
Warped Mirrors for Flash

Yiying Zhang, Andrea C. Arpaci-Dusseau, Remzi H. Arpaci-Dusseau

Department of Computer Sciences, University of Wisconsin – Madison

{yyzhang,dusseau,remzi}@cs.wisc.edu

Abstract—Flash-based devices are cost-competitive to tradi-
tional hard disks in both personal and industrial environments
and offer the potential for large performance gains. However,
as flash-based devices have a high bit-error rate and a rela-
tively short lifetime, reliability issues remain a major problem.
One possible solution is redundancy; using techniques such
as mirroring, data reliability and availability can be greatly
enhanced. All standard RAID approaches assume that devices
do not wear out, and hence distribute work equally among them;
unfortunately, for flash, this approach is not appropriate as the
life of flash cell depends on the number of times it is written and
cleaned. Hence, identical write patterns to mirrored flash drives
introduce a failure dependency in the storage system, increasing
the probability of concurrent device failure and hence data loss.

We propose Warped Mirrors as a solution to this endurance
problem for mirrored flash devices. By carefully inducing a
slight imbalance into write traffic across devices, we intentionally
increase the workload of one device in the mirror pair, and thus
increase the odds that it will fail first. Thus, with our approach,
device failure independence is preserved. Our simulation results
show that across both synthetic and traced workloads, little
performance overhead is induced.

I. INTRODUCTION

A serious alternative to hard-disk drives has finally arisen.

After many years and many promising yet unrealized tech-

nologies (e.g., holographic storage [4]), flash-based solid-state

drives (SSDs) have gained a foothold in the persistent-storage

marketplace and will likely continue to do so in the foreseeable

future. While initially deployed in mobile devices and other

less traditional computing platforms, lowered costs, increased

capacities, and performance advantages have made flash a

serious competitor to hard drives in current and future storage

systems [8], [16].

One major difference, however, between flash SSDs and

hard drives is found in their reliability characteristics. Hard-

drive failure arises from a number of causes [21], including

mechanical and electrical failure. The primary flash failure

mode, however, is based upon usage; specifically, due to the

intrinsic nature of the technology, flash drives wear out after

repeated updates (i.e., program/erase cycles) [3], [17].

In a lone device, wear out is not of particular concern;

for example, a manufacturer of a portable MP3 player would

simply gauge the expected lifetime of the player and design the

flash storage subsystem so as not to exceed said lifetime, per-

haps by adding extra capacity or improved wear-leveling [28].

In contrast, when using multiple storage devices, wear out

leads to new design challenges. With traditional hard drives,

RAID algorithms are often employed to provide reliability

in the face of device failure [20], [26]. These techniques,

whether using simple mirroring [6], parity-based schemes [19],

[20], [24], or more complex encodings [15], all make the

same underlying assumption: device failure is independent.

Although this assumption is not perfect [25], it has enabled

RAID vendors to provide high-performance, high-capacity

systems with excellent reliability characteristics.

Unfortunately, if wear out is the primary cause of failure,

existing RAID schemes work quite poorly [17]: device failure

becomes highly correlated. For example, consider a mirrored

flash pair; the write load to each device is identical; presuming

that the underlying technology is similar, the likelihood of

wear out at or near the same time is high. If devices wear out

simultaneously, the RAID becomes unavailable; worse, data

loss is likely.

In this paper, we introduce Warped Mirrors (WaM), a RAID

approach for mirrored flash storage systems that addresses

the failure dependence problem. We focus on mirroring since

mirrored systems give best performance under variety of work-

loads. The basic idea of Warped Mirrors is simple: by carefully

adding a minimal additional write load (via dummy writes) to

one of the flash devices in the mirror pair, Warped Mirrors

induce one device to fail slightly sooner than the other; this

artificially induced failure separation interval (FSI) allows a

system manager to schedule device repair and thus replace the

faulty device before the second (catastrophic) failure occurs.

Such scheduled maintenance is the key to lowering the total

cost of ownership, one of the main goals of Warped Mirrors.

One key aspect of the design of Warped Mirrors is that

the FSI is configurable. The party responsible for device

replacement can set the FSI to as short or long of a time

window as desired; Warped Mirrors then automatically adjust

the imbalance based on both the desired FSI and the current

workload to achieve the expected failure separation. For ex-

ample, if an administrator would like to check and possibly

replace a device once a week, the administrator might set the

FSI to two or three weeks, thus ensuring that the first failure

will be handled before the second failure occurs.

Through detailed simulation, we show that Warped Mirrors

achieve the reliability targets with little performance overhead,

while minimizing system cost under a wide range of synthetic

workloads and real-world traces. Warped Mirrors achieve

these goals while making little or no assumption about the

underlying SSD (including details such as the exact algorithms

of its flash-translation layer), and thus is readily deployable.978-1-4799-0218-7/13/$31.00 c© 2013 IEEE

The rest of this paper is organized as follows. In Section II,

we give a brief background of flash memory and its endurance

properties. We then describe the basic flash-based mirroring

system setting and its endurance problem in Section III.

In Section IV, we discuss the basic architecture of Warped

Mirrors, its modeling component, and an algorithm used by

it. In Section V, we describe our simulator, the workloads used

and simulation results. Finally, we discuss the related work and

present our conclusions and future work.

II. BACKGROUND

Before presenting Warped Mirrors, we first provide some

background information on the relevant aspects of NAND-

based flash technology. Specifically, we discuss their internal

structure, performance and reliability issues, and controlling

firmware design.

There are three types of NAND flash that are typically

available. The first is known as Single-Level Cell (SLC), which

stores one bit per flash cell. The second is called Multi-Level

Cell (MLC), which stores two bits per cell. Another flash type

is Triple-Level Cell (TLC), which stores three bits per cell.

MLC and TLC are denser than SLC but have a performance

and reliability cost. A cell encodes information via voltage

levels; thus, being able to distinguish between high and low

voltage is necessary to differentiate a 1 from a 0 (for SLC;

more voltage levels are required for MLC and TLC).

Modern flash-based SSDs appear to a host system as a

storage device that can be written to or read from in fixed-sized

units, much like modern hard drives. Internally, however, there

are some important differences. A typical flash is organized

into a set of erase blocks, which are usually between 16KB

to 2MB in size. Before writing to the flash, an entire block

must be erased, which sets all the bits in the block to 1.

Writes (which change some of the 1s to 0s) can then be

performed to the newly-erased block in units of pages, which

are typically 2KB, 4KB, or 8KB; sometimes this step is known

as programming the flash. In contrast to this intricate and

expensive procedure, reads are relatively straightforward and

can be readily performed in page-sized units.

Writing is thus a noticeably more expensive process than

reading. For example, Grupp et al. report typical random read

latencies of 12 µs (microseconds), write (program) latencies

of 200 µs, and erase times of roughly 1500 µs [13]. Thus, in

the worst case, both an erase and program are required, and a

write will take more than 100× longer than a read (141× in

the example numbers above).

