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Abstract—The increasing popularity of flash memory has
changed storage systems. Flash-based solid state drive(SSD)
is now widely deployed as cache for magnetic hard disk
drives(HDD) to speed up data intensive applications. However,
existing cache algorithms focus exclusively on performance im-
provements and ignore the write endurance of SSD. In this paper,
we proposed a novel cache management algorithm for flash-based
disk cache, named Lazy Adaptive Replacement Cache(LARC).
LARC can filter out seldom accessed blocks and prevent them
from entering cache. This avoids cache pollution and keeps
popular blocks in cache for a longer period of time, leading to
higher hit rate. Meanwhile, LARC reduces the amount of cache
replacements thus incurs less write traffics to SSD, especially
for read dominant workloads. In this way, LARC improves
performance and extends SSD lifetime at the same time. LARC
is self-tuning and low overhead. It has been extensively evaluated
by both trace-driven simulations and a prototype implementation
in flashcache. Our experiments show that LARC outperforms
state-of-art algorithms and reduces write traffics to SSD by up
to 94.5% for read dominant workloads, 11.2-40.8% for write
dominant workloads.

Index Terms—Flash; Solid State Drive; Cache Algorithm;
Endurance

I. INTRODUCTION

Flash memory has been changing the paradigm of storage
system over the past few years. It is now widely used in
computer systems, not only in consumer devices, but also
in data centers and enterprise-class storage systems. As an
alternative for magnetic hard disk dirve(HDD), flash-based
solid state drive(SSD) outperforms its counterpart by orders of
magnitude for random I/Os. And SSD consumes less power
than HDD as well. However, the price of SSD is much higher
than HDD. Thus SSDs are often used as a cache tier between
DRAM and HDD for cost efficiency [1].

Although SSD shows its attractive worthiness on improving
performance, it however could suffer from endurance issue
when deployed as disk cache. Flash memory can sustain only a
finite number of erase/write cycles. Increased erase operations
due to writes shorten the lifetime of a SSD. This inherent
defect of SSD is a serious problem and should be taken care
of by software.

Sai Huang is now an intern at Data Storage Institute, A*STAR, Singapore.

Existing cache algorithms are primarily designed for buffer
cache resident in RAM. They focused exclusively on hit rate
improvement to maximize the utilization of cache device.
There are a large number of algorithms proposed. The most
widely used LRU algorithm exploits temporal locality and
keeps the most recently used blocks for furture use. Sophisti-
cated algorithms such as FBR [2], EELRU [3], 2Q [4], LIRS
[5], MQ [6] and ARC [7] are proposed to overcome the weak-
ness of LRU and cope with access patterns with weak temporal
locality. They improves hit rate by identifying seldom accessed
blocks and evicting them earlier from cache. However, direct
application of these algorithms is inappropriate for SSD based
disk cache because endurance issue is unfortunately ignored.

In this paper, we proposed a novel algorithm for SSD based
disk cache, named Lazy Adaptive Replacement Cache(LARC).
LARC is different from other algorithms because it tries
to keep seldom accessed blocks out of cache. LARC uses
a ghost cache to identify potentially popular blocks. Cache
replacement is triggered only if such a block is identified. As
a result, blocks in cache tend to be more popular and can be
kept longer to improve hit rate. Meanwhile, LARC reduces
the amount of cache replacements and hence incurs less write
traffics to SSD, especially for read dominant workloads. LARC
is self-tuning. It dynamically controls replacement rate to
reduce as much write traffics as possible without decreasing hit
rate. Trace-driven simulation shows that LARC outperforms
state-of-art cache algorithms for different kinds of workloads.
For read dominant workloads, LARC reduces a large portion
of write traffics incurred by cache replacements. And it also
reduces cache write traffics to some extent for write dominant
workloads. Benchmarks on a prototype implementation in
Facebook’s flashcache [8] further validates the simulation
results.

The rest of this paper is organized as follows. In section
2, we discuss the basics of SSD and problems of existing
cache algorithms. Section 3 describes the LARC algorithm
in detail. Experimental results of trace-driven simulation and
benchmarks on a prototype implementation are in section 4
and 5. We discuss related work in section 5 and conclude this
work in section 6.
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II. BACKGROUND AND MOTIVATION

A. Flash Memory and SSD

Flash memory is an electronic device which stores informa-
tion in cells called floating-gate transistor. These cells can be
progrommed to different states to represent one of more bits
of data. There are two types of flash memory named NOR
and NAND respectively. NOR flash supports byte or word
level addressability and is faster for read, while NAND flash
is cheaper and its storage density is higher.

