, NY, USA: ACM, 1991, pp. 16–25. [Online].
Available: http://doi.acm.org/10.1145/121132.121138

[13] V. Cate and T. Gross, “Combining the concepts of
compression and caching for a two-level filesystem,” in
Proceedings of the fourth international conference on
Architectural support for programming languages and
operating systems, ser. ASPLOS-IV. New York, NY,
USA: ACM, 1991, pp. 200–211. [Online]. Available:
http://doi.acm.org/10.1145/106972.106993

[14] R. Faulkner and R. Gomes, “The process file system and
process model in unix system v,” in Proceedings of the
USENIX Conference, January 1991.

[15] R. Pike, D. Presotto, K. Thompson, and H. Trickey, “Plan 9
from Bell Labs,” vol. 10, no. 3, pp. 2–11, Autumn 1990.

[16] J. P. Ahrens, J. Woodring, D. E. DeMarle, J. Patchett, and
M. Maltrud, “Interactive remote large-scale data visualization
via prioritized multi-resolution streaming,” in Proceedings of
the 2009 Workshop on Ultrascale Visualization, ser. UltraVis
’09. New York, NY, USA: ACM, 2009, pp. 1–10. [Online].
Available: http://doi.acm.org/10.1145/1838544.1838545

[17] L. K.-T., M. D., B. J. K. M., Z. Y., and
S. M., “Arrayql syntax draft 4,” Tech. Rep.,
Sep. 2012. [Online]. Available: http://www.xldb.org/wp-
content/uploads/2012/09/ArrayQL-Draft-4.pdf

[18] H. Song, H. Jin, J. He, X.-H. Sun, and R. Thakur, “A server-
level adaptive data layout strategy for parallel file systems,”
in Parallel and Distributed Processing Symposium Workshops
PhD Forum (IPDPSW), 2012 IEEE 26th International, may
2012, pp. 2095 –2103.