An additional problem with flash is its endurance; each

program/erase (P/E) cycle does some damage to the cell, and

over time it becomes increasingly difficult to differentiate a 1

from a 0 [2]. Thus, each block has a lifetime, which gives the

number of P/E cycles that the device should be able to perform

before it fails. Typical values reported by manufacturers are

100,000 cycles for SLC flash and 10,000 for MLC, though

some devices begin to fail earlier than expected [13].

For both performance and reliability reasons, most flash

devices include a Flash Translation Layer (FTL) that manages

the underlying flash devices and exports the desired disk-

like block interface as described above [14]. FTLs serve two

important roles in flash-based SSDs; the first role is to improve

performance, by reducing the number of erases required per

write. The second role is to increase the lifetime of the device

through wear leveling; by spreading erase load across the

blocks of the device, the failure of any one block can be

postponed (although not indefinitely).

Both of these roles are accomplished through the simple

technique of indirection. Specifically, the FTL maps logical

addresses (as seen by the host system) to physical blocks (and

hence the name). Higher-end FTLs never overwrite data in

place; rather, they maintain a set of “active” blocks that have

recently been erased and write all incoming data (in page-

sized chunks) to these blocks, in a style reminiscent of log-

structured file systems [22]. Some blocks thus become “dead”

over time and can be garbage collected; explicit cleaning can

compact scattered live data and thus free blocks for future

usage. Recently, techniques have been proposed to remove

the indirection in flash-based FTL by storing block physical

addresses directly in file systems [29].

III. FLASH-BASED RAIDS

While single flash-based SSDs will be popular in many

settings, collections of SSDs, deployed in a RAID-like config-

uration, will be important as well. In some cases, performance

demands will be the reason for using multiple flash devices; in

others, capacity is the issue, particularly given the relatively-

low densities of flash as compared to disk.

Whatever the reason for use of multiple SSDs, some form

of redundancy will likely be needed, in order to protect against

data loss and maintain availability when a device fails. Indeed,

reliability alone is sometimes reason enough to use multiple

SSDs, even if performance and capacity demands do not

require more than a single device.

A. The Problem:

Failures Are Not Independent

The problem that arises in any flash-based RAID is a simple

one: device failures are no longer independent. If wear out

is the primary cause of failure of a flash, it is likely all

the devices in the given RAID will wear out at nearly the

same time, thus greatly increasing the chances of downtime

or data loss or both. All current RAID schemes assume failure

independence; when one device fails, it is thus presumed that

the other devices will be available to service requests as well

as reconstruct the data from the lost device.

One underlying assumption of RAID, that balancing load

across devices is a good idea for performance, is also at

the heart of the problem. For example, with simple striping

(RAID level 0), writes to the RAID are generally spread evenly

across the devices. While good in a typical RAID, perfect load

balance exacerbates the problem with devices that wear out

with usage.

Typical Mirrors

failure-separation

interval

Fail

Fail

Fail

SSD

SSD

SSD
early

SSD
late

Warped Mirrors

dummy

write

dummy

write

dummy

write

dummy

write

Fig. 1. Typical Mirrors vs. Warped Mirrors

B. The Solution: Warped Mirrors

Warped Mirrors (WaM) present one attractive solution to

the failure-dependence problem. The approach is quite simple:

by placing a small, carefully-controlled extra write load on

one device in a mirror pair, WaM induces a (slightly) early

failure of one device in the pair, and thus provides a window

of opportunity to install a new device before the other device

in the pair fails. We refer to each extra write as a dummy

write, and the window between failures the failure separation

interval (FSI).

For example, see the timeline in Figure 1. In the topmost

diagram in the figure, typical mirroring is used; the result

is that two failures occur at nearly the same time. In the

bottommost diagram, WaM applies dummy writes and thus

one device (designated SSDearly) fails slightly before the other

(SSDlate).

Central to the design of WaM is the configurability of the

FSI. The responsible party for the health of the RAID (i.e.,

a storage administrator, or in a home setting, the user) can

set this parameter according to the needs of the site, and the

frequency with which replacement is possible; the longer the

interval, the lower the cost. This choice presents a clear trade-

off to the administrator: longer intervals lower the cost of

maintenance but exhibit a performance cost (as we will show

in some detail in the coming sections).

Further note that this entire process could be automated. For

example, many high-end RAID systems have “phone home”

capabilities that essentially allow a system, once failure is de-

tected, to inform the RAID manufacturer of the problem. The

manufacturer, in turn, could respond by sending a replacement

drive (or drives) to the site of the deployment, where a local

administrator (or employee of the RAID manufacturer) would

simply follow simple instructions such as “install these drives

in these slots.” In such a scenario, the manufacturer would

set the FSI accordingly, taking into account factors such as

shipping delays and likely availability of a local presence to

perform the repair.

Of course, mirrors are not the only important RAID configu-

ration, but they attracted our focus for numerous reasons. First,

mirrored systems give the best performance under a variety

of workloads, particularly those with many “small” writes

(e.g., transactional workloads). Further, mirroring is the most

conceptually simple of any approach to redundancy; storage

systems like GFS [11] uses simple redundancy instead of more

complex RAID constructions. Finally, and perhaps archaically,

some finicky storage administrators (still) do not trust storage

systems that store data in anything other than their plain raw

form; even established technologies such as parity-encoding

are viewed with a cautious eye by this suspicious lot.

C. Challenges

There are numerous challenges that must be overcome

in building Warped Mirrors. We present and discuss said

challenges below.

1) Subverting the FTL: Without an FTL, writes in the

logical space of a flash SSD are mapped directly to the

physical flash, and thus causing the device to perform an erase

is straightforward; one simply needs to overwrite a recently-

written block. In doing so, an erase must be first performed

by the flash controller in order to re-program the block.

When an FTL is present (which we assume will be the

common case), such a simple strategy is not guaranteed to

generate an erase; the overwrite may be mapped to a block

that has previously been erased. Thus, without information

on the internal operation of the SSD (which is undoubtedly

difficult or impossible to come by), any approach can only be

at best approximate.

To generate a proper erase load despite the presence of

an FTL and to thus operate upon any SSD regardless of

underlying FTL details, we adopt the following approach: with

some probability Pdummy, the system will issue a dummy

write to SSDearly . The key to WaM is thus the control of this

probability to achieve the desired FSI, and thus adjusting this

value is critical; therefore, we will develop a detailed model

of SSD operation and use said model to calculate Pdummy

accordingly. The development of this model is intricate and

thus we present it in its own section of the paper (§IV).

However, the exact method of issuing a dummy write

remains undefined. One method we will explore simply repeats

the last write that took place; we call this method the “repeat

last” dummy write. The benefit of this approach is that it

is simple to implement. A second approach picks a purely

random page, reads it in first, and then issues a write to it

(with the same data) as the dummy write. We call this approach

“random page”. Although this approach has a slightly higher

cost (due to the extra read), it is generally more robust to the

underlying wear-leveling algorithm.