SSDs use NAND flash memory as storage medium. NAND
flash memory can be classified into Single-Level Cell (SLC)
and Multi-Level Cell (MLC) flash. A SLC flash memory cell
stores only one bit, whereas a MLC flash memory cell can
store two bits or even more. NAND Flash memory is organized
as blocks. Each block consists of 64 to 256 pages. Each page
has a 2KB or 4KB data area and a metadata area (e.g. 128
bytes). Flash memory performs read and write in the unit of
page and erase in block unit. Blocks must be erased before
they can be re-written. In addition, each block can be erased
only a finite number of times. A typical SLC flash memory
has around 100,000 erase cycles, while MLC flash memory
has around 10,000 erase cycles or even less.

As competing with hard disk, the SSD must retain its perfor-
mance advantages even with low cost configurations, such as
those using MLC flash. Unfortunately, both performance and
endurance of flash memory decrease as the storage density
increases [9]. The write speed of MLC flash is more than
three times slower than that of SLC flash, making writes more
expensive for MLC flash. And erase cycle of the MLC flash is
ten times less than that of SLC flash. Therefore, the impact of
write on MLC is more significant than on SLC. In addition to
the writes directly requested by users, SSD’s internal garbage
collection can produce extra writes [10]. To this end, writes
should be minimized through efficient design.

B. SSD Cache Models

There are basically two usage models for SSD based disk
cache [11](see Figure 1). In the first model, SSD is used as an
extension of system memory. In this model, RAM and SSD
are managed as a single unified cache tier for HDD. In the
other model, SSD is used as extended disk. SSD lies beneath
the standard block interface and serves as a second level cache.
It is transparent to other components in the system.

Due to the inclusive property of multi-level cache [12],
the extended disk model is often inferior to the other one
on aggregate hit rate. However, implementing the extended
memory model usually involves modification of the operating
system or the application itself [13]. This is expensive or
even impossible. Therefore, the extended disk model is more
common in production systems. And we focused on it in this
research.

C. Problems with Cache Algorithms

Intensive study on cache management led to a large variety
of algorithms in past years. To maxmize the utilzation of
cache device, a competent algorithm should always keep the
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Fig. 1. Two usage models of SSD based Disk Cache

most popular blocks in cache. Generally speaking, all existing
algrithms are based on two empirical assumptions. The first is
temporal locality, i.e. recently used blocks are highly likely to
be used again in near future. The other is skewed popularity of
blocks, i.e. some blocks are more frequently accessed than oth-
ers. Accordingly, two classical algorithms are proposed, known
as LRU and LFU. LRU is widely used in production systems
for its simplicity and O(1) overhead. However, it suffers from
poor performance for workloads with weak temporal locality.
Here are two examples.

• Scan through a large data set. This can easily purge cache
space and populate it with one-time accessed blocks.
LRU is extremely vulunerable to this. In a shared storage
system, when one of the users starts a scan, blocks
frequently accessed by other users will be pushed out
and response time increases dramatically.

• Loop over a file that is slightly larger than cache size. In
this case, the least recently used block will be re-accessed
first in future. Nevertheless, LRU always evicts it and
hence performs terribly.

LRU is insufficient to cope with these access patterns since
it simply ignores the popularity of blocks. Frequently accessed
blocks can be mistakenly replaced by seldom used ones.
Several sophisticated algorithms have been proposed to solve
this problem, such as FBR [2], EELRU [3], 2Q [4], LIRS [5],
MQ [6] and ARC [7]. These algorithms can identify seldom
accessed blocks and evict them earlier. Thus they improves hit
rate by keeping popular blocks in cache for a longer period
of time. Take ARC as an example. It divides cached blocks
into two groups according their access frequency. One-time
accessed blocks are stored in T1 and other blocks in T2. A
threshold P is used to limit the length of T1. When the length
of T1 is larger than P , blocks are evicted from T1. Otherwise,
blocks are evicted from T2. The value of P is dynamically
adjusted. As a result, blocks in T2 roughly have a higher
priority thus stay longer in cache.

However, none of these algorithms takes the write endurance
of SSD into account. When applied to SSD based disk cache,
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the vulnerability of LRU not only decreases performance, but
also incurs unnecessary write traffics to SSD, shortening its
lifetime. As for ARC, evicting one-time accessed blocks from
T1 improves hit rate, but the write endurance issue remains.
Since these blocks will not be accessed during their residence
in cache, they should not be written to SSD at all. If these
blocks can be identified and kept out of cache, we can improve
hit rate and reduce SSD write traffics at the same time. This
motivated us to push the research forward and design a new
SSD friendly cache algorithm.

