VSSIM: Virtual Machine based SSD Simulator

Jinsoo Yoo*, Youjip Won*, Joongwoo Hwang*, Sooyong Kang*, Jongmoo Choif, Sungroh Yoon* and Jachyuk Cha*
*Hanyang University, Seoul, Korea

Email: {jedisty | yjwon | tearoses | sykang

chajh} @hanyang.ac.kr

TDankook University, Yongin, Korea
Email: choijm@dankook.ac.kr
Seoul National University, Seoul, Korea
Email: sryoon@snu.ac.kr

Abstract—In this paper, we present a virtual machine based
SSD Simulator, VSSIM (Virtual SSD Simulator). VSSIM intends
to address the issues of the trace driven simulation, e.g. trace
re-scaling, accurate replay, etc. VSSIM operates on top of QE-
MU/KVM with software based SSD module. VSSIM runs in real-
time and allows the user to measure both the host performance
and the SSD behavior under various design choices. VSSIM can
flexibly model the various hardware components, e.g. the number
of channels, the number of ways, block size, page size, planes
per chip, program, erase, read latency of NAND cells, channel
switch delay, and way switch delay. VSSIM can also facilitate the
implementation of the SSD firmware algorithms. To demonstrate
the capability of VSSIM, we performed a number of case studies.
The results of the simulation study deliver an important guideline
in the firmware and hardware designs of future NAND based
storage devices. Followings are some of the findings: (i) as the page
size increases, the performance benefit of increasing the channel
parallelism against increasing the way parallelism becomes less
significant, (ii) due to the bi-modality in IO size distribution, FTL
should be designed to handle multiple mapping granularity, (iii)
hybrid mapping does not work in four or more way SSD due to
severe log block fragmentation, (iv) as a performance metric, the
Write Amplification Factor can be misleading, (v) compared to
sequential write, random write operation can be benefited more
from the channel level parallelism and therefore in multi-channel
environment, it is beneficial to categorize larger fraction of 10
as random. VSSIM is validated against commodity SSD, Intel
X25M SSD. VSSIM models the sequential IO performance of
X25M within 3% offset.

I. INTRODUCTION

In 2011, worldwide market size of NAND flash device
became larger than the worldwide market size of DRAM
for the first time ever[1] and NAND flash worldwide usage
is expected to grow at 250% CAGR during 2011-2015 time
frame[2]. As NAND flash based storage device quickly gains
a momentum as primary storage device, more efforts are
being dedicated to properly understand the trade-offs between
various SSD design parameters.

The study on modeling and simulation has always been
an important tool to give the insight in the internal behaviors
of the storage device, to understand the design trade-offs, to
narrow down the design spaces, and to reduce the prototyping
efforts. Developing an SSD is not an exception. Although
hardware implementation produces the realistic results, it is

VSSIM is publicly available at http://esos.hanyang.ac.kr/vssim
978-1-4799-0218-7/13/$31.00©2013 IEEE

not only time consuming but also expensive to implement fully
operating FTL, garbage collection algorithm, wear-leveling
algorithm and etc. with physical NAND flash chip, which one
prefers not to implement if there is a resort. From practitioner’s
point of view, it is critical that every aspect of the SSD
controller is meticulously and thoroughly examined, tested and
validated before tapeout'.

This research is motivated by the simple yet intense
demand from the practitioners: “Can we observe how the
host performs in on-line manner with yet-to-come SSD?”.
Behaviors of the host ranges from a simple IO performance,
e.g. bandwidth and IOPS, to more complicated one, e.g. time
to install a software(for mobile device and PC), database
transactions/min(t pmC)(for enterprise server), SQLite opera-
tions/sec(for Smartphone) and etc. The research community
has come up with many seemingly efficient FTL algorithms
and novel controller architectures. Fair amount of sophisticated
tools have been proposed to study the effectiveness of the
newly devised ideas. They include software based simulators
[31, [4], [5], [6], [71, [8], [9] and hardware based emulators
[10], [11], [12], [13]. Software based simulation tools can be
further categorized into trace driven simulators, which run in
off-line and virtual device based simulators, which are attached
to the host as software based block device, e.g. ramdisk,
and run in on-line. Trace driven simulators[3], [5], [7], [9] can
model the SSD internals in detailed manner and are widely
used to study the behavior of the individual components of the
storage device. However, we cannot observe the real-time host
performance in trace driven simulation. When we use the same
trace across different target platforms for performance study,
e.g. Smartphone and notebook computer, the rescale/replay
issues need to be addressed: (i) the intervals between the trace
entries need to be rescaled for the individual target platform
properly incorporating the think-time, causal dependency and
concurrency[14] and (ii) the IO request in the rescaled trace
should to be issued at accurate timing specified at the trace[15],
[16], [17], [18]. More serious issue in trace driven simulation
is the need for rescaling address footprint in the trace. For the
simulator results to be meaningful, the size of the simulated
storage device should match the trace footprint. We cannot
linearly scale the addresses in the trace since it will disinte-
grate the access locality embedded in the trace. The garbage
collection, wear-leveling, victim selection for log block merge

IProducing approximately fifty sample chips costs well over 100K USD
(Tmm X Tmm, shuttle run, 65 nm process). For massive production, single
run costs over 1M USD.

algorithms of SSD are designed to exploit the access locality
and exhibit widely different behavior subject to the locality.
Without elaborate treatment on these issues, it is not possible
to warrant the correctness of the trace driven simulation.

TABLE 1. COMPARISON BETWEEN VSSIM AND OTHER SSD
SIMULATORS ((): SUPPORTED, AA: SUPPORTED WITH A H/W LIMITATION,
X: NOT SUPPORTED)

Measure Firmware # of # of NAND
’ ‘ Host perf. change Channel Ways latency ‘
Disksim No O O O O
Nandsim Yes X X X O
Flashsim No O O O O
Openssd Yes O A A X
Bluessd No O A A X
VSSIM Yes O O O O

Virtual device based simulators[4], [6], [8] appears to the
host as software based block device or filesystem extension
similar to ramdisk. We can observe the performance of the
host in online manner with virtual device based simulator.
However, existing virtual device based simulators are very
primitive. They do not model multi-channel/multi-way archi-
tecture, write buffer and page map cache, to list a few. Due to
their simplicity, the existing virtual device based simulators
have very limited application in studying the performance
behavior of the storage device.

Hardware based emulator[10], [11], [12], [13] is the most
accurate way of examining real-time behavior of SSD. Due
to its intrinsic inflexibility, it cannot be used to examine
the variety of hardware design choices, e.g. different NAND
devices(latency, the number of pages per block, page size),
different number of channels/ways, bus clock and etc.

In this work, we develop VSSIM, the Virtual Machine
based SSD Simulator. VSSIM successfully addresses the orig-
inal question: “Can we observe how the host performs in real-
time under yet-to-come SSD? ”. The contribution of VSSIM
can be summarized as follows:

e Detailed and Flexible Model: VSSIM provides fairly
detailed and flexible SSD model. SSD model of VS-
SIM includes the hardware components, e.g. degree
of parallelism, channel switch delay, NAND flash
delay, and software components, e.g. address mapping
algorithm, page table caching scheme, wear leveling
algorithm. All of these components are modularized
and parameterized for flexible model update.

e On-line and Real-time Execution: VSSIM is at-
tached to the host as real storage device and runs in
real time. User can observe how the host performs
with a given SSD design. Delay engine of VSSIM
keeps track of all concurrent NAND operations across
the multiple NAND devices and introduces proper
amount of delay for each 10 request from the host.

e Accuracy: VSSIM accurately models the behavior of
physical SSD. Accuracy of VSSIM is validated against
existing commercial SSD(Intel X25M). Since VSSIM
runs in real-time as storage device, it is robust against
classic issues of trace driven simulation, e.g. accurate
replay and trace scaling which make the process of
performance study cumbersome and may result in less
accurate test results.

VSSIM uniquely distinguishes itself from the existing
simulator based and emulator based modeling approaches.
VSSIM harbors all advantages of each modeling approach:
concreteness and flexibility of trace driven simulator, on-line
execution of virtual device based simulator and accuracy of
hardware based emulator. VSSIM enables the researchers and
practitioners to examine the SSD internal behavior and the
respective host performance in a unified framework in real-
time on-line manner. VSSIM makes the SSD development
process extremely versatile and can significantly shorten the
overall SSD development process.

II. BACKGROUND
A. NAND Flash Memory

In NAND flash, a fixed number of cells, which hold one
(SLC NAND) or more (MLC or TLC NAND) bits, constitute
a fixed size page. A fixed number of pages (e.g. 128 pages or
256 pages) form a block. A page is the unit of read and write
operations and a block is the unit of erase operation. A chip is
a collection of blocks. Some vendors use the plane, which is
a collection of blocks in a chip. The objective of introducing
the notion of plane is to interleave the write operations across
the planes via allocating separate page register to individual
planes.