2) Achieving Near-Perfect FSI: Because of the approximate

nature of our approach, it is possible that WaM will not

achieve the desired FSI through dummy writes alone. There

are two cases we must consider: SSDearly failing too early,

and SSDearly failing too late.

If SSDearly fails too early, the system is in excellent shape

from a reliability standpoint; the administrator, in this case,

will have extra time to service the system and thus the chance

of data loss is reduced. The cost of failing too early is

performance, as the load imbalance affected by WaM was too

great in this case; WaM can take this situation into account in

the future to lessen the imbalance and more perfectly achieve

the desired FSI.

If SSDearly fails too late, the system has a problem: the FSI

“guaranteed” by WaM may not be met, and thus the devices

may fail too close in time. The result could be an unexpected

data loss, as the service check comes too late to handle the

failure. To remedy this situation and to achieve the specified

FSI, WaM enters degraded mode, in which it begins to service

writes to the remaining drive SSDlate more slowly (reads are

still served at normal speed). By slowing down writes during

the failure window, WaM effectively delays the failure of the

second flash in the pair and thus ensures that the FSI contract

is properly fulfilled.

Deciding the degraded-mode slowdown factor, Rdelay , also

requires some care. Thus, we further develop the algorithm

again in a subsequent portion of the paper (§IV).

3) The Restoration Process: Our goal, as described above,

is to enable administrators to make service of flash-based

RAIDs schedulable; by separating the failure time of each

device in a pair, WaM allows administrators to follow a fixed

service routine, thus only needing to be able to service devices

at periodic intervals (say once every two weeks). However, this

approach still leaves unanswered the following question: what

is the exact restoration process?

Our approach is to replace the failed drive (SSDearly) with

a new drive, restore its contents with a full copy from the

existing drive (SSDlate), and then to replace the yet-to-fail

drive (SSDlate) immediately and restore it from the newly-

installed first replacement. This approach has many benefits,

including its simplicity; when finished, the system is in the

exact same state as before, and thus the entire WaM process

can begin again.

An alternate approach would only replace SSDearly at

this point and wait for SSDlate to fail before replacing it.

The negative of this approach is that service of the pair

now requires two interactions (not one), and thus increases

maintenance cost. The slight benefit, however, is the small

amount of extra lifetime one achieves from SSDlate; we feel

that this small benefit is not worth the cost.

4) Generalizing to Striped Mirrors: Our discussion thus far

has centered around a single pair of devices; however, high-end

mirrored storage consists of many devices, arranged in either

RAID-10 fashion (striping across mirrored pairs) or RAID-01

(mirroring across two striped arrays). Thus, we now describe

how WaM operates in said environments.

Overall operation is quite similar, except now half of the

drives are treated as SSDearly was and the other half as

SSDlate. Thus, half of the drives will fail ahead of schedule,

and should thus be replaced as before, with the subsequent

replacement of all SSDlate drives. In this manner, our approach

works equally well on large mirrored storage systems as it does

on just a single mirror pair.

D. Alternate Approaches

Before closing this section, we discuss some alternate

approaches and their strengths and weaknesses as compared to

Warped Mirrors. One straightforward change to flash devices

that would make building reliable storage on top of them is

to export wear out information to hosts. If such information

was available and could be trusted, it would to some extent

obviate the need for our approach, as a RAID controller could

simply monitor said information and replace SSDs as they

neared their wear-out point.

We believe that such information may be hard to come by,

as it would require all manufacturers to agree upon a standard

interface to export it. Further complicating the issue is that the

presence of such information exposes SSD manufacturers to

detailed studies of their wear-leveling algorithms. As many of

these algorithms are proprietary, manufacturers may be loathe

to export an interface which enables their reverse engineering.

Finally, there is little incentive for honesty; if one “honest”

company’s device reports failures accurately, whereas another

“dishonest” company does not, the dishonest company may

gain competitive advantage as a drive that does not fail as

quickly.

Another approach would be to proactively replace both mir-

rors at a fixed time, well before the manufacturer-guaranteed

wear out time. Unfortunately, without precise information (as

above), this approach is likely to be costly, as one would

likely have to replace devices very early to feel comfortable

that they would not fail before expected. As others have

shown, sometimes devices wear out before the manufacturer

claims, particularly true for high-density MLC or TLC flash

SSDs [13].

The SMART (Self-Monitoring, Analysis, and Reporting

Technology) interface was designed to provide an early warn-

ing of hard disk drive failures using various indicators. It has

been extended to indicate SSD life time as well. However, we

believe that the SMART interface is insufficient for a couple of

reasons. First, not all SSDs have SMART support. There are

also compatibility issues with different softwares interpreting

the SMART information from different hardwares. Second, the

lifetime reported by SMART is an estimated normalized value.

One has to either proactively replace SSD mirrors or risk the

danger of data loss using the SMART interface.

IV. WAM CONTROL ALGORITHMS

We now explain how the control algorithms of Warped

Mirrors operate. These control algorithms take as input the

desired failure separation interval (FSI) and control the load

imbalance to each mirror pair, with the goal of achieving the

desired FSI.

A. Basic Control Algorithm

We now develop the WaM model to approximate how much

load imbalance to induce. Recall that our goal is to calculate

Pdummy, which is the probability that the controller will

generate an extra dummy write to SSDearly; the higher this

probability, the sooner SSDearly will fail, and thus the larger

the FSI will be.

Assume for simplicity that each SSD has a fixed lifetime

(given by the manufacturer), which is determined by the

number of P/E (program/erase) cycles per block. We call this

value Nworn, as it is the number of erases to a block that

causes it to become worn out. Note that a more advanced

(and perhaps realistic) model could be used here (e.g. a

probability distribution centered around Nworn), but as we will

see, this approach is sufficient as we are only generating an

approximation. We further assume the presence of an FTL that

writes to the devices in a log-structured fashion and performs

perfect wear-leveling. With these assumptions in place, we

now develop a model that allows us to calculate Pdummy.

To do so, first we need to define a few new terms. The

first is Rerase, the ratio of the number of erases performed

on SSDearly divided by the number of erases performed on

SSDlate:

Rerase =
Nearly

erases

N late
erases

. (1)

Rerase is thus always greater than 1, as we are placing an

extra write (and thus erase) load onto SSDearly .

Rerase is clearly dependent on Pdummy. Here, because we

assume that each additional dummy write is simply written to

an “active block” that is the target of current writing activity

within the device, we can conclude that:

Rerase = 1 + Pdummy. (2)

Put another way, Pdummy just serves to increase the total

write load on the device; because all writes are transformed

into sequential writes to the active block, increasing Pdummy

linearly increases the number of erases performed on the

device; as an example, consider setting Pdummy to 1; in this

case, each write generates an additional dummy write, and the

number of erases is doubled.

The question then becomes: given a particular Rerase, how

many erases are left remaining on SSDlate once the failure

of SSDearly occurs? By definition, the number of erases

remaining (per block), N late
remaining , is equal to the number

of maximum possible erases (per block) Nworn minus the

number that have been issued, N late
erases:

N late
remaining = Nworn −N late

erases. (3)

However, we know that the early-failing device SSDearly

has now failed; thus N
early
remaining = 0 and Nearly

erases = Nworn.