III. LAZY ADAPTIVE REPLACEMENT CACHE

We now describe the Lazy Adaptive Replacement Cache
algorithm. LARC exploits the skewed popularity of blocks.
Recently accessed blocks are divided into two groups, one-
time accessed blocks and blocks accessed for two or more
times. Blocks in the second group are more likely to be popular
in future, thus should be cached on SSD. And the first group
of blocks are kept out of cache to avoid cache pollution and
reduce SSD write traffics.

A. The Basic Algorithm

The key idea of LARC is to identify seldom accessed blocks
and keep them out of cache. To achieve this, LARC uses a
ghost cache as filter. Ghost cache is an LRU queue(denoted
as Qr) which only stores block identifiers. When cache is
full, first-time accessed blocks are stored in ghost cache as
candidate. If it is accessed again in the ghost cache later, it
is considered to be more popular than others in future. Then
LARC moves it to physical cache on SSD. Physical cache is
managed with an LRU queue, denoted as Q.

Figure 2 shows the data flow of LARC algorithm. When
reading/writing a block B, LARC first lookups for B in Q. If
it is found, the request is redirected to the corresponding block
on SSD and B is moved to the MRU end of Q. Otherwise,
LARC searches Qr for B to determine whether a cache
replacement should be triggered. If B is in Qr, LARC replaces
the LRU block in Q with B and moves B to the MRU end

TABLE I
AN EXAMPLE OF THE BASIC LARC ALGORITHM

Access LARC LRU

1 Q: {0, 1, 2, 3} Qr : {} {0, 1, 2, 3}
5 Q: {1, 0, 2, 3} Qr : {} {1, 0, 2, 3}
3 Q: {1, 0, 2, 3} Qr : {5} {5, 1, 0, 2}
4 Q: {3, 1, 0, 2} Qr : {5} {3, 5, 1, 0}
3 Q: {3, 1, 0, 2} Qr : {4, 5} {4, 3, 5, 1}
1 Q: {3, 1, 0, 2} Qr : {4, 5} {3, 4, 5, 1}
0 Q: {1, 3, 0, 2} Qr : {4, 5} {1, 3, 4, 5}
4 Q: {0, 1, 3, 2} Qr : {4, 5} {0, 1, 3, 4}
0 Q: {4, 0, 1, 3} Qr : {5} {4, 0, 1, 3}
3 Q: {0, 4, 1, 3} Qr : {5} {0, 4, 1, 3}
6 Q: {3, 0, 4, 1} Qr : {5} {3, 0, 4, 1}
1 Q: {3, 0, 4, 1} Qr : {6, 5} {6, 3, 0, 4}

hits 8 6

replacements 1 6

The first column lists an sequence of 12 block accesses. The rest two
column shows the content of cache(and ghost cache) at that time.
Cache size is 4 and ghost cache size is 2.

of Q. If B is absent from both Q and Qr, LARC redirects
the request to HDD and inserts B to the head of Qr. If Qr

exceeds its capacity Cr, the tail block is removed.
We use the example in Table I to explain how LARC works

and why it achieves our dual objectives. The example contains
12 block accesses. The size of cache and ghost cache is 4
and 2 respectively. As shown in the first column, block 1
and 3 appeared 3 times in the access sequence. Thus they
should always be kept in cache. However, LRU mistakenly
replaced block 3 with block 5. By contrast, LARC can keep
both block 1 and 3 in cache. Thus LARC achieves higher hit
rate. Meanwhile, LARC reduces cache writes by filtering out
one-time accessed block 5 and 6.

B. Self Tuning Policy

In the basic algorithm, the capacity of ghost cache Cr

remains undetermined. As previously described, cache replace-
ment is only triggered by a hit in ghost cache. Replacement
rate in LARC equals to hit rate in ghost cache, thus depends on
Cr. Cr indicates how long a block should be kept as candidate.
The optimal value of Cr depends on the characteristics of
workloads. Specifically, it depends on the minimal reuse
distance.