Plane 0 Plane 1 Plane 2 Plane 3
Block 0 Block 1 Block 4096 Block 4097
Page 0 Page 0 Page 0 Page 0
Page 1 Page 1 Page 1 Page 1
| Page n | | Page n | | Page n | | Page n |
Block 4094 Block 4095 Block 8190 Block 8191
Page 0 Page 0 Page 0 Page 0
Page 1 Page 1 Page 1 Page 1
| Page n | | Page n | | Page n | | Page n |
[Page Register || |[Page Register || [[Page Register || |[Page Register |

Fig. 1. Structure of NAND Flash Memory [19]

Figure 1 schematically illustrates the structure of NAND
flash Memory [19]. Here, blocks are divided into four planes.
There are three fundamental operations in NAND flash Mem-
ory: Read, Write, and Erase. A page in a block does not support
in-place update. If we are to update a page, the page has to be
erased before write. In the worst case, a block should be erased
and entirely rewritten to update a single page on the block.
SSD requires the technologies such as garbage collection and
wear leveling to manage the NAND flash memory efficiently
and economically.

B. SSD Architecture

Figure 2 depicts the internal structure of SSD. An SSD
is composed of host interface, CPU, ROM, RAM, Flash
Controller, and NAND flash chips. The CPU runs the FTL
code stored in ROM to manage the overall operations. RAM
is used as temporary Read and Write buffer to improve the

€ Flash

©
o)
N
£ ROM CPU Controller
b M| | FM]| - | FM
2
A
2 A T i€ Flash
:% Ii x . = Controller
= DRAM
= .
v Controller DRAM .
i€ Flash
> Controller
Fig. 2. Internal structure of SSD

performance of the storage device. It also saves various internal
data structures for FTL, such as a mapping table, block status
table which maintains key information for garbage collection,
and wear leveling, among others. SSD uses multiple channels
and multiple ways to exploit the parallelism in the system. The
number of channels and ways defines the number of NAND
operations that an SSD controller can process in parallel. The
flash controllers can issue independent IO requests to each
channel, simultaneously. Generally, the number of channels in
an SSD is bounded by the tolerable peak current and the real
estate availability in the SSD controller. The number of NAND
flash memories that share the same channel corresponds the
number of ways. SSDs can exploit parallelism across ways
through interleaving IO commands among multiple flash chips
in the same channel. The number of ways in a channel
is generally bounded by the bus bandwidth of the channel.
Exploiting the parallelism in the storage system is critical in
accelerating the performance.

C. FTL (Flash Translation Layer)

FTL(Flash Translation Layer) [20] is responsible for expos-
ing an array of logical blocks/pages to outside by providing
Logical Block/Page Address (LBA/LPA) of each physical
block/page in the SSD. It performs three main tasks: (i)
maintains logical to physical address translation, (ii) occasion-
ally collects and consolidates invalid pages, and (iii) evenly
distributes the write and erase operations over the blocks. Nu-
merous address translation techniques have been introduced,
which can be categorized into block mapping, page mapping
[21], and hybrid mapping [22], [23], [24], [25], [26]. Page
mapping exhibits the best random write performance, but large
mapping table size requirement needs to be resolved to make
it practically feasible. Hybrid mapping categorizes the NAND
blocks into two: data block and log block, where log block
is for recording the updated data pages. It is called hybrid
mapping since log block is maintained by page mapping while
data blocks are maintained by the block mapping. It aims at
delivering the page mapping like random write performance
while reducing the mapping table. Fully Associative Sector
Translation (FAST) [23] attempts to exploit the spatial locality
of the workload. Locality Aware Sector Translation (LAST)
[24] segments the random log block even further exploiting
temporal locality. In hybrid mapping schemes, the data and log
block associativity is the critical factor for write performance.
While Block Associative Sector Translation (BAST) [22] uses
one-to-one associativity between data and log blocks, FAST
uses many-to-one associativity to increase the log block uti-
lization and decrease the log block merge operations. LAST
divides log blocks into random and sequential log blocks,

which are maintained by page and block mapping, respectively.
It uses one-to-one associativity for sequential log blocks and
many-to-one associativity for random log blocks, to fully
exploit the access locality of the workloads. Reconfigurable
FTL [25] uses many-to-many block associativity and claims
that different block associativity should be used for different
workloads. A more recent hybrid mapping scheme [26] tries to
dynamically changing the regions managed by block mapping
and page mapping respective subject to the varying workload
characteristics.

Hybrid mapping scheme has three types of merge opera-
tions (switch merge, partial merge, and full merge) to reclaim
log blocks. A single merge operation reclaims only one log
block while invoking one (switch merge and partial merge) or
more (full merge) block erase operations. The number of block
erase operations involved in a full merge operation depends on
the number of blocks which the pages in the erased log block
is consolidated against, log block associativity. Technically,
hybrid mapping can invoke approximately as many erase
operations as the number of pages in a block, in which case
the merge latency becomes prohibitively long. Page mapping
scheme writes an updated page to any empty page in the SSD
and updates the corresponding entry in the page mapping table
to point to the newly written page. In page mapping, instead of
log block reclamation, it performs data block reclamation. The
block reclamation process in page mapping is called Garbage
Collection. In garbage collection, the blocks with the most
invalid pages are selected for reclamation to minimize the valid
page copy overhead.

Another function of FTL is wear leveling. FTL tries to
balance the erase count of each block to minimize the number
of worn-out blocks. The hot/cold block identification is needed
for wear leveling. One of the popular approaches is that FTL
stores hot data to the cold (or young) block and cold data to
the hot (or old) block to evenly distribute the erase count of
individual blocks.

III. ORGANIZATION OF VSSIM
A. SSD model for QEMU/KVM

VSSIM is built upon QEMU[27]. QEMU is a processor
emulator which can host various Operating systems, e.g.
Linux, Windows and etc. QEMU provides IDE device which
is a dummy device processing SATA command. VSSIM uses
QEMU emulated IDE to construct an emulated SSD. We
developed a detailed SSD model under IDE interface. VSSIM
provides a graphical user interface based real-time monitoring
tool to examine the status of VSSIM. To enhance the system
performance, we chose to run the QEMU on KVM[28].

VSSIM SSD model consists of FTL module, IO emulator
module, SSD monitor, and Latency Manager. FTL module
accepts SATA command and generates the NAND opera-
tions(read, write, or erase) and passes them to 10 emulator.
FTL module imports address mapping algorithm, garbage
collection algorithm, and wear-leveling algorithm. In VSSIM,
garbage collection module is implemented as a separate thread.
In VSSIM, various firmware algorithms(address mapping,
garbage collection, and wear leveling) can be integrated into
SSD module in versatile manner.

¢+ Microsoft Office Professional Plus 2010

W s=xows

Microsoft Office Professional Plus 2010 83 &,

e ol

oF 745
2013-03-25

Count Speed [MB/s] Sector Count Initialize
Write: | 145238 | 8765 | 13783840
Read: | 279081 | sLers | arassas
Save

Erase: []

[Merge
Exchange Sequential block Random block
24249 | 4887 776
~TRIM
Count Effect
| o | °

Written Page 1741083 Write Amplification 502675
Time Progresses 2566590 SSD Util 53.711796
Debug Stal
WE CORRECT 32

Fig. 3. VSSIM with SSD Monitor

VSSIM supports multi-channel, multi-way architecture
with map cache(mapping table) and write buffer. SSD configu-
ration file defines the hardware configuration of SSD: the num-
ber of channels, the number of ways, the number of planes(or
banks), the size of map cache, and the size of write buffer.
10 emulator receives NAND operation(read/write/erase) from
FTL module, introduces the appropriate amount of latency,
and performs actual NAND operation at the simulated Flash
memory, e.g. ramdisk. IO emulator can record the information
on the NAND operation which it has completed, e.g. type of
IO, latency of 10, logical block number and etc. Since VSSIM
is an emulator, the data is written to the designated device.
As it stands currently, the VSSIM uses RAMDISK as storage
medium. To emulate large size SSD, high performance SSD,
e.g. ioDrive’ and REVOdrive?, can be used instead of main
memory. We mmap the high performance SSD to memory
address space and then we impose ramdisk on it so that it can
be used as emulated SSD by VSSIM. With this method, the
capacity of the emulated SSD is governed by the size of the
high performance SSD, e.g. 512GByte. This approach works
fine as long as the speed of the emulated SSD is slower than
the physical SSD.

SSD monitor processes the traces recorded by IO emulator
and generates real-time information on SSD device operation,
e.g. IOPS, bandwidth, Write Amplification, the number of
TRIM commands, the number of erase operations and etc.
SSD monitor provides graphic user interface to visualize
this information. Figure 3 illustrates the screen snapshots of
VSSIM execution, where an application software is being
installed.