Because the failing device SSDearly has received proportion-

ally Rerase times more erases, we can conclude that the

number of erases performed thus far on SSDlate is:

N late
erases =

Nworn

Rerase
. (4)

Thus, plugging Equation 4 into Equation 3, we find that the

number of remaining erases (per block) on SSDlate is:

N late
remaining = Nworn −

Nworn

Rerase
. (5)

Recall our goal is to have SSDlate fail a specific amount of

time after SSDearly; we call the time of this failure-separation

interval TFSI . Given this time, we can estimate the number of

I/Os that take place during the time interval, using historical

averages of the current workload. Once we know this value,

we can estimate the number of erases that occur during the

FSI, and, combining that result with Equation 5, solve for the

desired Pdummy.

In any time T , we know that the number of I/Os (NI/Os)

that take place is:

NI/Os =
T

Tr + Ti
(6)

where Tr is the average I/O response time of the device and

Ti is the average inter-arrival time of requests. To calculate

the number of erases that occur per I/O, we need to know

the percentage of I/O requests that are writes, Pwrite. With

this value, we can directly estimate the total number of erases

(across all blocks) that occur in time T as a function of T :

N total
erase(T) =

T

Tr + Ti
× Pwrite ×

Npage

Nblock
(7)

Here, we estimate the number of erases that occur per

write by multiplying the I/O write rate by the ratio of page

size to block size; because the FTL will turn all writes into

sequential writes, only after Nblock

Npage
writes will an erase have

to be generated (in the steady state), and hence the equation

above.

However, what we are interested in is the number of erases

that occur per block. To calculate this value, we assume perfect

wear-leveling, and assume the erase load is spread evenly

across all Nssd blocks in the SSD. Thus, the number of erases

that occur to a single block (and indeed, to all blocks) in time

T is:

Nsingle
erase (T) =

T

Tr + Ti
× Pwrite ×

Npage

Nblock
×

1

Nssd
(8)

We can now solve for Rerase and thus for Pdummy, by

combining Equations 5 and 8. From Equation 5 we know the

number of remaining erases in SSDlate, and we can simply

plug in TFSI as our time T to TFSI to find the number of

erases generated during the failure-separation interval, as we

do here:

N late
remaining = Nsingle

erase (TFSI), (9)

which expands to:

Nworn−
Nworn

Rerase
=

TFSI

Tr + Ti
×Pwrite×

Npage

Nblock
×

1

Nssd
. (10)

Solving for Rerase, we find that:

Rerase =
Nworn

Nworn − TFSI

Tr+Ti
× Pwrite ×

Npage

Nblock
× 1

Nssd

. (11)

Calculating Pdummy from this is trivial (recall from Equa-

tion 2 that Pdummy = Rerase − 1).

B. Handling Imperfection in FSI

As discussed earlier, because of the assumptions the model

must make, the actual delivered TFSI may not match the

desired intent. If it is longer, there is nothing else to do.

However, if it is shorter, there is a danger that the repair will

not take place in time, and thus both unavailability and data

loss may arise.

To handle this second case, the WaM control algorithm

notices when a failure occurs not at the expected time in

SSDearly and subsequently slows down the rate of write

requests to the device so as to achieve the desired FSI. We

call this slowdown ratio Rdelay .

Rdelay =
N late

remaining target

N late
remaining actual

(12)

C. Assumptions and Limitations

Our model makes a number of assumptions in order to

calculate Pdummy. We now address the importance of these

assumptions and how they affect the effectiveness of Warped

Mirrors.
1) Imperfect Wear Leveling: One assumption our model

above makes is that the wear-leveling of the FTL is nearly

perfect. Of course, depending on the particular flash device,

different wear-leveling algorithms may be used, and their

success at spreading the erase load across the blocks of the

flash may vary.

Our assumption of perfect wear-leveling can cause our

estimation for TFSI and thus Pdummy to be inaccurate.

Fortunately, we can use Rdelay in the degraded period to

achieve the original targeted TFSI . If a device does not spread

erase load perfectly, it will cause the device to fail earlier than

expected. In this case, both SSDearly and SSDlate may fail

earlier than expected. In other words, our estimation is off by

a factor that can be estimated by the expected time of failure

of the SSDearly divided by the actual time of failure; TFSI

thus will also be shorter than expected by this factor. We then

set Rdelay to this factor in the degraded period to achieve the

desired TFSI .
2) Workload Changes: Our model has a clear workload-

dependent component, in that it uses both the rate of I/O

(overall) as well as the percentage of writes in the workload to

calculate Pdummy. Thus, our approach is sensitive to changes

in the workload, both during normal operation and particularly

during degraded mode when only SSDlate is still operational.

To handle workload changes, WaM continually monitors the

workload and adjusts Pdummy as need be. Thus, during normal

operation, Pdummy may fluctuate up and down depending

on the current write load. In the worst case, the change in

workload occurs immediately after the failure of SSDearly .

Even in this case, WaM can handle the problem; by slowing

down writes appropriately (as described above), the desired

FSI can be reached.

3) Incorrect SSD Lifetime: We use a fixed SSD block

lifetime of maximum erases in our model. However, in reality

such maximum erase count is only an estimation and may be

incorrect. Also, flash bit error rates increase over time [13].

If we detect that SSDearly fails earlier than expected, then

SSDlate will also likely fail earlier than expected. In this case,

we use a proper Rdelay to slow down writes to SSDlate to

achieve the desired TFSI . If instead SSDearly fails later than

expected, then the actual TFSI will likely to be longer than

the expected target and we do not need to do anything.

4) Device Parameters: One further assumption our model

makes is that the block size and the page size of the un-

derlying devices are known. As most manufacturers are open

about these numbers, we do not feel that this assumption is

unreasonable.

However, if said parameters did become hidden in the

future, it would not be overly difficult to discover them via

offline profiling of the device, similar to Saavedra and Smith’s

cache hierarchy discovery tool [23]. By presenting the device

with different I/O patterns and measuring the time, a good

estimate of the likely block and page sizes could readily be

generated.

5) What Happens Without An FTL?: One problem we do

not address is what happens when you use Warped Mirrors

upon a device without an FTL. In such a system, our estima-

tion of how many erases are being generated by dummy writes

can be quite off; specifically, each dummy write may trigger

an erase (as opposed to one roughly every Nblock

Npage
writes), since

it writes to a new block different from the previous write.

In this scenario, SSDearly will fail dramatically earlier than

expected, which is not desirable. One possible solution would

be to “detect” when one is running without an FTL through

performance measurements of on-going I/O. For example, one

could observe the latency of the immediate over-write of a

recently-written block; if said latency is always “high” (i.e.,

near the cost of an erase), one could conclude with high

probability that the FTL is not performing remapping.