Reuse distance is the number of blocks accessed between
two consecutive accesses to a block. The distribution of
reuse distance is often used to measure temporal locality of
workloads. Figure 3 gives the cumulative distribution of reuse
distance of 4 different I/O traces. Information of these traces
are in section IV-B. For read dominant traces (a) (b) and read
requests in write dominant traces (c) (d), the curve remains
at around 0 until reuse distance exceeds a certain threshold,
i.e. the minimal reuse distance. As we can see, minimal reuse
distance of read requests is relatively large. This is due to the
existence of an upper cache level, for instance, page cache of
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Fig. 3. Cumulative distribution of reuse distance: point (x, y) means that there are y% of requests whose reuse distance is no more than 2x.

the operating system. Assuming page cache has a capacity of
C0 blocks and uses LRU algorithm, a block will be kept there
for at least C0 requests. Thus no block will be accessed twice
within C0 requests. As a result, minimal reuse distance of
reads depends on C0. This was also reported in [6]. Our trace
analysis further validates this. In addtion, we found this only
stands for read requests. There is no obvious minimal reuse
distance for write requests. This is because dirty blocks in page
cache are flushed back synchronously or periodically to ensure
the consistency and reliability of data. Thus reuse distances
of writes are relatively small and irrelevant to C0. This also
indicates that writes exhibit stronger temporal locality than
reads.

According to this, Cr should be larger than the minimal
reuse distance. Otherwise, there will be almost no hit in ghost
cache for read dominant workloads and the cache content
remains unchanged. However, preliminary results show that
a fixed-sized ghost cache does not work well in many cases.
Thus we introduced a self-tuning policy to solve this problem.
In this policy, Cr is dynamically adjusted according to hit rate:
Cr is decreased by C

C−Cr
on a cache hit and increased by C

Cr

on a cache miss. The increments C
C−Cr

and C
Cr

is chosen to
make LARC more responsive. The smaller Cr is, the faster it
increases. The larger Cr is, the faster it decreases.

Hit rate reflects the popularity of cached blocks. If hit rate
is high, most popular blocks are already in cache. In this case,
decreasing Cr will reduce replacement rate and keep popular
blocks in cache for a longer period of time. On the other hand,
a low hit rate probably means 1) a lot of popular blocks are
out of cache or 2) the workload lacks locality and there are
no popular blocks at all. In the first case, increasing Cr leads
to higher replacement rate and cached blocks will be removed
faster to make room for popular blocks. While in the other
case, hit rate in Qr remains low even if Cr is large. And most
blocks are not admitted into cache. We set the upper and lower
bound of Cr to 90% and 10% of the cache size. Experiments
show that LARC is insensitive to these boudnaries. The pesudo
code of LARC is in Algorithm 1.

IV. SIMULATION EXPERIMENTS

In this section, we evaluate LARC algorithm with trace-
driven simulation. We ran several real-life workloads with our
cache simulator and collected the results under various cache
sizes. Cache size is smaller than the working set of the trace

Algorithm 1: Routine to access block B
Initilize: Cr = 0.1 ∗ C
if B is in Q then

move B to the MRU end of Q
Cr = max(0.1 ∗ C, Cr − C

C−Cr
)

redirect the request to the corresponding SSD block
return

end if
Cr = min(0.9 ∗ C, Cr +

C
Cr

)
if B is in Qr then

remove B from Qr

insert B to the MRU end of Q
if |Q| > C then

remove the LRU block D in Q
allocate the SSD block of D to B

else
allocate a free SSD block to B

end if
else

insert B to the MRU end of Qr

if |Qr| > Cr then
remove the LRU block of Qr

end if
end if

in all configurations.
We chose 4 other algorithms for comparision, including

LRU, LFU, MQ and ARC. LRU and LFU are two classical
algorithms. MQ is optimized for second level cache, which
perfectly matches the model we discussed in this paper. ARC
is the most advanced algorithm and have been deployed in
several production systems. We also implemented Belady’s
offline optimal algorithm [14]. This algorithm is also known
as Furthest In Future algorithm(FIF), since it always evict the
block which will not be used for the longest time in future. It
is used as upper bound of hit rate. We evaluate this algorithm
to show the potential of hit rate improvements.

A. The Cachesim Framework

We have developed the cachesim framework to analyze I/O
traces and evaluate cache algorithms. Cachesim consists of
a preprocessor, a set of query APIs and a cache simulator.
The preprocessor converts traces of different format into
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Fig. 4. Hit rate of different algorithms under read-dominate traces
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Fig. 5. SSD write traffics under read dominant traces

cachesim’s customized format. I/O requests are normalized so
that every single request accesses only one block. Requests
spanning accross more than one blocks are broken up into
multiple normalized requests with the same timestamp. Block
size is selected according to the characteristics of the trace.
The preprocessor also extracts statistical information of traces,
including number of unique blocks accessed, number of blocks
read/written, number of read/write requests, and so on. The
query API is used to obtain trace information and facilitate
trace analysis. The cache simulator implements the general
workflow of replaying I/O operations, calling cache algo-
rithms and collecting simulation results. Cache algorithms are
implemented as modules. We’ve implemented several cache
algorithms in this simulator. New algorithms can be easily
added using the infrastructures provided by cachesim.