Write Request: The number of write requests and total
number of sectors written.

Read Request: The number of read requests and total
number of sectors read.

Merge Operation: The number of each type of merge

Zhttp://www.fusionio.com/products/iodrive/
3http://ocz.com/consumer/pci-express-ssd

operations, switch/partial/full, performed when we use hybrid
mapping FTL.

Garbage Collection: The number of garbage collections.
TRIM: The number of TRIM commands.

Write Amplification: The number of re-written pages by
merge operation or garbage collection.

We can obtain the statistics on various behaviors of SSD,
e.g. ratio of read and write requests, average request size,
WAF(Write Amplification Factor, the ratio between the number
of page writes from the host to the number of page writes
which actually happen into flash memory) and etc.

One of the key ingredients of VSSIM is Latency Manager.
Latency Manager is responsible for introducing right amount
of delay to properly emulate the NAND operation. VSSIM
is capable of specifying various delays in the emulated SSD:
channel switch delay, way switch delay, latencies of NAND
read/write/erase operations. Figure 4 illustrates the overall
organization of VSSIM.

B. Allocating Free Block

FTL module maintains the status of the blocks, including
mapping information and erase count. Block allocation module
defines free block selection policy. When FTL module needs
a new block, it calls block allocation module. In multi-
channel/multi-way SSD, the performance of SSD varies widely
subject to how to distribute the individual pages of a single
write request among the channels, ways, or banks. VSSIM
takes modular approach. We can flexibly change the block
allocation policy.

FTL manages the metadata for each block: block type, wear
level, number of valid pages in a block, validity of each page,
and the page index for the most recently written page. Block
type is one of empty, data or log, which corresponds to
empty block, data block and log block in hybrid mapping.
Wear-level and the number of valid pages in a block are also
used in wear-leveling and garbage collection.

Command from Host

Lk \

Graphic
Card AC97 || IDE IDE Host Interface
QEMU I
Network Etc
Device . | READ || WRITE ||DMA READ| |DMA WRITE|| TRIM |
—— =
4 7 ~
read, write, erase
10 Emulator Module FTL Module
SSD Module I
delay
. SSD behavior v
Latency Manager Inrormation $SD Monitor
: 2 :
Main Virtual Disk image (QCOW)
Memory for SSD
Ramdisk

Fig. 4. VSSIM organization

C. 10 emulator

IO emulator performs an actual NAND operation intro-
ducing proper amount of delay. VSSIM uses a file to maintain
the IO data persistently. From SSD controller’s point of view,
process of reading and writing the data to and from NAND
flash device consists of two phases: the data transfer between
the buffer and the page register and the data transfer between
the page register and the NAND device. We call the operations
related to the former and the latter as channel operation and
the NAND operation, respectively. There are two types of
channel operations: RegisterRead and RegisterWrite, each of
which corresponds to the operation of transferring the data
from the page register to buffer and from the buffer to the page
register respectively. The NAND operation has one of the three
types: CellRead, CellProgram, and Erase. These operations
correspond to the operations between the page register and the
NAND device. We add prefix Cell to distinguish the NAND
operations from the read and write operations from the host.

IO request from the host is split into the appropriate number
of NAND operations. Each NAND operation accounts for a
single page IO, e.g. 8 KByte. For read operation, address
mapping mechanism determines the physical location of the
requested data. For write operation, block allocation policy
determines where to designate the write operation. Subject to
the block allocation policy, multiple NAND write operations
can be directed to the same physical block or can be interleaved
across the multiple blocks across the channels.

IO emulator keeps track of all concurrent NAND flash
operations. It maintains the status and the timer for each
channel and for each flash memory (or for each plane of
flash memory). For the channel, the status denotes the type
of the last command (RegisterRead vs. RegisterWrite) and
the timer indicates the time when the respective command
has initiated. For each flash memory (or each plane of flash
memory), status denotes the type of the last flash memory
operation (CellRead, CellProgram or Erase). These fields are

used to synchronize the various channel and NAND operations
guaranteeing correctness.

Pseudocode 1 Functions for Flash
1: procedure REGISTERWRITE(F},)

Chn <~ Fn mod Nchannel
Channel Access(F),)
chStatus|Chy| < REG_WRITE
chTimer[Ch,)] + timestamp
return

end procedure

N kR

8: procedure CELLPROGRAMMING(F},, B,,)
9: [OWait (F,, B,,)
10: F,+ F,*x2

11: plane < B, mod 2

12: fmStatus[F, + plane] <+ PROGRAM
13: fmTimer[F, + plane] + timestamp
14: return

15: end procedure

16: procedure BLOCKERASE(F,,, B,)
17: IOWait (F,, By)
18: F,+ F,*x2

19: plane < B, mod 2

20: fmStatus|F,, + plane] < ERASE
21: fmTimer[F, + plane] + timestamp
22: return

23: end procedure

Write operation consists of two serial tasks: transfer-
ring data from the buffer to page register and program-
ming the respective page, each of which corresponds to
RegisterWrite () and CellProgramming (), respec-
tively. Write operation receives flash number (F},) and block
number (B,). When transferring the data to page register,
SSD module first checks whether the channel is available.

ChannelAccess () function determines if the channel is
free and waits until the channel becomes available. When
the channel becomes available, status and the timer of the
respective channel are updated to REG_WRITE and current
time. When it finishes transferring data to page register, write
operation starts CellProgramming (). It first checks if a
given flash chip is available and waits until the currently
on going operation completes. TOWait () is responsible for
this task. When the currently ongoing operation completes,
CellProgramming () updates the status and the timer of
the flash memory to PROGRAM and current time. Note that
our implementation takes account of the plane type of each
chip. A block is associated with even or odd plane depending
on the block number. When it saves the status of a block and
type of a command, it considers the planes. A chip can perform
two operations at the same time by interleaved manner.

To access a channel, the channel access module examines
the current status of the channel and the timer. Based upon the
configuration parameter of VSSIM (e.g. RegisterWrite = 800
usec), channel access module determines if the last channel
operation has finished. If it has not completed yet, the channel
access module waits until the last channel operation completes.

D. Latency Manager

One of the key technical ingredients of VSSIM is accurate
IO Ilatency. Latency Manager is responsible for introducing
accurate amount of delay. Latency Manager incorporates not
only the latencies introduced by various hardware components,
e.g. data transfer between NAND cell and page register,
channel/way switch delay, but also the overhead of VSSIM
itself to determine the latency it is going to introduce.

L

A Delay by Latency Manager

v
—

A : VSSIM Overhead
L : Latency of NAND Operation(Read, Write, and Erase)

Fig. 5. 10 Delay Management Method

Figure 5 illustrates the way in which Latency Manager
introduces the delay. It determines the total delay which needs
to be introduced, e.g. L=950usec for NAND write operation,
and determines the overhead of VSSIM, e.g. A=20usec. The
VSSIM overhead may include CPU overhead of VSSIM
operation and the time to access data at the storage. Latency
manager introduces a certain amount of delay that total latency
in VSSIM precisely matches the latency in the real NAND
operation. As long as the VSSIM overhead A is less than
NAND IO latency, L, VSSIM can simulate the given NAND
based flash storage. VSSIM uses busy-wait to introduce the
latency. READ and PROGRAM operation of NAND flash take
50 - 200 psec and 900 - 2000 usec, respectively. According
to our measurement, a single iteration of busy wait loop
including system call overhead of time () takes 76 nsec.
The granularity of the busy waiting is at least two orders of
magnitude smaller than the flash memory operations. Time

resolution of busy waiting is fine enough to model the latency
of flash command accurately. Also, the CPU overhead of
VSSIM is small enough compared to the latency of NAND
flash operations. VSSIM uses RAMDISK or high performance
storage device* to store actual data so that VSSIM overhead
is smaller than the latency of NAND flash operations.

E. Firmware Components

In VSSIM, we have implemented three address mapping
algorithms: page mapping and two hybrid mappings [23]
[24]. FTL module of VSSIM exports a set of well-defined
interfaces to easily port the new address mapping algorithms.
FTL module implements three block deallocation(TRIM) al-
gorithms for each FTL that VSSIM has implemented. In page
mapping, block deallocation manager immediately scans the
page table and invalidates the pages upon receiving the block
deallocation command(TRIM). In hybrid mapping scheme,
FTL module maintains the list of invalid blocks supplied by
TRIM command. The blocks specified by the TRIM command
are invalid ones from the host’s point of view, e.g. blocks
belonging to the deleted file. SSD controller does not have
knowledge on whether a given NAND flash page contains
valid data for the filesystem. The NAND flash pages which has
belonged to the deleted file are still valid. We call the list of
invalid blocks informed by the TRIM command as TRIM list
to distinguish it from the list of invalidated blocks in SSD. FTL
consults TRIM list when performing merge and switch merge
operations. If a page of the log block is in the TRIM list, it is
regarded as invalid page and is excluded from the set of pages
moved to the new block. It is possible that incoming write
operation is for the page in the TRIM list. This may happen
when the file system reuses the data block which belongs to the
deleted file. Then, SSD controller allocates new flash page for
the incoming write request. The logical page is removed from
the TRIM list and the respective physical page is invalidated.