However, given that most current and perhaps all future

SSDs will contain some kind of wear-leveling FTL, the

benefits afforded by such a mechanism are not likely worth the

costs. Moreover, a Warped Mirror manufacturer could solve

this problem by construction, i.e., never ship a mirrored system

with anything but certified wear-leveling SSD components.

V. EVALUATION

We now evaluate Warped Mirrors in terms of reliability,

performance, and monetary cost. In this analysis, we use

detailed simulation to see how WaM behaves under both

TABLE I

SIMULATION PARAMETERS.

Symbol Value
Time for a page read 25 µs

Time for a page write 200 µs

Time for block erase 1.5 ms

Block Size 256 KB
Page Size 4 KB
Nworn 10,000
Cost (SSD) $99

TABLE II

TRACED WORKLOAD PROPERTIES.

Random Average
Number of Read Write Request

Trace Requests Percent Percent Size
Postmark 62,257 83.2% 15.1% 222.32 KB
TPC-C 6,832,380 64.6% 35.4% 8.20 KB
WebSearch 1,055,448 99.9% 0.1% 15.14 KB

P dummy

0 0.2 0.4 0.6 0.8 1

T

 (

h
)

F

S
I

0

2000

4000

6000

8000

10000

RandomWrite

P dummy

0 0.2 0.4 0.6 0.8 1

T

 (

h
)

F

S
I

0

2000

4000

6000

8000

10000

66%RandomWrite

P dummy

0 0.2 0.4 0.6 0.8 1

T

 (

h
)

F

S
I

0

2000

4000

6000

8000

10000

33%RandomWrite

P dummy

0 0.2 0.4 0.6 0.8 1

T

 (

h
)

F

S
I

0

2000

4000

6000

8000

10000

SequentialWrite

Fig. 2. TFSI with workloads of different percentage of random and
sequential writes with wear-leveling FTL.

P dummy

0 0.2 0.4 0.6 0.8 1

R
e
m

a
in

in
g
 W

ri
te

s
 (

G
B

)

0

30

60

90

120

RandomWrite

P dummy

0 0.2 0.4 0.6 0.8 1

R
e
m

a
in

in
g
 W

ri
te

s
 (

G
B

)

0

30

60

90

120

66%RandomWrite

P dummy

0 0.2 0.4 0.6 0.8 1

R
e
m

a
in

in
g
 W

ri
te

s
 (

G
B

)

0

30

60

90

120

33%RandomWrite

P dummy

0 0.2 0.4 0.6 0.8 1

R
e
m

a
in

in
g
 W

ri
te

s
 (

G
B

)

0

30

60

90

120

SequentialWrite

Fig. 3. Remaining writes on the surviving drive with workloads of different
percentage of random and sequential writes with wear-leveling FTL.

synthetic and real workloads. As we will see, WaM delivers its

reliability goals with low monetary cost and little performance

overhead.

A. Simulator

We use the DiskSim simulator and its SSD extension as the

base of our simulation environment [7]. We modified DiskSim

in several ways to support Warped Mirrors. Specifically, we

intercept write requests before the RAID mapping takes place

and add dummy writes to one flash drive (SSDearly) if

necessary. Dummy writes are either issued immediately after

the completion of the write operation on SSDearly , or delayed

until when there are enough read requests to be performed

in parallel on SSDlate together with the dummy write to

SSDearly .

We consider a flash drive dead whenever its first block

dies; with good wear-leveling, this behavior is a reasonable

approximation of what should occur. After the first drive

dies, we continue to serve requests from the remaining drive

(SSDlate). To slow down service during this time (if needed),

we simply delay the response from SSD as need be.

In our simulation, we use a pair of identical MLC SSDs.

Table I gives basic configurations of SSDs used in our experi-

ments. We set SSD effective storage space to 80 GB; each SSD

is 20% overprovisioned, which means the raw disk capacity

is 100 GB. The SSD price is taken from a typical online

cost of an Intel 80GB MLC NAND SSD as of the date of

submission [1].

B. Workloads

We use both synthetic and traced real workloads to analyze

Warped Mirrors. To model a system under heavy load, we

use zero think-time between requests. Thus, when a request

finishes, the next request is issued immediately. We believe

this to be a reasonable assumption in our target environment

of large-scale data centers.

We change the percentage of random vs. sequential writes

to generate synthetic workloads. The size of each request

is a single page (4 KB). We don’t include reads in these

synthetic workloads, since only writes will cause erases and

affect SSD failures. We show performance with both read and

write requests using traced workloads.

We use workloads from two benchmarks, Postmark, TPC-

C, and traces from a web search engine [27]. Instead of using

the original arrival times, we again model these traces as if

they were in a heavily-loaded system, i.e., with no think time

between requests. Properties of these traces are summarized

in Table II.

C. Simulation Results

We now present the results of our analysis. We investigate

how effective dummy writes are in achieving a failure sep-

aration and show their performance costs. We also explore

the utility of degraded-mode delays. Although most of our

investigations are with synthetic workloads, we also show that

real workloads can successfully use WaM without too high of

P dummy

0 0.2 0.4 0.6 0.8 1

T

 (

h
)

F

S
I

0

2000

4000

6000

8000

10000

12000

SequentialWrite

P dummy

0 0.2 0.4 0.6 0.8 1

T

 (

h
)

F

S
I

0

2000

4000

6000

8000

10000

12000

99%SequentialWrite

P dummy

0 0.2 0.4 0.6 0.8 1

T

 (

h
)

F

S
I

0

2000

4000

6000

8000

10000

12000

33%RandomWrite

P dummy

0 0.2 0.4 0.6 0.8 1

T

 (

h
)

F

S
I

0

2000

4000

6000

8000

10000

12000

66%RandomWrite

P dummy

0 0.2 0.4 0.6 0.8 1

T

 (

h
)

F

S
I

0

2000

4000

6000

8000

10000

12000

RandomWrite

Fig. 4. TFSI with workloads of different percentage of random and
sequential writes without FTL.

P dummy

0 0.2 0.4 0.6 0.8 1

A
v
e
ra

g
e
 r

e
s
p
o
n
s
e
 t
im

e
 i
n
c
re

a
s
e
 (

%
)

0

20

40

60

80

100

RandomWrite

P dummy

0 0.2 0.4 0.6 0.8 1

A
v
e
ra

g
e
 r

e
s
p
o
n
s
e
 t
im

e
 i
n
c
re

a
s
e
 (

%
)

0

20

40

60

80

100

66%RandomWrite

P dummy

0 0.2 0.4 0.6 0.8 1

A
v
e
ra

g
e
 r

e
s
p
o
n
s
e
 t
im

e
 i
n
c
re

a
s
e
 (

%
)

0

20

40

60

80

100

33%RandomWrite

P dummy

0 0.2 0.4 0.6 0.8 1

A
v
e
ra

g
e
 r

e
s
p
o
n
s
e
 t
im

e
 i
n
c
re

a
s
e
 (

%
)

0

20

40

60

80

100

SequentialWrite

Fig. 5. Average response time (ms) with workloads of different percentage
of random and sequential write requests.