B. Workloads

We use 5 different I/O traces in the simulation. 4 of
them are directly collected form real-life systems, denoted
as websearch, ads, webvm and homes respectively. Websearch
is available at UMass Trace Repositry [15]. It is collected
from a popular web search engine. Ads trace is from a
Windows server which serves as a cache tier between front-
end servers and payload servers in an online advertisement
system [16]. Webvm and homes traces are from a research on
I/O deduplication [17]. Webvm is from a Linux server running
webmail proxy and online course management system for a
university department. Homes is from an NFS server which
stores personal files of scientific researchers, whose daily
activities include developing, testing, experiments, technical
writing and plotting.

TABLE II
CHARACTERISTICS OF TRACES

Blocks(×1, 000) Requests(×1, 000)
read write total read write % of read

websearch 2,223 0.034 2,223 17,253 2 99.99
ads 5,408 129 5,535 14,089 348 97.59

webvm 353 248 549 3,116 11,177 21.80
homes 3,490 1,299 4,569 4,053 17,110 19.15
ws con 3,622 0.082 3,622 33,660 4 99.99

The fifth trace is synthetic. We append another peice of trace
to websearch. This piece of trace is collected from the same
system but at a different time. Thus the subsets of popular
blocks in two traces differ from each other. The resulting trace
is denoted as ws con. With this synthetic trace, we investigated
how LARC behaves when the popularity of blocks change in
a sudden.

Table II gives detailed information of all 5 traces. Notice
that block size of different traces may be different. The block
size is 512B in ads and 4KB in other traces. Among these
traces, websearch, ads and ws con are read dominant, while
webvm and homes are write dominant.

C. Simulation Results

Figure 4 shows the hit rates of different algorithms for 3 read
dominant traces. LARC convincingly outperforms all other
algorithms for websearch, ads and ws con, especially when
cache size is relatively small. Compared with LRU, LARC
improves hit rate by up to 277.3%, 190.7% and 279.3% for 3
traces respectively. Compared to ARC, the closest competitor,
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Fig. 6. Hit rate of different algorithms under write dominant traces

LARC also improves hit rate by 30.8%, 16.5% and 26.4%.
Besides, hit rates of all algorithms are much lower than the
upper bound(FIF), indicating that there is still potential for
improvements for these workloads.

For webvm, LARC also outperfoms all other algorithms
significantly. Compared to LRU, LARC improves hit rate by
14-22%. For homes, LARC shows only marginal improvement
against LRU. Hit rate of these algorithms are quite close to
each other, except for LFU.

Hit rate of LFU is much lower than other algorithms
in most cases, especially for webvm and homes. Since the
time duration of webvm and homes is very long(21 days),
popularity of blocks changes time to time. This leads to the
poor performance of LFU.

As shown in Figure 3, read requests tend to have long reuse
distance. LARC, MQ and ARC are capable of capturing these
requests by keeping popular blocks longer in cache. Therefore,
they improve hit rate significantly for read dominant traces.
For webvm, read requests exhibits strong locality(most blocks
will be reused). They can also capture these reads with long
reuse distance and improves hit rate to some extent. On the
contrary, read requests in homes lack locality. Thus all these
algorithms shows very little improvements.

We further broke the synthetic trace ws con into epochs
of 100,000 requests and observed how LARC behaves when
popularity of blocks changes in a sudden. As shown in Figure
8, hit rate drops dramatically after 17,100,000 requests, where
the first piece of two traces ends. Owing to the self-tuning
policy, replacement rate increases soon after the drop because
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Fig. 7. SSD write traffics under write dominant traces

the size of ghost cache is increased. This proves that LARC is
capable of detecting the change and response to it. Due to its
lazy property, the response is hysteretic. Nevertheless, LARC
still achieves highest hit rate in the whole simulation.

Another goal of LARC is to extend SSD lifetime. The
lifetime of an SSD can be estimated by the write traffics to it.
We measure the write traffics by counting number of blocks
written to cache. Since there are both read and write requests
in the traces, write traffic is calculated as follows. W is the
write traffics to cache. Hw is number of write hits. R is number
of replacements.