VSSIM triggers garbage collection when the available free
blocks goes below a certain threshold value (currently 30%).
It applies “block with the most invalid pages first” policy[29].
New garbage collection module can be easily plugged into
VSSIM. VSSIM keeps track of erase and write count for each
block, and utilizes it for wear leveling. When FTL requests
an empty block to Block Manager, it selects the channel from
which the new block is allocated in round robin manner, and
within a channel a block with lowest wear level is returned.

F. Hardware Components

VSSIM parameterizes the NAND flash characteristics. The
parameters include page size, the number of pages in a block,
the number of blocks in a chip, the size of metadata for
each page, read latency, program latency and erase latency.
Also, we can specify the maximum number of erase cycles as
input parameter. VSSIM parameterizes the data transfer time
between the host and the page register. VSSIM can configure
the SSD with arbitrary numbers of channels, ways and the
sizes of NAND chips and packages. Also, it can specify the
channel switch delay and way switch delay. Table. II shows
the VSSIM hardware configuration parameters.

4Fusion 10, Revo drive

TABLE II. VS

SIM SSD CONFIGURATION

[Parameter [Description

PAGE_SIZE The size of a NAND flash page
SECTOR_SIZE The size of a sector
FLASH_NB The total number of flash chips
BLOCK_NB The number of blocks in a flash
PAGE_NB The number of pages in a block
CHANNEL_NB The number of channels
WAY_NB The number of ways

PLANE_PER_FLASH

The number of planes in a flash

LOG_RAND_BLOCK_NB
LOG_SEQ_BLOCK_NB
REG_WRITE_DELAY
REG_READ_DELAY
CELL_PROGRAM_DELAY
CELL_READ_DELAY
BLOCK_ERASE_DELAY
CHANNEL_SWITCH_DELAY_R
CHANNEL_SWITCH_DELAY_W
CACHE_IDX_SIZE
WRITE_BUFFER_SIZE

The number of rand log block in a flash
The number of seq log block in a flash
1 Page register write latency

1 Page register read latency

1 NAND flash page write latency

1 NAND flash page read latency

1 NAND flash block erase latency
Channel switching delay for a read
Channel switching delay for a write
Total index size of the map cache

The size of write buffer(KByte)

IV. CASE STUDIES
A. Overview

We study the various aspects of SSD behavior and the
respective host performance by varying the hardware configu-
rations (NAND page size, 10O latency and degree of parallelism)
and the controller algorithms (FTLs, TRIM command). In this
study, we use sequential and random IO as well as application
workloads such as operating system and application instal-
lation. We built five different 16 GByte SSDs with VSSIM.
Three of them use eight 2GByte Flash chips(2KByte page)
and two of them use four 4GByte Flash chips(8 KByte page
size). Table III summarizes the configuration of SSDs used
in our study. SSD-A, SSD-B, and SSD-C use the same 2GB
Samsung chip [19]. They are configured as 8 by 1, 4 by 2
and 2 by 4 configurations’, respectively. SSD-D and SSD-E
use 4GB Intel chip [30]. They are configured as 4 by 1 and
2 by 2, respectively. For each SSD, we implemented three
FTLs (page mapping, FAST and LAST). Each FTL has TRIM
capability.

TABLE III. SPECIFICATION OF SSDs (16 GBYTE)
[SSDLabel [A B] C] D] E |
No. of Flash 8 4
Channel 8 [4 2 4 12
Way L[2]4 1 [2
Flash Model K9LAGOSUOM JS29F32G08
Flash Vendor Samsung [19] Intel [30]
Flash size 2 GByte 4 GByte
Block size 256 KByte 1 MByte
Page size 2 KByte 4 KByte
Chnl Clk/Width 33MHz/8bit S0MHz/8bit
Read 60 usec S0usec
Program 800usec 900 usec
Erase 1.5 msec 2 msec

Before we move on, let us briefly revisit the basics of
address mapping schemes used in this study. In page mapping,
each logical page can be mapped to any physical pages in
SSD. Since modern NAND based storage device can easily
go over several hundreds of GByte, the page table size of
page mapping puts significant burden the storage controller
which has very limited memory. In block mapping, mapping
happens at the block granularity and therefore the overhead of

Sm by n denotes m channels with n way configuration

mapping table is orders of magnitude smaller than the overhead
in page mapping. In this study, we examine the behavior of
two hybrid mappings, FAST [23] and LAST [24] along with
the page mapping. In hybrid mapping, there are two types of
blocks: data block and log block. Only data blocks are visible
to upper layer. In hybrid mapping, data blocks are maintained
by block mapping and the log blocks are maintained by page
mapping. For an incoming write request, hybrid mapping first
consults block mapping table to find the physical address.
If the respective physical page contains valid content, FTL
invalidates the respective location and writes an incoming page
to one of the log blocks.

When there run out of free blocks, FTL selects one or
more blocks, consolidates valid pages in these block into a
new block, and erases the blocks whose pages are consoli-
dated. Each of hybrid mapping schemes has its own way of
categorizing the log blocks and managing them. To make the
consolidation more efficient, FAST partitions the log blocks
into random and sequential log blocks, where the random write
and sequential writes are directed, respectively. The problem of
FAST is its high log block associativity: a single log block can
harbor the data pages from all different data blocks. This makes
the consolidation cost extremely high especially in multi-
channel/multi-way environment. LAST has been proposed to
effectively address this issue. LAST further categorizes the
random log blocks into Aot and cold ones. It establishes a
time window and if the write request for the same logical
page arrives again within this time interval, it is directed to
hot log block. It significantly reduces the log block utilization
and equivalently the overhead of log block merge operation.
The objective of this study is not evaluating the mapping
algorithms. Rather, we like to examine how the tool developed
in our work can benefit the understanding on the various
behaviors of SSD. Further interested users are referred to [23],
[24].

We chose two scenarios (copying a video file and MP3
files) for sequential IO and IOzone to measure the performance
of random IO. We also used five application installation
workloads (Windows7, MS Office, Photoshop, Ubuntu, and
Xen Compile). We have described the workload characteristics
in Table IV. These workloads are carefully chosen to properly
incorporate the modern computer and mobile device usage.

B. Model Accuracy
VSSIM is accurate.

A fair number of simulation tools have been proposed to
study hardware and software aspect of NAND based storage
device. Few of the simulation tools have been validated their
accuracy against the commodity NAND based storage device.
Flashsim [5] is the only one which we are aware of to
compare the performance of the simulated device against the
real storage device. To validate VSSIM with real SSD, it
is mandatory that we acquire detailed understanding on the
behavior of a given SSD. With few exceptions, SSD vendors
do not disclose the SSD firmware algorithms and often treat
them as trade secret. Yoo et.al. [31] successfully identifies the
internals of X25M in fairly detailed manner: (i) X25M adopts
plain page mapping, (ii) It parallelizes the write operation in
4 KByte granularity, and (iii) channel switch entails 30 usec

TABLE IV.

USER SCENARIO WORKLOAD CHARACTERISTICS

l I

Total Request

[

Read / Write Ratio (%)

[

Read / Write size (GB)

[

Seq. Write (%)

l

Windows7 286,472 62.1/379 1.81 / 10.65 45.9
MS Office 50,008 26.5/73.5 0.62 /4.55 53.2
Video File 13,381 12.1 /879 0.12 /252 86.2
100 MP3 8,267 19.6 / 80.4 0.10 / 1.55 96.8
Photoshop 56,834 232/76.8 1.49 /477 48.3
Ubuntu10.04 24,010 30.1/69.9 0.35/6.16 64.0
Xen Compile 19,982 79.0/21.0 0.23/1.45 64.5

delay. This research data enable us to validate VSSIM against
the commercially available SSD, Intel X25M (10 channel, 2
way, 2 plane, cell programming delay 900 psec).