P dummy

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

T

 (
h

)

F
S

I

0

5

10

15

20

25

30

35

40

FSIAfterDelay

FSIOriginal

Target

P dummy

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R

 d
e

la
y

0

0.5

1

1.5

2

2.5

3

3.5

4

Rdelay

Fig. 6. Effect of adding delay in degraded period to adjust TFSI when
Pdummy is not acurate.

T target (h) FSI

0 4 8 12 16 20

T

 d

e
liv

e
re

d

 (

h
)

 F
S

I

0

4

8

12

16

20

Target

RandomPage

T target (h) FSI

0 4 8 12 16 20

T

 d

e
liv

e
re

d

 (

h
)

 F
S

I

0

4

8

12

16

20

LastRequest

Fig. 7. Delivered TFSI using dummy write page chosen at random and as
last request page.

a performance cost. Finally, we investigate the monetary cost

of our approach, and show that it is low.

1) Separating Drive Failures with Pdummy: We first show

the effect of varying Pdummy on a modern flash and its

reliability characteristics. Specifically, we answer the question:

can we separate drive-failure times by increasing Pdummy?

Figure 2 plots the failure-separation interval (FSI) as a

function of Pdummy. In this experiment, we place a synthetic

load of all writes on the mirror pair, and vary whether

the workload writes purely sequentially, purely randomly, or

somewhere in-between. We continuously run the workload

until both drives fail; we calculate FSI as the time between said

flash-drive failures. We also calculate the number of writes that

go to SSDlate after SSDearly dies and before SSDlate dies;

the results are shown in Figure 3.

As we can see from Figure 2 and Figure 3, on a modern

flash with wear leveling, increasing Pdummy has the effect

of increasing the FSI, as desired. Simply put, by placing an

increased write load on one flash drive in the mirror pair, we

can cause it to fail slightly earlier than the other drive in the

pair as we had hoped.

Interestingly, these graphs also show how wear-leveling has

the effect of homogenizing flash drives. Despite the different

synthetic workloads presented to the drives, the delivered FSI

is the same (given a particular Pdummy). The reason, of course,

is the nature of the wear-leveling FTL; by transforming all

writes into writes to an “active” block, writes are all performed

as if they are sequential, and thus the failure properties become

less workload dependent.

To confirm that this is the case, we also configured our SSD

simulator to write directly to the drive (without a wear-leveling

FTL). The results of this experiment, shown in Figure 4, show

that without an FTL, FSI is quite dependent on workload.

Clearly the presence of wear-leveling makes our task of

separating drive-failure time easier.

T target (h) FSI

0 10 20 30 40 50
0

10

20

30

40

50

60

Target

T target (h) FSI

0 10 20 30 40 50

T

 (

h
)

F

S
I

0

10

20

30

40

50

60

Delivered

T target (h) FSI

0 10 20 30 40 50

T

 (

h
)

F

S
I

0

10

20

30

40

50

60

DeliveredWithoutDelay

Fig. 8. Delivered TFSI with and without delay with different target TFSI

(sequential workload).

T target (h) FSI

0 10 20 30 40 50
0

10

20

30

40

50

60

Target

T target (h) FSI

0 10 20 30 40 50

T

 (

h
)

F

S
I

0

10

20

30

40

50

60

Delivered

T target (h) FSI

0 10 20 30 40 50

T

 (

h
)

F

S
I

0

10

20

30

40

50

60

DeliveredWithoutDelay

Fig. 9. Delivered TFSI with and without delay with different target TFSI

(random workload).

2) Performance Effect of Pdummy: We now show the

performance impact of increasing Pdummy. We use the same

synthetic workloads as above. Figure 5 shows the slowdown

percentage under an increasing fraction of dummy writes

placed on SSDearly .

As we can see from the figure, the effect is quite linear;

more dummy writes to SSDearly lead to slower overall perfor-

mance for the workloads. Thus, our basic trade-off: the greater

Pdummy is, the greater the FSI will be, but the worse the

impact on performance will be.

3) Using Degraded Mode Delays: Despite our best inten-

tions, the FSI delivered by our model when just using dummy

writes will not always be perfect. In these cases, WaM uses

degraded mode write delays (Rdelay) to achieve the desired

FSI. We now investigate the utility of this approach.

Figure 6 shows the delivered FSI as Pdummy is varied.

In this experiment, Pdummy should be set to around 0.5 to

achieve the desired FSI; when it is lower, the FSI will be too

low, and when higher, the achieved FSI too high. The graph

confirms this expected behavior.

The graph also shows that in the case where Pdummy is

too low, increasing Rdelay has the effect of increasing the FSI

to the desired level. When Pdummy is too high, however, no

such fix can be achieved; in these cases, the delivered FSI will

simply be too high, and Rdelay will be set to 1 to make it no

worse.

4) The Importance of the Dummy-Write Algorithm: We

now show the importance of the dummy-write algorithm as

described earlier. Specifically, we show the effect of using the

two different approaches on the ability of WaM to achieve the

desired FSI. Our results are presented in Figure 7.

From the figure, we can see that the “repeat last request”

approach is not as stable as the “random page” approach

that picks a random page, reads it, and then writes it back

to the flash. For this reason, the “random page” approach to

generating dummy writes is used throughout these results.

5) Achieving the Correct FSI: Finally, we now investigate

whether our model accurately chooses Pdummy in order to

generate the desired FSI. To do so, we again run our synthetic

write workloads and compare the input (desired) FSI to the

output (actual) FSI. Figures 8 and 9 show the delivered FSI as

a function of the input FSI under sequential- and random-write

workloads, respectively.
In both cases, when just using dummy writes, our model

does not quite generate the desired FSI. The reason for this

is that our assumption about wear-leveling is too simplistic;

exactly perfect wear-leveling is unlikely to occur in practice.

Thus, without any extra action, the drives would fail too

closely together and thus endanger the reliability of the storage

system.
Fortunately, in both cases, using an additional delay during

degraded mode (Rdelay) allows us to quite closely deliver the

desired FSI. WaM recognizes that the desired FSI is not going

to be met; it then slightly increases the delay of writes during

degraded mode (after the first drive failure), and in doing so

achieve our goal.
6) Macro-benchmarks and Traces: We now show the re-

liability and performance effects on macro-benchmarks and

real traces. Specifically, we use workloads from the Post-

mark benchmark, the TPC-C benchmark, and the WebSearch

trace [27]. We measure the effect of adding dummy writes

on the performance and reliability characteristics of said

workloads.
Figure 10 shows that the real workloads behave much in the

same way as our synthetics in terms of the effects of varying

Pdummy on the delivered FSI. Thus, under real workloads, the

desired failure-separation window can be achieved.
More interesting is the question of performance impact. As

Figure 11 shows, the greater the write load of the workload,

the greater the impact. For the WebSearch benchmark (which

is nearly all reads), adding a few dummy writes has no visible

impact on performance, whereas the impact on write-heavy

Postmark and TPC-C are more noticeable. Fortunately, even

P dummy

0 0.2 0.4 0.6 0.8 1

T

 (
h

)

F
S

I

0

50

100

150

200

250

300

Postmark

P dummy

0 0.2 0.4 0.6 0.8 1

T

 (
h

)

F
S

I

0

500

1000

1500

2000

TPC−C

P dummy

0 0.2 0.4 0.6 0.8 1

T

 (

h
)

F

S
I

0

5000

10000

15000

20000
WebSearch

Fig. 10. TFSI for the Postmark, TPC-C, and WebSearch traces with different dummy write frequencies.