W = Hw +R

For read dominant traces, the majority of write traffics to
SSD are incurred by cache replacements. Since LARC avoids
unnecessary replacements, it can reduce a large portion of
cache write traffics. Figure 5 gives the cache write traffic of 3
read dominant traces. Compared to LRU, LARC reduces cache
write traffic by up to 93.7%, 93.2% and 94.5% for these traces
respectively.

For write dominant traces, write hits predominate write
traffics. Thus we didn’t expect much improvement from
LARC. In spite of this, LARC can still reduce cache write
traffics by 15.6-24.9% and 11.2-40.8% for webvm and homes
respectively, as shown in Figure 7.

In LARC, cache replacement is only triggered by ghost hit.
Therefore, R equals to the number of hits in ghost cache,
denoted as Hg . Hence we have W = Hw +Hg . When cache
size is small, both Hw and Hg increases with cache size.
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And W increases consequently. When cache size is large
and hit rate is high, Hw stops increasing. Meanwhile, the
capacity of ghost cache becomes smaller according to the self-
tuning policy. Thus Hg becomes smaller and W decreases. In
contrast, for other algorithms, R = 1 − (Hw + Hr). Thus
W = 1−Hr. Accordingly, W exclusively depends on Hr. As
cache size increases, Hr increases and W decreases, as shown
in Figure 5 and 7.

V. IMPLEMENTATION AND EVALUATION

We implemented the LARC algorithm in flashcache [8] to
validated our simulation results in a real system.

A. Flashcache Architecture

Flashcache is developed at Facebook to accelerate the stor-
age system in their data centers. It is implemented as a pesudo
device driver lying beneath the general block interface. Two
replacement algorithms(LRU, FIFO) and 3 write policy(write-
back, write-through and write-around) are supported. Flash-
cache consists of 4 major components. Figure 9 shows the
architecture of flashcache.

The address mapper translates the logical address of a block
to its location on SSD. Cache space is organized as a set
associative hash. It is divided into a number of cache sets, each
containing 512(configurable) blocks. A block can be mapped
to any SSD block in a certain cache set. When looking for
a block, flashcache calculates the cache set number using the
hash function and then linearly search for the block within the
set. As a result, cache space on SSD are often underutilized.

The I/O filter filters out requests from certain processes to
avoid interference in a shared storage context. Administrators
can configure a white list or black list to specify which
processes should be cached. It is also responsible to detect
sequential I/O streams.

Cache allocator tries to allocate a cache block from SSD on
every cache miss. After allocated, the cache block is locked
until its data is written to SSD. Dirty blocks and locked blocks
can never be allocated. Thus the allocation sometimes fails. As
a consequence, not all recently accessed blocks are cached,
especially when the system is busy. This makes the LRU

File System Page Cache

SSDHDD

Address Mapper

Cache
Allocator

Cleaner

I/O Filter

Application

Flashcache

Fig. 9. Architecture of Flashcache

TABLE III
HARDWARE AND SOFTWARE CONFIGURATIONS OF THE TESTBED

CPU Intel Core 2 Duo E6750 @ 2.66GHz

Memory 2 × 1GB DDR2-667MHz

HDD Seagate ST373207LW 73GB

SSD Intel SSDSA2SH064G1GC 64GB

Operating System Scientific Linux 6.3

Kernel Verison 2.6.32-279.5.1.el6

File System ext4

Benchmark Tool Filebench-1.4.9.1

algorithm in flashcache different from the one we discussed
in our simulation and may have significant impact on both
performance and SSD write traffics.

The cleaner flushes dirty blocks back to HDD in the
background. It is activated when the percentage of dirty blocks
exceeds a configurable threshold. Flashcache also tries to clean
idle dirty blocks which haven’t been read or written for 15
minutes.

B. Implementation Issues

We implemented LARC in flashcache with about 200 lines
of code and modifies the I/O routine to intergrate it. The
prototype mantains an array of ghost block descriptors. Each
descriptor contains a 64bit logical block number and pointers
used for queueing. It takes only a few megabytes of memory to
store these descriptors. Ghost cache is organized into multiple
sets in the same way as physical cache. Each ghost cache set
is assigned to the cache set with the same set number.

We also modified LARC to handle allocation failures. If
LARC decides to cache a block(i.e. a hit in ghost cache) but
no SSD blocks are available, the block is then put back to the
ghost cache and moved to the LRU end of Qr.