According to vendor specification[32], sequential write
bandwidth of X25M is 70 MByte/sec with 900 usec cell

programming delay. When we set the cell programming delay ————
of VSSIM version of X25M to 900 psec, VSSIM version of 1+ X25-M
X25M yields 68.9 MByte/sec sequential write performance. 3 VSSIM e
With physical measurement, our 1.5 year old X25M device 2 08¢
yields 62 MByte/sec for sequential write and 907 IOPS for o) 06 |
4KB random write(direct IO, No write buffer). S)
We adjust the NAND programming delay of VSSIM from § 04 |
900 psec to 1100 psec to match the physically observed & 02 |
performance of the target SSD. As NAND device ages, NAND)
flash gets exposed to various types of physical defects, e.g. 0 i ‘
charge detrapping, Stress Induced Leakage Current(SILC), S T G S n Iy T e 7
Random Telegraph Noise(RTN), and etc. NAND device be- 070 "0 0 Qp % % %
comes vulnerable to disturbance(program, read, erase), inter- Ti (us)
ference, and parameter spread. As a result, it takes more time Ime {us
to program or read a NAND cell[33]. (a) read
T v p—
o B | VSSIM
_ X25-M (Rand) O 08! :
© VSSIM (Rand) <
Q400 Y—
= 00, ° 06
3 300 o) S
2 2000 = =
s 200 9 04
m —
100 1000 L 02 |
0 8 W E
Gl W 69‘?’% o 0 e
o o et e® 2 4 6 8 1012 14 16 18
Fig. 6. Performance Comparison: X25M vs. X25Mvy 5510 Time (ms)
(b) write
We examine the performance of sequential IO (MByte/sec)))) .
and random IO (IOPS) of X25M and VSSIM model of Fig. 7. CDF of IO latency, 10 size: 512KByte data using demerit
X25M, X25Mygsrar- The performance numbers below are
the average of ten runs. X25M device is secure-erased before TABLE V. QUANTILE STATISTICS (WORKLOAD: RECORD SIZE
the start of each run. 512KBYTE, FILE SIZE 512MBYTE, O_DIRECT)
X25Mvyssrnm yields 63 MByte/sec and 220 MByte/sec [SSD][10 | Min | 25% | Median | Mean | 75% | Max |
for sequential write and read, respectively. For sequential 10, X25M || Write | 35 | 69 77 74 [79 [165
VSSIM accurately models the performance of X25M within Z(SZSSI;\/I/I ‘l;"ff‘g 6(-)7 235 2: 971-86 f;j 1137-:’
3% offset. Figure 6 illustrates the result of the experiment. ~SSTM RZZd 0 57 9% 599 99 | 182

With random IO(IOZONE, 4 KByte record size, 512 MByte
file), X25M yields 4.1 KIOPS and 0.9 KIOPS for read and
write, respectively. X25My ssras yields 4.4 KIOPS and 0.7
KIOPS for random read and write, respectively (Figure 6). In
simulating the random IO performance, VSSIM is less accurate

than in simulating the sequential I0. We applied Demerit [34]
to validate VSSIM. We examine the CDF of 10 latency. Figure
7 illustrates the result. Write and Read difference in mean of
X25M and X25My g5y is 5.4% and 9%, respectively(Table
V).

The performance of an SSD is governed by the hardware
configuration, e.g. channels, ways, planes and etc. and the
software components, e.g. mapping, garbage collection, buffer

management, map caching, and etc. Hardware components
determine sequential 10 performance and VSSIM models the
existing SSD with 3% performance offset. On the other hand,
random IO performance varies widely subject to the internal
firmware algorithms details of which are unknown to public
and are difficult to reverse engineer. X25My sgrps 1S not
loaded with any acceleration technique to improve the write
performance and its performance is slightly lower than real
X25M. In this regard, VSSIM provides sufficiently accurate
baseline platform to study the effect of various SSD design
parameters.

C. Page Size and Channel Parallelism

Channel Parallelism becomes less beneficial as Flash page
size becomes larger.

500 R SSD-A
e SSD-B
I i SSD-C
400 ! SSD-D
— f» SSD-E &=
N 1
S 300 | g
= g
S 200 |}
@ i
i
100 | ‘;
0 A

Xen Win7 MS PS Ubt VD MP3

Fig. 8. Host Performance (page mapping) (Xen: Compile Xen, WIN7: Install
Windows7, MS: Install MS Office, PS: Install Photoshop CS4, Ubt: Install
Ubuntu 10.04, VD: Copy a video file, MP3: Copy 100 Mp3 file)

While increasing the number of channels is widely per-
ceived as a right way to improve performance, it does not come
for free. If we increase the number of channels, SSD controller
needs more pins. Also, as SSD has more channels, the peak
current increases, which makes the SSD controller circuit more
susceptible to noise, ground bounce, blackouts and etc [35].
Increasing the number of chips per channel, i.e. increasing the
way parallelism can be a possible resort to resolve pin count
and circuit size issues in increasing the channel parallelism.

We tested the performance for five SSDs with page map-
ping. SSD A, B and C have eight, four and two channels,
respectively. SSD D and E have four and two channels,
respectively. Figure 8 illustrates the results. As we double the
number of channels and reduces the ways, the time to install
softwares decreases by 4-8%. Special care needs to be taken
to determine if this performance gain deserves its complexity.

Another important aspect of modern SSD is the flash page
size. When we use a larger page size chip, we can improve the
sequential read performance. This is important in reducing the
booting time in the mobile devices. However, a larger page size
means more page invalidation. Figure 9 illustrates the IOPS
for 4 KByte random write. For SSD-A, SSD-B and SSD-C,
there exist approximately 10% improvement when we increase

5000
4000
3000
2000
1000

IOPS

5‘50’2%0'%950'05909690'%

Fig. 9. 4Kbyte Random Write (IOZONE)

the number of channels. For SSD-D and SSD-E, on the other
hand, the performance difference is less than 3%. The former
SSDs and the latter SSDs use 2 KByte page and 4 KByte
page NAND, respectively. As the cell program time constitutes
more dominant fraction of page write latency, i.e. a page
gets larger, the performance advantage of channel interleaving
over way interleaving becomes less significant. The current
state-of-the-art NAND flash uses 8 KByte page and the page
size is expected to grow. As the experiment result shows, the
advantage of channel interleaving against way interleaving will
become less significant in the future flash memory and even
further so if we take into account the hardware overheads
(circuit complexity, pin count, peak power consumption, etc.)
involved in realizing more channels.

D. 10 size and Parallelism in FTL

FTL should support variable mapping unit size.

We examine the IO size distribution of the write operations
for seven workloads (Window?7 installation, MS office instal-
lation, Photoshop installation, video file copy, MP3 file copy,
Install Ubuntu 10.04, Compile Xen) and how the channels are
utilized for the respective workloads. In all workloads, 76%
of write operations are either less than 4 KByte or larger than
64 KByte (Figure 10). For file download, most of the IO are
128KByte.

The 10 size directly governs the effectiveness of the
internal parallelism. We examine the channel usage pattern
in 8 channel SSD (SSD-A) and 4 channel SSD (SSD-D),
respectively. Figure 11 illustrates the results. In software
installation workloads (Windows 7, MS Office, and Photoshop)

LH4KB 77i<=16KB R <=32KB 35 <=64KB KXXA<=128KB
1

= 08 o
*5 o
2 o6)
pd 04 r _
>
0.2 o
0
Win7 MS VD MP3 Ubt Xen
Fig. 10. 1O size distribution (Write) (WIN7: Install Windows7, MS: Install

MS Office, PS: Install Photoshop CS4, VD: Copy a video file, MP3: Copy
100 Mp3 file, Ubt: Install Ubuntu 10.04, Xen: Compile Xen)

123 456 7 8

Write ——
gg Rerélz 2z

11 Rl Hﬁi

$02020=0202020%0
28388686 R%
The number of chips

(a) 8 ch: Read and Write

2 3 4

Write ——
Read

10 Request (%)
S

LUM [
LUIM K
WO E

slitle]
LUIM [T
80O [F
LUIM [}
800 3

Thme number of chips
(b) 4 ch: Read and Write

Fig. 11. Channel Parallelism in Page Mapping

(Figure 11(a), Figure 11(b) and Figure 11(c)), single channel
IO and full channel IO together accounts for more than 84%
of the IO requests. In file copy operations (MP3 and video
file), 97% of the writes exploit all channels (Figure 11(c) and
Figure 11(d)). In random write, 99% of the writes use only
one channel.

FTL exploits internal SSD parallelism either via managing
channels independently (Intel X-25M [31]) or via managing
them as a group (Samsung XMP [31]). The former and the
latter are good for small random IO and for large 10 of multiple
pages, respectively. SSD should be able to handle small size
I0’s (one page or less) and large size 10’s (64KB or more)
both efficiently. However, most (if not all) FTL’s are designed
for either of the two. Numerous hybrid mapping algorithms
attempt to address this issue via handling random write (small
write) and sequential write (large write) differently. However,
hybrid mapping cannot be used in multi-channel/multi-way
environment, which is to be shown shortly. This suggests
a new avenue for future FTL design. FTL should be able
to dynamically adjust the mapping granularity ranging from
subpage size to maximum IO size, e.g. 512 KByte in eMMC.
Benefit of multi-granularity mapping approach will be more
significant as SSD capacity increases and as a single SSD
harbors multiple filesystem partitions each of which exhibits
unique access characteristics. If multi-granularity mapping
accompanies significant overhead in FTL design, establishing
physical partition on SSD subject to the file system partition
information, e.g. /etc/fstalb, and managing them with
different FTL (with different mapping granularity) can be a
resort.