P dummy

0 20 40 60 80 100

A
v
e
ra

g
e
 R

e
s
p
o
n
s
e
 T

im
e
 I
n
c
re

a
s
e
 (

%
)

0

20

40

60

80

100

Postmark

P dummy

0 20 40 60 80 100

A
v
e
ra

g
e
 R

e
s
p
o
n
s
e
 T

im
e
 I
n
c
re

a
s
e
 (

%
)

0

20

40

60

80

100

TPC−C

P dummy

0 20 40 60 80 100

A
v
e
ra

g
e
 R

e
s
p
o
n
s
e
 T

im
e
 I
n
c
re

a
s
e
 (

%
)

0

20

40

60

80

100

WebSearch

Fig. 11. Average response time (ms) for traced workloads with different
dummy write frequencies.

P dummy
0 0.2 0.4 0.6 0.8 1

C
o
s
t
(d

o
lla

r/
H

)

0

0.01

0.02

0.03

Cost with fixed replacing
time without WaM

Fig. 12. Hourly dollar cost with fixed replacing strategy and with WaM of
different dummy write frequencies.

very small dummy write percentages (e.g., Pdummy ≤ 0.1)
generate satisfactory failure-separation intervals, and thus the

overall performance impact, even on these write-intensive

workloads, is likely to be quite small.

7) Monetary Cost: Finally, we show total system cost of

WaM and compare it with a system that schedules replacement

at a fixed time. System cost of WaM includes the cost of

SSDs and the cost for periodically checking system health.

We estimate the latter cost by a typical hourly rate for system

administrators ($20) divided by the length of FSI. Hourly SSD

cost is calculated by the cost of an Intel 80GB MLC NAND

SSD divided by its measured SSD lifetime in WaM or a fixed

time (e.g., one year) in a system without WaM. We omit all

other costs such as power and cooling, since they are the same

across these two systems. We found that to use a Mirrored

Intel SSD pair for one year, it costs $198 if we use the fixed-

replacing-time scheme and $122 if we use WaM (with 20%

dummy writes). Figure 12 shows the hourly dollar costs of the

fixed-replacing-time scheme and WaM with different Pdummy.

We can see that the system that retires SSDs at fixed time

always has a higher cost than WaM. Even though WaM pays

an additional cost for maintenance, its total system cost is still

noticeably lower. We can also see that increasing Pdummy or

increasing FSI has the effect of reducing system cost, as a

higher FSI results in lower maintenance cost.

VI. RELATED WORK

In recent years, flash-based devices have been proposed to

be used as whole-sale disk replacements in data-center envi-

ronments. For example, flash-based systems like Gordon [9]

and FAWN [5] have been introduced to provide a good balance

of performance, power, and monetary cost. Gordon and FAWN

both try to reduce the mismatch between CPU and storage

performance in existing systems. Each node in the Gordon

system contains a CPU, a set of flash chips, and DRAMs, with

a special FTL designed for data-intensive applications. Wear-

leveling is used to extend lifetime of Gordon nodes. However,

correlated failures among nodes due to wear-out still exist in

Gordon. FAWN uses a log-structure to store data of key-value

pairs on flash devices and consistent hashing to distribute loads

across nodes. Redundancy is also used in FAWN, which again

could suffer from the correlated wear-out problem.

Soundararajan et al. proposed the use of hard drives as a

write cache for SSDs in order to extend SSD lifetime and

take advantage of the fast random-read speed of flash [12].

However, using hard drives or other storage devices as a cache

for mirroring SSDs does not solve the problem of correlated

SSD failure, as long as writes issued to the underlying mirror

pair are identical.

Keeping spare disks reduces recovery time and thus the

length of FSI. However, when kept idle, these disks do not

contribute to overall system operation. Distributed sparing was

proposed to make use of spare disks [10]. By distributing spare

capacity across all disks in a disk array, all disks contribute

to system operation. This notion can be use to arrays of SSDs

as well. By keeping sparing capacity, reconstruction can be

performed once a failure is detected. However, we still need a

FSI that is larger than reconstruction time and time to notice

a failure.

Most relevant to our work is the work of Kadav et al.,

who investigated a similar problem of using SSDs on parity-

based RAID [17]. Since RAID-5 distributes parity and data

blocks evenly, all SSDs in a RAID-5 collection wear out at

the same rate. They propose Diff-RAID which assigns parity

blocks unevenly across devices. The drive having the most

parity blocks will die first. After each replacement, Diff-RAID

reshuffles parity so that the oldest array has the maximum

parity and dies first. Similar technique has been proposed by

Mir et al. [18]. These techniques will not work for flash-based

mirroring, since there is no parity and the amount written to

the devices of a mirroring system is exactly the same. Warped

Mirrors present a different approach to early failure induction

based on load rather than layout; it would be interesting to

compare both techniques more directly, something we leave

for future work.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we address the challenge of the reliability

problem of mirrored flash. Warped Mirrors (WaM) present

one solution to this problem. By carefully adding a minimal

dummy write load to one flash in each mirror pair, WaM

induces its early failure, thus providing a failure-separation

interval (FSI) in which the device may be restored before the

other fails.

We develop a model of flash wear out and use it to adjust

our WaM load imbalance algorithms. Through simulation, we

show that our approach is good at delivering the desired FSI

and usually does so with little performance overhead. Our

approach is also low at monetary cost, getting the most out of

each flash before having to replace it.

In the future, it would be interesting to generalize our load-

based approach to other RAID schemes. We are also interested

in seeing how our technique works in real deployments and not

just simulation. In both cases, further experience is required to

gain a better understanding of the true nature of flash failures

and thus whether these techniques can be applied in practice.

ACKNOWLEDGMENT

We thank the anonymous reviewers for their tremendous

feedback and comments, which have substantially improved

the content and presentation of this paper. We also thank

the members of the ADSL research group for their insightful

comments.

This material is based upon work supported by the National

Science Foundation under the following grants: CCF-0811657

and CNS-0834392, as well as by generous donations from

Google, NetApp, and Samsung.

Any opinions, findings, and conclusions or recommenda-

tions expressed in this material are those of the authors and do

not necessarily reflect the views of NSF or other institutions.

REFERENCES

[1] Intel X25-M 80 GB Mainstream SATA II MLC 2.5-Inch Solid State
Drive OEM. htpp://www.amazon.com/gp/product/B003F8KT1O.

[2] A. Modelli, A. Visconti, and R. Bez. Advanced flash memory reliability.
In Proceedings of the IEEE International Conference on Integrated

Circuit Design and Technology (ICICDT ’04), Austin, Texas, May 2004.