C. Evaluation Methodology

Detailed information of our testbed is in Table III. We
configured a partition of the SSD as cache for the HDD. Cache
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Fig. 10. IOPS delivered under Filebench’s webserver and netsfs workloads

size varies from 2GB to 6GB. Apart from those occupied
by the operating system and benchmark tool, the amount of
memory used as page cache is no more than 1GB in the
benchmarks. Thus the second level SSD cache is always larger
than the first level page cache. Write-back policy is used in
all benchmarks. Our previous experience on flashcache shows
this achieves highest performance. Block size of flashcache is
4KB, same as that of the file system.

We use Filebench to generate synthetic workloads for eval-
uation. Filebench is a flexible benchmark tool for file systems.
It can be configured to mimic the behaviour of different kinds
of applications. Using the Workload Model Language(WML),
Filebench can generate a large variety of workloads. We used
two workloads, webserver and netsfs, in our benchmarks.
These workloads are based on predefined configurations in
Filebench. We modified them slightly for our benchmark.

The webserver workload simulates file access behaviors of
a multi-threaded web server. Each of the 100 worker threads
performs a sequence of whole file read and log appending.
Read-write ratio is about 10:1. We customized Filebench to
create a file set of 250,000 files for the benchmark. The
average file size is 32KB. The total amount of data is about
8.5GB, including meta-data. The average width and depth of
directories are 20 and 4.1 repsectively.

The netsfs workload simulates the behaviour of a single
threaded network file server. It performs operations including
application launch, read-modify-write of files, file appending
and stat etc. The ratio of read/write operations is 1:1. However,
since page cache can absorb a lot of read requests, the read-
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Fig. 11. SSD write traffic under Filebench’s webserver and netsfs workloads

write ratio observed at block level is about 1:5. We customized
Filebench to create a file set containing 500,000 files for
the benchmark. The average file size is about 2.4KB. The
total amount of data is about 12GB, including meta-data. The
average width and depth of directory is 20 and 3.8 respectively.

During the benchmark run, Filebench uses a random number
generator to select a target file for each operation from pre-
configured file set. There are 3 types of random number gen-
erator in Filebench, uniform generator, gamma generator and
table-based generator. By default, the webserver workload uses
a uniform generator. Thus I/O requests are distributed evenly
across all files. To simulate locality of real-life workloads, we
configured the webserver workload to use a gamma generator,
with parameters α = 0.1 and β = 1.0. We also modified
Filebench to use a fixed number as seed for the generator so
that the bechmark runs are reproducible. In both workloads,
event rate is set to 0(unlimited) to stress the storage system.

Before each benchmark run, we first ran Filebench once on
a newly created file system on the HDD. This is to create an
initial file set for the benchmark. We then attached the cache
partition to the HDD and ran Filebench once again, using pre-
viously created files. Thus at the beginning of each benchmark
run, the system contains approximately the same file set and
an empty cache. This makes sure that all benchmark runs start
from the same initial state so their results are comparable. Each
benchmark run lasts for 30 minutes to minimize the affect of
cache warm-up.

Operations per second is reported as metrics for perfor-
mance. We also observe how many blocks were written to



SSD during benchmark runs. Since the number of operations
completed varies among benchmark runs, we use the ratio of

blocks written
operations completed to compare SSD write traffics of different
runs. Each benchmark was run 3 times. The reported result is
the average value of three runs.

D. Results

Figure 10 compares the performance of LRU and LARC
in flashcache. LARC outperforms LRU for both workloads. It
improves throughput by 36-49% and 10-29% for webserver
and netsfs respectively. Moreover, Figure 11 (a) shows that
LARC eliminates a large portion(51-73%) of SSD write traf-
fics for read dominant webserver. And Figure 11 (b) shows
that LARC reduces 26-35% of SSD write traffics for write
dominant netsfs. These experiments validated our simulation
results.

The benchmark result is slightly different from simulation.
The reason for this difference is twofold. First, we used a
closed system model [18] in the benchmarks. In this model, a
new request is issued right after previous one is completed.
When hit rate is high, average response time is low and
more requests are issued. Thus the workload becomes more
intense. While trace-driven simulation uses an open system
model. Arrivals of requests are independent to each other and
workload intensity remains constant. Another reason is the
LRU algorithm used in flashcache. As described in section
V-A, cache block allocation can fail. In this case, the request
will be uncached. This algorithm is different from the one
we disscussed in simulation. As a consequence, replacement
rate is usually lower than cache miss rate. This has significant
impact on both hit rate and SSD write traffics.