E. Hybrid mapping and Parallelism

Hybrid mapping breaks in multi-channel/multi-way SSD due
to log block fragmentation.

Reducing the size of mapping table is one of the most crit-
ical concerns in designing modern flash based storage. While
page mapping yields the best random write performance, page
mapping suffers from large size of its mapping table. Various
hybrid mapping techniques have been proposed [36], [24],
[37], [38] to achieve random write performance similar to page
mapping while reducing the mapping table size by orders of
magnitude. There is ongoing debate among the practitioners on
whether to adopt hybrid mapping or not. In reality, however,
few commercial SSDs adopt hybrid mapping. While the hybrid
mapping brings clear benefit of reduced mapping table, the
performance of the hybrid mapping is yet-to-be known under
multi-channel/multi-way settings.

’\F Photoshop ——1 100 MP3 ez @ Photoshop ——1 100 MP3 e

400 Video &% 4k Random mmmmm 400 Videg B2z 4k Random e

§ 80 ‘ § 80

g 60 g 60

T 40 T 40

£ 20 £ 20 ’7

= 0 o n 0 0. n
1234567 8 1 2 3

The number of chips
(d) 4 ch: Write Only

The number of chips
(c) 8 ch: Write only

We examine the performance of page mapping and two
hybrid mapping(FAST and LAST) FTLs. We run three work-
loads: Windows install, file copy and random write. The SSD
is configured to 4 channel 4 way. In this study, we conclude
that hybrid mapping is not practically feasible FTL in multi-
channel and multi-way settings due to log block fragmentation
and subsequent excessive log block merge overhead.

The objective of SSD parallelism(multi-channel/multi-way
architecture) is to perform multiple NAND operations in
concurrent manner. SSD controller achieves this objective via
striping a logical block across the channels and the ways
in a certain granularity, e.g. a page[32]. Multi-channel/multi-
way SSD distributes the write requests across the channels
and/or ways and services them in parallel fashion to expedite
the IO performance. In this mechanism, a set of “correlated”
write requests can be dispersed across the channels. The SSD
performance is critically governed by the overhead of block
consolidation, i.e. garbage collection in page mapping and
log block merge in hybrid mapping. The key ingredient of
block consolidation is to minimize the number of valid pages
moved to a new block. Therefore, it is desirable to maintain
correlated page in the same block since they are likely to be
updated, i.e. invalidated, together. Variety of hybrid mapping
algorithms put significant effort to maintain correlated pages
in the same physical block. We call the phenomenon that a log
block in the hybrid mapping is striped across the channels or
across the ways as log block fragmentation. The fundamental
issue with log block fragmentation is that it may dismantle the
locality in the log block, which the hybrid mapping scheme
aims at exploiting. We study the effect of SSD parallelism
and the performance of hybrid mapping. This study consists
of two phase. First, we examine the SSD performance under
“as is” porting of hybrid mapping over multi-channel SSD.
Second, we revise the hybrid mapping for multi-channel/multi-
way environment and compare the performance against page

mapping.

In “as is” approach, SSD controller blindly stripes all
blocks (data block and log block) across the channels in
page granularity. We measure the time to install Windows7
operating system. We found that the log block merge overhead
becomes extremely high and Windows7 installation takes
approximately 20 hours. Second, we revise the hybrid map-
pings(FAST and LAST) for multi-channel environment. We
modify these mappings so that the sequential log block is
not striped and is stored in the single physical block. This is
to preserve the spatial locality among the pages via storing
the pages at the same physical block. There is additional
modification to LAST FTL. In multi-channel version of LAST,
we do not stripe hot log block. This is to preserve the access

2500 - ;| Runtime EXRR==R 10 Bandwidth Rx=RIXA IOPS Rz=RXXA
WAF et | 3 WAF —+— | 3 9000 1 WAF ot
@ . 8000 13
,u?zooo F 25 g 8 1 25 7000 1
) = {25
05’1500 2 W Z 6 I «w 6000 "
E < £ < Q5000 e 12 <
< 15 = 2 153 9 Lol T iy | =
S 1000 £ 4 115
c R B .] 2 11 3000 B 14
500 m 2t 2000 1
% 0.5 1 05 1000 1 05
] J 0 oL B 0
FAST LAST PAGE FAST LAST PAGE FAST LASTPage-mapped
(a) Windows 7 Installation (b) Copying 100 MP3 files (c) Random Write (I0OZONE)
Fig. 12. Performance and Write Amplification Factor (WAF)

correlations in the hot log block.

We examine the performance of revised hybrid mappings
and page mapping. We use four channel one way SSD(SSD-
D in Table III). We install Windows7 OS and measure the
installation time. For sequential and random IO performance,
we copy one hundred mp3 file and run random write operation
of IOZONE. FAST has 16 random log blocks and four
sequential log block. LAST has 8 hot and 8 cold random log
block and 4 sequential log block. Over-provisioning rate is
approximately 2%. Figure 12 illustrates the result. Among the
three FTL’s, page mapping yields the best performance for all
three workloads. Windows 7 installation takes approximately
6.3min in page mapping while it takes about 4.2 and 5
times longer, in FAST and LAST, respectively. For file copy,
bandwidth of page mapping is at least three times higher than
the bandwidth of hybrid mappings. The performance difference
becomes even starker in random write workload. The IOPS of
page mapping is six times higher than that of hybrid mappings.
SSD performance is very sensitive to its firmware algorithm.
With the same hardware, IOPS and bandwidth can differ by
as large as x6 subject to FTL (Figure 12).

In our experiment, hybrid mapping suffers from severe
log block fragmentation if it interleaves the log block across
the channels. When the controller does not stripe the log
block across the channel, it fails to fully utilize the channel
parallelism. We find that performance penalty is less severe
if hybrid mapping does not interleave the log blocks whose
pages are strongly correlated, but still the overall performance
is 1/6 of page mapping.

The SSD adopts internal parallelism for better performance.
To minimize the performance overhead of log block merge
operation, the hybrid mapping should not use parallelism and
should direct the correlated pages into the same physical
block. Resolving the deficiency of hybrid mapping in multi-
channel/multi-way SSD is not a trivial issue since the defi-
ciency is originated from the fundamental nature of NAND
flash memory: difference between the write unit, “page” and
the erase unit, “block”. We carefully argue that hybrid mapping
as currently it stands, does not fit in multi-channel/multi-way
SSD.

F. Write Amplification and Performance

Write Amplification Factor may not be a right performance
indicator.

2500 Runtime 500 3
- T —
L 2000 2.5
o
E 1500 | e 12 =
z 15 =
Dg: 1000 |
500 {05
0 0
FAST LAST
Fig. 13. Write Amplification and Performance (Windows 7 Installation)

Write Amplification Factor (WAF) is the ratio between
the number of page writes from the host to the number of
page writes which actually happen into flash memory. Write
Amplification Factor is being widely perceived as fair metric
for SSD performance and endurance. Recently, a number of
works have been dedicated to estimate the SSD performance,
especially random write performance, using the Write Ampli-
fication Factor(WAF)[39], [40], [41], [42]. Despite the efficacy
of these analytical models, it is not clear how well the Write
Amplification Factor represents the performance of an SSD
in practice. With VSSIM which enables us to measure the
host performance in real time, we find that the performance
becomes better with larger Write Amplification Factor.

We build 4 channel 1 way SSD with VSSIM. We load two
hybrid mapping(FAST and LAST) on this SSD and measure
the time to install Windows 7, respectively. In this experi-
ment, Write Amplification Factors for FAST and LAST yield
2.1 and 1.5, respectively. LAST exhibits significantly better
Write Amplification Factor. Despite its larger, i.e. worse Write
Amplification Factor, Windows7 installation takes shorter in
FAST than in LAST. Write Amplification does not properly
reflect the performance of the underlying storage. Figure 13
illustrates the result.

The performance of an SSD is governed by three factors:
(1) the number of flash page writes, (ii) the number of erases
and (iii) the degree of parallelism. The Write Amplification
represents only the first, the number of actual page writes, out
of three key constituents of storage performance.

We dissect the behavior of two FTLs, and examine why
the WAF does not coincide with the host performance. FAST
impose tighter constraints in categorizing the incoming write as

sequential. As a result, larger fraction of writes are categorized
as random in FAST than in LAST (97% vs. 3%). Subsequently,
FAST loaded SSD has more opportunity to distribute the
write operations across the channels exploiting the hardware
parallelism. Unexpected consequence is that FAST fails to
preserve correlated block accesses at a single physical block.
We measure the log block associativity. We find that average
log block associativity for FAST and LAST corresponds to 62
and 18, respectively. As a result, FAST yields larger WAF than
LAST in Windows7 installation.