[3] N. Agarwal, V. Prabhakaran, T. Wobber, J. D. Davis, M. Manasse, and
R. Panigrahy. Design Tradeoffs for SSD Performance. In Proceedings

of the USENIX Annual Technical Conference (USENIX ’08), Boston,
Massachusetts, June 2008.

[4] Alcatel-Lucent. Lucent, Imation Developing Bell Labs
Holographic Storage Technology. http://www.bell-
labs.com/news/1999/august/11/1.html, 1999.

[5] D. Andersen, J. Franklin, M. Kaminsky, A. Phanishayee, L. Tan, and
V. Vasudevan. FAWN: A Fast Array of Wimpy Nodes. In Proceedings

of the 22nd ACM Symposium on Operating Systems Principles (SOSP

’09), Big Sky, Montana, October 2009.

[6] D. Bitton and J. Gray. Disk shadowing. In Proceedings of the 14th

International Conference on Very Large Data Bases (VLDB 14), Los
Angeles, California, August 1988.

[7] J. S. Bucy and G. R. Ganger. The DiskSim Simulation Environment

Version 3.0 Reference Manual. Technical Report CMU-CS-03-102,
Carnegie Mellon University, January 2003.

[8] Cade Metz. Flash Drives Replace Disks at Amazon, Facebook,
Dropbox. htpp://www.wired.com/wiredenterprise/2012/06/flash-data-
centers/all/, 2012.

[9] A. M. Caulfield, L. M. Grupp, and S. Swanson. Gordon: using
flash memory to build fast, power-efficient clusters for data-intensive
applications. In Proceedings of the 14th International Conference

on Architectural Support for Programming Languages and Operating

Systems (ASPLOS XIV), Washington, DC, March 2009.

[10] P. M. Chen, E. K. Lee, G. A. Gibson, R. H. Katz, and D. A. Patterson.
RAID: High-performance, Reliable Secondary Storage. ACM Computing

Surveys, 26(2):145–185, June 1994.

[11] S. Ghemawat, H. Gobioff, and S.-T. Leung. The Google File System.
In Proceedings of the 19th ACM Symposium on Operating Systems

Principles (SOSP ’03), Bolton Landing, New York, October 2003.

[12] Gokul Soundararajan, Vijayan Prabhakaran, Mahesh Balakrishnan, and

Ted Wobber. Griffin: Extending ssd lifetimes with disk-based write
caches. In Proceedings of the 8th USENIX Symposium on File and

Storage Technologies (FAST ’10), San Jose, California, February 2010.

[13] L. M. Grupp, A. M. Caulfield, J. Coburn, S. Swanson, E. Yaakobi,
P. H. Siegel, and J. K. Wolf. Characterizing Flash Memory: Anomalies,
Observations, and Applications. In Proceedings of MICRO-42, New
York, New York, December 2009.

[14] A. Gupta, Y. Kim, and B. Urgaonkar. DFTL: a Flash Translation Layer
Employing Demand-Based Selective Caching of Page-Level Address
Mappings. In Proceedings of the 14th International Conference on Ar-

chitectural Support for Programming Languages and Operating Systems

(ASPLOS XIV), Washington, DC, March 2009.

[15] L. Hellerstein, G. A. Gibson, R. M. Karp, R. H. Katz, and D. A.
Patterson. Coding Techniques for Handling Failures in Large Disk
Arrays. Algorithmica, 12(2):182–208, August 1994.

[16] Jeff Barr. New High I/O EC2 Instance Type - hi1.4xlarge - 2 TB of
SSD-Backed Storage. http://aws.typepad.com/aws/2012/07/new-high-io-
ec2-instance-type-hi14xlarge.html, 2012.

[17] Mahesh Balakrishnan, Asim Kadav, Vijayan Prabhakaran, and Dahlia
Malkhi. Differential RAID: Rethinking RAID for SSD Reliability. In
Proceedings of the EuroSys Conference (EuroSys ’10), Paris, France,
April 2010.

[18] I. F. Mir and A. A. McEwan. A Fast Age Distribution Convergence
Mechanism in an SSD Array for Highly Reliable Flash-based Storage

Systems. In Proceedings of the 3rd International Conference on

Communication Software and Networks (ICCSN ’11), Xi’an, China, May
2011.

[19] A. Park and K. Balasubramanian. Providing fault tolerance in parallel
secondary storage systems. Technical Report CS-TR-057-86, Depart-
ment of Computer Science, Princeton University, November 1986.

[20] D. Patterson, G. Gibson, and R. Katz. A Case for Redundant Arrays of
Inexpensive Disks (RAID). In Proceedings of the 1988 ACM SIGMOD

Conference on the Management of Data (SIGMOD ’88), Chicago,
Illinois, June 1988.

[21] V. Prabhakaran, L. N. Bairavasundaram, N. Agrawal, H. S. Gunawi,
A. C. Arpaci-Dusseau, and R. H. Arpaci-Dusseau. IRON File Systems.
In Proceedings of the 20th ACM Symposium on Operating Systems

Principles (SOSP ’05), Brighton, United Kingdom, October 2005.
[22] M. Rosenblum and J. Ousterhout. The Design and Implementation of a

Log-Structured File System. ACM Transactions on Computer Systems,
10(1):26–52, February 1992.

[23] R. H. Saavedra and A. J. Smith. Measuring Cache and TLB Performance
and Their Effect on Benchmark Runtimes. IEEE Transactions on

Computers, 44(10):1223–1235, 1995.
[24] K. Salem and H. Garcia-Molina. Disk Striping. In Proceedings of the

2nd International Conference on Data Engineering (ICDE ’86), Los
Angeles, California, February 1986.

[25] B. Schroeder and G. Gibson. Disk failures in the real world: What does
an MTTF of 1,000,000 hours mean to you? In Proceedings of the 5th

USENIX Symposium on File and Storage Technologies (FAST ’07), San
Jose, California, February 2007.

[26] M. Sivathanu, V. Prabhakaran, A. C. Arpaci-Dusseau, and R. H. Arpaci-
Dusseau. Improving Storage System Availability with D-GRAID.
In Proceedings of the 3rd USENIX Symposium on File and Storage

Technologies (FAST ’04), San Francisco, California, April 2004.
[27] University of Massachusetts. Trace Repository.

http://traces.cs.umass.edu/index.php/Storage/Storage, 2009.
[28] Western Digital. NAND Evolution and its Ef-

fects on Solid State Drive (SSD) Useable Life.
http://www.wdc.com/WDProducts/SSD/whitepapers/
en/NAND Evolution 0812.pdf, 2009.

[29] Yiying Zhang, Leo Prasath Arulraj, Andrea C. Arpaci-Dusseau, Remzi

H. Arpaci-Dusseau. De-indirection for flash-based ssds with nameless
writes. In Proceedings of the 10th USENIX Symposium on File and

Storage Technologies (FAST ’12), San Jose, California, February 2012.