VI. RELATED WORK

With the increasing popularity of flash memory, both engi-
neers and researhers have showed great interest in integreting
them into storage stack. Hard disk manufacturers have been
shipping hybrid disks for years [19]. Software implementations
such as ReadyBoost [20] and Bcache [21] are also available
for mainstream operating systems. Facebook uses SSDs as disk
cache in their data centers [8]. Solaris ZFS has built-in support
to use SSDs as a second level cache [22]. NetApp also uses
SSDs to speed up their storage appliance [23].

Several previous studies focused on improving flash-based
disk cache. Kgil et. al. [24] proposed to use flash as extended
memory and disk cache to reduce power consumption. Flash
memory is splitted into separated read/write regions to improve
performance. They employ a programmable flash controller
which can change the ECC stength and cell density of flash
chips. With this controller, they show that flash lifetime can
be extended with less than 5% of performance degradation.

Mesnier et al. [25] enhanced SSD based disk cache by
leveraging semantic informantion from file system or DBMS.
They designed an algorithm which selectively allocates cache
space for blocks according to their priority. By assigning
higher priority to meta-data blocks and small files, it achieves
better performance than semanticially blind cache algorithms.

Pritchett et al. [26] uses SSD as ensemble-level cache for
multiple servers to maximize its utilization. This achieves
higher hit rate with less SSD drives and thus is more cost
efficient than per-server caching. They also introduced a seive
mechnism which only allocates cache space for blocks on
their nth access. It reduces allocation writes to SSD and thus
extends it lifetime.

A recent research [27] exploits the internal garbage col-
lection behaviour to improve SSD based disk cache. Garbage
collection operations have great impact on SSD performance
and lifetime. Hence they should be taken care of by the cache
algorithm. The researchers divided SSD into 3 regions: unused,
read and write. They designed an algorithms to dynamically
tuning the size of these regions. This increases hit rate and
decreses erase operations at the same time.

SSD is also used as extended buffer pool for DBMS. [28]
proposed a temperature-based replacement policy(TAC). TAC
maintains the temperature(access frequency) of disk extents(32
pages) and keeps blocks in warm region in SSD. If SSD is
full of blocks from warm regions, cold blocks are denied from
cache. [29] implemented the exclusive model in Microsoft
SQL Server. They evaluated three different policies to handle
dirty pages evicted from memory buffer pool.

In addition to caching, storage tiering [30] [31] [32] is
another sought-after technology for hybrid storage. A tiered
storage system dynamically selects a popular subset of data
and moves them onto faster but smaller devices. This tech-
nology is widely used in enterprise storage arrays to meet the
demand for both large capacity and high performance with low
cost. Recently, Apple introduced storage tiering to consumer
products with Fusion Drive [33].

Both cache and tiered storage belong to hierarchical storage.
As an alertnative, a horizontal hybrid storage system uses SSD
to store a specific part of data to make better use of both
SSDs and HDDs. The idea behind this architecutre is that
access pattern of a block depends on the data stored in it. For
example, meta-data and small files are usually accessed with
small and random I/Os and are likely to be accessed more
frequently [34]. They account for only a small portion of data
in a file system volume. Therefore, constantly storing them on
SSD can boost overall performance without moving blocks to
and fro. Examples of this architecture include Chunkstash [35]
and I-CASH [36].

VII. CONCLUSION

In this paper, we proposed a novel cache algorithm LARC
for flash-based disk cache. It adopts performance improve-
ments and lifetime as dual objectives. LARC filters out seldom
accessed blocks and keep them out of cache, thus reduces write
traffic to SSD. Meanwhile, this keeps popular blocks longer
in cache and achieves higher hit rate.

LARC has been evaluated by both trace-driven simulation
and a prototype implementation in Facebook’s flashcache.
Simulation results show that LARC convincingly outperforms
state-of-art algorithms such as MQ and ARC for read dominant
workloads. And it reduces SSD write traffics by up to 94.5%



as well. On the other hand, for write dominant workloads,
LARC also achieves higher hit rate than other algorithms,
while reducing 11.2-40.8% of SSD write traffics. These results
suggest that LARC is better to be used for read dominant
applications or for read only disk cache. Benchmarks with
synthetic workloads in a prototype implementation validate
simulation results.

LARC is self-tuning and adapts to different kinds of work-
loads. It is easy to implement and incurs very little overhead.
Although it is designed for flash-based disk cache, it is also
applicable in other contexts such as local disk cache for a
networked storage system.
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