T T
Merge (Random) EXX3 Program (Random)
- Merge (Seq) E== Program (Seq)
8 2000
(2]
=
2
‘= 1500 r
b

% 0’0’::?5
2
< 1000 35581
> 5
9 podeles 00:::::::
(o2} %! 0
D 500 t R 0o 1
< s sesesssssasatel

S KRR

0.0.0 0.0.0.1

KRR 2]

0.0.0 0.0.1

KX X XX

FTL
Fig. 14. Dissection of Aggregate Write Latency (Window 7 Installation)

Let us further analyze the details. Increase in the par-
allelism improves the performance and the increase in the
log block associativity degrades the performance due to the
increase in WAF and the number of erase operations. We
examine how these two factors affect the overall performance.
We measure the time spent on writing pages(Figure 14). There
are two types of page writes in hybrid FTL: data write and log
block merge. The former is caused by the request from the
host and the latter is caused by consolidating the log blocks
with the data blocks. LAST spends approximately 300 sec
more in writing data than FAST does. We observed that FAST
generates more writes due to larger log block associativity, i.e.
larger Write Amplification. FAST spends most of its time on
merging random log blocks and the time to merge sequential
log block can be ignored since the sequential writes constitutes
only 3% of entire write. In LAST on the other hand, 97% of
the writes are sequential. LAST spends most of its time on
handling sequential log blocks (write and merge). FAST does
suffer from higher block associativity of random log blocks and
LAST cannot parallelize the writes to sequential log block. In
this experiment, advantage of striping the page writes across
the channels outweighs the advantage of maintaining them in a
single block to preserve access correlation. As a result, FAST
yields the better performance than LAST does even with larger
Write Amplification.

G. Importance of Hot/Cold Identification
Hot block identification is critical in making the

over-provisioning effective.

SSD reserves a certain fraction of blocks in each NAND
device to record updated pages. These blocks are not visible
to the host. This is called over-provisioning and the ratio

between the amount of invisible blocks in the entire storage is
called over-provisioning factor. With larger over-provisioning
degree, FTL is given more opportunity to cluster the pages in
the same category together, e.g. random or sequential or hot
or cold pages together, which makes the block consolidation
much more efficient, i.e. low number of valid page copy
operation incur. With VSSIM, we examine the time to install
Windows7 OS under different over-provisioning degrees and
with different ways of categorizing page writes.

T T T T
i) Merge (Random) EXXJ Program (Random) e
g 2000 Merge (Seq) ez Program (Seq) i
-

o i

= —
= 1500 K000
; RRRKEA K

[RRRRRKY K. 0
sl
o B0 R85 |
= 1000 KSR BRI
© e ol
= KRR 855
() [etetetototo Il o esesosososs I
et IRKXN [049
500 20 00tototo %y B % %
2 e e
(=] [ORARXRK 2 %
< RS]
196%0%%%% o
A N
7o
So)
o
A 2
'Y
FTL
Fig. 15. Aggregate Write time: Windows7 Installation (No. of Random log

blocks, No. of Sequential log blocks)

We examine two hybrid mappings, FAST and LAST. We
study the relationship between the SSD performance and the
over-provisioning degree. For FAST, we vary the number of
random and sequential log blocks as (16,4), (32,8) and (96,24),
which corresponds to over-provisioning ratio of 0.5%, 1%
and 3%. For LAST, we vary the number of random and
sequential log blocks as (2,1), and (16,4). Over-provisioning
ratios correspond to 0.1% and 0.5%, respectively. Figure 15
illustrates the results.

FAST spends most of the time in merging random log
blocks and LAST spends most of the time in writing sequential
log blocks. It is surprising to see that LAST yields the same
performance as FAST with nearly 1/6 of the log blocks (Fig-
ure 15). This clearly suggests that properly incorporating the
temporal locality in categorizing the incoming write requests is
extremely important to make the over-provisioning effective. In
FAST and LAST, average latency of writing a page (random)
corresponds to 0.1 msec and 0.7 msec, respectively. FAST well
exploits channel parallelism and reduces the effective write
latency of random log block. However, the merge overheads
of random log blocks in FAST and LAST correspond to around
200 msec and 30 msec, respectively. Due to higher log block
associativity, FAST yields excessive log block merge overhead
for random log blocks.

H. Related Works

Estimating the behavior of the NAND based storage device
is of paramount interests recently. The modeling efforts can be
categorized into analytical modeling[6], [39], [40], [41], [42],
trace driven simulator[3], [5], [7], [9], virtual device based

simulator[4], [6], [8], and hardware based emulator[10], [11],
[12], [13].

DiskSim [43] is one of the foremost and well-known
trace driven simulators for hard disk drive. Agarwal et al.
[3] developed the first fairly detailed SSD model based upon
the DiskSim. Since it has a monolithic architecture, it is
difficult to extend and to adopt a new FTL. FlashSim [5]
is another trace driven simulator that extends the DiskSim.
FlashSim takes an object-oriented approach. Flashsim is pre-
loaded with three FTLs and easy to add one. There also
introduced clock level simulator to study the bus utilization,
channel utilization of NAND based storage[9], [7]. With these
trace driven simulators, we can examine the fairly detailed
behavior of the device internals, but cannot directly capture the
host performance. The fundamental limitation of trace driven
simulator is its limited capability to understand the interaction
between the host and the device, which above mentioned trace
driven SSD simulators are not free from.

Another approach to study the SSD performance is to use
virtual device[4], [6], [8]. NANDSim[4] exports very primitive
FTL with Read/Write/Erase operations. It is far from modeling
various components of the SSD, e.g. FTL, garbage collection,
wear-leveling, degree of parallelism, and etc. Kaoutar et. al.
[6] proposed a virtual device similar to NANDSim. They
developed an analytical model for delay. Even the state of
art virtual device provides very simple storage model(single
chip, one channel/one way without buffer). The virtual devices
are not only incapable of incorporating details of the device
hardware internals but also unable to load advanced firmware
algorithms.

Hardware based emulator generates the most realistic re-
sults among different modeling approaches, but is the least
flexible avenue. We cannot adjust hardware design parameters,
e.g. the parallelism degree, page size, the number of pages per
block, channel clock frequency, and etc. Due to its cost and
inflexibility, hardware based emulators[10], [11], [12], [13] are
usually built at the final stage of the SSD development process.
[13] does not have host interface and it cannot be attached to
the host. Hardware based emulator design is dependent upon
the NAND device type it is using. [10], [12], [13] are built
for legacy NAND, which has been phased out. The emulator
boards needs to be re-manufactured when new NAND device
emerges[44].

V. CONCLUSION

In this work, we propose a Virtual SSD Simulator, VSSIM.
We managed to incorporate not only essential components
of SSD, but also the sophisticated algorithms to exploit
multi-channel and multi-way characteristics of an SSD. With
VSSIM, it is possible to examine the performance of the
host and the detailed internal behavior of the SSD simul-
taneously in real-time manner. This eventually leads us to
acquire the correlational characteristics between the various
SSD design parameters and the host performance without
physically prototyping it. The case studies in this work are

primarily for exhibiting the capability of VSSIM, yet still
deliver meaningful answers to critical design issues. First, the
benefit of channel parallelism against way parallelism becomes
less significant as flash page size increases. The performance
advantage of channel parallelism against way parallelism is
its ability to parallelize register write operations. However, as
flash page becomes larger, NAND program delay constitutes
dominant fraction of page write time and the time to transfer
data between the controller and page register becomes less
significant. Second, for four or more channels SSD, the log
block operations of existing hybrid FTL’s suffer from se-
vere performance degradation due to log block fragmentation.
Hybrid mapping technically breaks when parallelism degree
is four or larger in SSD. Third, increasing the number of
channels beyond four does bring performance improvement in
software installation, massive file copy and random write, but,
the performance gain is marginal and may not justify its design
overhead, extra pin counts and the increase in peak power
consumption. Fourth, Write Amplification may be misleading
as a performance metric since it does not capture effect of the
degree of parallelism and the number of erase operations on
the SSD performance. Finally, it is critical that various types
of locality need to be properly exploited to reduce the amount
of log block required.

ACKNOWLEDGMENT

This work is sponsored by IT R&D program MKE/KEIT.
[No0.10035202, Large Scale hyper-MLC SSD Technology De-
velopment]. The authors would like to thank Haesung Kim
and Joohyun Kim for their contribution to the development of
VSSIM at its inception stage.

REFERENCES

[1] “Flash memory to overtake dram market,” in IC Insights, 2011.

[2] Gartner, “Forecast: Semiconductor consumption by electronic equip-
ment type, worldwide, 4Q11 update,” December 2011.

[3] N. Agrawal, V. Prabhakaran, T. Wobber, J. D. Davis, M. Manasse, and
R. Panigrahy, “Design trade-offs for SSD performance,” in Proc. of
USENIX ATC ’08, 2008, pp. 57-70.

[4] “Memory technology device, www.linux-mtd.infradead.org.”

[5] Y. Kim, B. Tauras, A. Gupta, and B. Urgaonkar, “Flashsim: A simulator
for nand flash-based solid-state drives,” in Proc. of the First Interna-
tional Conference on Advances in System Simulation, Washington, DC,
USA, 2009, pp. 125-131.

[6] K. El Maghraoui, G. Kandiraju, J. Jann, and P. Pattnaik, “Modeling
and simulating flash based solid-state disks for operating systems,” in
Proc. of WOSP/SIPEW ’10, San Jose, California, USA, January 2010,
pp. 15-26.

[71 M. Jung, E. Wilson, D. Donofrio, J. Shalf, and M. Kandemir, “Nand-
flashsim: Intrinsic latency variation aware nand flash memory system
modeling and simulation at microarchitecture level,” in Proc. of IEEE
Symposium on Mass Storage Systems and Technologies (MSST), 2012,
pp. 1-12.

[8] P. Jin, X. Su, Z. Li, and L. Yue, “A flexible simulation environment
for flash-aware algorithms,” in CIKM ’09: Proc. of the 18th ACM
conference on Information and knowledge management, New York, NY,
USA, 2009, pp. 2093-2094.

[9] . Lee, E. Byun, H. Park, J. Choi, D. Lee, and S. H. Noh, “Cps-sim:
configurable and accurate clock precision solid state drive simulator,”
in Proc. of ACM SAC ’09, Honolulu, Hawaii, USA, 2009, pp. 318-325.

[10]

(1]
[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

(31]

[32]

[33]

H. eok Kim, E. H. Nam, and K. S. Choi, “Development platforms
for flash memory solid state disks,” in Proc. of 11th IEEE Interna-
tional Symposium on Object Oriented Real-Time Distributed Computing
(ISORC), 2008, pp. 527-528.

“The openssd project,” http://www.openssd-project.org.

S. Lee, K. Fleming, J. Park, K. Ha, A. Caulfield, S. Swanson, J. Kim
et al., “Bluessd: an open platform for cross-layer experiments for
nand flash-based ssds,” in WARP-5th Annual Workshop on Architectural
Research Prototyping, 2010.

Y. Cai, E. Haratsch, M. McCartney, and K. Mai, “Fpga-based solid-state
drive prototyping platform,” in Proc. of IEEE International Symposium
on Field-Programmable Custom Computing Machines(FCCM), Salt
Lake City, Utah, US, May 2011.

M. Mesnier, M. Wachs, R. Sambasivan, J. Lopez, J. Hendricks,
G. Ganger, and D. O’Hallaron, “//Trace: parallel trace replay with
approximate causal events,” in Proc. of the 5th USENIX FAST, 2007,
pp. 24-24.

N. Zhu, J. Chen, T. Chiueh, and D. Ellard, “Tbbt: scalable and
accurate trace replay for file server evaluation,” in ACM SIGMETRICS
Performance Evaluation Review, 2005, vol. 33, no. 1, pp. 392-393.

N. Joukov, T. Wong, and E. Zadok, “Accurate and efficient replaying
of file system traces,” in Proc. of the 4th USENIX FAST, 2005, vol. 5,
pp. 25-25.

E. Anderson, M. Kallahalla, M. Uysal, and R. Swaminathan, “Buttress:
A toolkit for flexible and high fidelity i/o benchmarking,” in Proc. of
the 3rd USENIX FAST, 2004, pp. 45-58.

V. Tarasov, S. Kumar, J. Ma, D. Hildebrand, A. Povzner, G. Kuenning,
and E. Zadok, “Extracting flexible, replayable models from large block
traces,” in Proc. of the 10th USENIX FAST, 2012.

SAMSUNG, “Samsung electronics: 2g x 8 bit / 4g x 8 bit nand flash
memory (k9xxg08uxm),” June 2006, specification.

I. Corporation, “Understanding the flash translation layer(FTL) specifi-
cation,” Tech. Rep. 297816-002, December 1998.

A. Gupta, Y. Kim, and B. Urgaonkar, “DFTL a flash translation
layer employing demand-based selective caching of page-level address
mappings,” in Proc. of ASPLOS '09, Washington, DC, USA, 2009.

J. Kim, J. M. Kim, S. Noh, S. L. Min, and Y. Cho, “A space-efficient
flash translation layer for compactflash systems,” Consumer Electronics,
1IEEFE Transactions on, vol. 48, no. 2, pp. 366 =375, May 2002.

S.-W. Lee, D.-J. Park, T.-S. Chung, D.-H. Lee, S. Park, and H.-J. Song,
“A log buffer-based flash translation layer using fully-associative sector
translation,” ACM Trans. Embed. Comput. Syst., vol. 6, July 2007.

S. Lee, D. Shin, Y.-J. Kim, and J. Kim, “LAST: locality-aware sector
translation for nand flash memory-based storage systems,” SIGOPS
Oper. Syst. Rev., vol. 42, pp. 36-42, October 2008.

C. Park, W. Cheon, J. Kang, K. Roh, W. Cho, and J.-S. Kim, “A
reconfigurable ftl architecture for nand flash-based applications,” ACM
Trans. on Embedded Computing Systems, vol. 7, no. 4, July 2008.

H. Kwon, E. Kim, J. Choi, D. Lee, and S. Noh, “Janus-ftl: finding
the optimal point on the spectrum between page and block mapping
schemes,” in Proc. of the tenth ACM international conference on
Embedded software, 2010, pp. 169-178.

F. Bellard, “QEMU, a fast and portable dynamic translator,” in Proc.
of USENIX ATC 05, Anaheim, CA, USA, April 2005, pp. 41-46.

A. Kivity, “KVM: the linux virtual machine monitor,” in Proc. of the
Ottawa Linux Symposium(OLS), 2007.

M. Wu and W. Zwaenepoel, “envy: a non-volatile, main memory storage
system,” in ACM SigPlan Notices, vol. 29, no. 11. ACM, 1994, pp.
86-97.

Intel, “Datasheet: Md332b NAND flash memory (js29fxxg08xxxdb),”
August 2009, specifiacation.

B. Yoo, Y. Won, S. Cho, S. Kang, J. Choi, and S. Yoon, “SSD
characterization: From energy consumption’s perspective,” in Proc. of
HotStorage 11, Portland, OR, USA, June 2011.

I. Corporation, “Intel x25-m sata solid-state drive,” specifica-
tion. [Online]. Available: http://download.intel.com/design/flash/nand
/mainstream/mainstream-sata-ssd-datasheet.pdf

E. W. Dijkstra, Stepwise program construction. Springer, 1982.

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

C. Ruemmler and J. Wilkes, “An introduction to disk drive modeling,”
Computer, vol. 27, no. 3, pp. 17-28, 1994.

G. Hong, “Analysis of peak current consumption for large-scale, parallel
flash memory,” Presented at Workshop for Operating System Support
for Non-Volatile RAM(NVRAMOS 2011 Spring), Jeju, Korea, April
2011.

D. Ma, J. Feng, and G. Li, “Lazyftl: a page-level flash translation layer
optimized for nand flash memory,” in Proc. of the 2011 international
conference on Management of data. ACM, 2011, pp. 1-12.

H. Lee, H. Yun, and D. Lee, “Hftl: hybrid flash translation layer based

on hot data identification for flash memory,” Consumer Electronics,
IEEE Transactions on, vol. 55, no. 4, pp. 2005-2011, 2009.

S. Lee, W. Choi, and D. Park, “Fast: An efficient flash translation layer
for flash memory,” Emerging Directions in Embedded and Ubiquitous
Computing, pp. 879-887, 2006.

P. Desnoyers, “Analytic modeling of ssd write performance,” in Proc.
of SYSTOR, 2012, June.

X.-Y. Hu, E. Eleftheriou, R. Haas, I. Iliadis, and R. Pletka, “Write
amplification analysis in flash-based solid state drives,” in Proc. of
SYSTOR, 2009.

R. Agarwal and M. Marrow, “A closed-form expression for write
amplification in nand flash,” in Proc. of GLOBECOM Workshops, 2010,
pp. 1846 —1850.

X. Haas, “The fundamental limit of flash random write performance:
Understanding, analysis and performance modelling,” IBM Research
Report, 2010/3/31, Tech. Rep., 2010.

J. Bucy, J. Schindler, S. Schlosser, and G. Ganger, “The disksim
simulation environment version 4.0 reference manual (cmu-pdl-08-
101),” Carnegie Mellon University, Tech. Rep., 2008.

“Onfi nand flash specification,” http://www.onfi.org/specifications.

