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Abstract—The notion of object-based storage devices (OSDs)
has been proposed to overcome the limitations of the traditional
block-level interface which hinders the development of intelligent
storage devices. The main idea of OSD is to virtualize the physical
storage into a pool of objects and offload the burden of space
management into the storage device. We explore the possibility
of adopting this idea for solid state drives (SSDs).

The proposed object-based SSDs (OSSDs) allow more effi-
cient management of the underlying flash storage, by utilizing
object-aware data placement, hot/cold data separation, and QoS
support for prioritized objects. We propose the software stack of
OSSDs and implement an OSSD prototype using an iSCSI-based
embedded storage device. Our evaluations with various scenarios
show the potential benefits of the OSSD architecture.

I. INTRODUCTION

Solid state drives (SSDs) based on NAND flash mem-
ory are quickly gaining popularity. Compared to hard disk
drives (HDDs), SSDs bring many benefits in terms of per-
formance, shock and vibration resistance, power consumption,
and weight. With these benefits, SSDs are widely used in
various environments such as mobile devices and enterprise
systems. However, due to the unique characteristics of NAND
flash memory such that data cannot be overwritten until it is
erased and the erase operation is performed in bulk, SSDs
necessitate sophisticated firmware called flash translation layer
(FTL).

The main role of the FTL is to emulate the block-level
interface so that the existing HDD-based storage stack can be
used for SSDs, hiding the peculiarities of NAND flash memory.
FTL maintains a mapping table to translate the logical block
address into the physical address in NAND flash memory.
FTL also keeps track of whether each region of flash memory
has valid data or not, in order to reclaim obsolete data by
performing erase operations. Since NAND flash memory does
not allow in-place update, FTL writes incoming data on an
already erased region and marks the previous data as invalid.
The space occupied by those obsolete data is reclaimed by
the garbage collection procedure of FTL. In addition, FTL
performs wear-leveling since NAND flash memory has the
limitation in the number of erase operations that can be
performed on the flash.

However, the simple block-level interface, which just al-
lows to read or write data for a range of logical block addresses
(LBAs), makes it harder to optimize SSDs. Although the
block-level interface has successfully abstracted the internal
architecture of storage devices, it now hinders the development

of intelligent storage devices. The fundamental problem of
the traditional block-level interface is that it is difficult for
a storage device to optimize its internal resources due to the
lack of higher-level semantics [26].

To overcome these limitations of the block-level inter-
face, object-based storage devices (OSDs) have been proposed
which virtualize physical storage into a pool of objects [25],
[26]. An object is a variable-sized container that can store any
kind of data ranging from flat files to database tables. Each
object is associated with a set of object attributes which are
used to describe the specific characteristics of the object. These
objects are manipulated by file-like operations such as CRE-
ATE, DELETE, READ, and WRITE. In OSDs, space allocation
to an object and free space management are handled by the
storage device itself, freeing the file system from performing
low-level block management. The first version of the OSD
command set was standardized in 2004 as an extension of the
SCSI command set by the INCITS T10 committee [13].

This paper explores a case of adopting the object-based
interface for SSDs. We argue that the performance and relia-
bility of SSDs can be improved when exploiting various object
properties such as data usage, size, access pattern, priority, etc.,
of each object. Moreover, it is relatively easy to add the object
management layer on top of the existing FTL in SSDs since
FTL already performs a significant amount of work such as
physical space allocation, address mapping, garbage collection,
and wear-leveling. There are many potential benefits of the
proposed object-based SSDs (OSSDs). Specifically, OSSDs
can manage the underlying flash storage more efficiently,
simplifying the host file system. Object attributes can be
used to deliver application-level hints to the device so that
OSSDs can perform more intelligent application-aware storage
management. In particular, metadata separation, object-aware
allocation, hot/cold data separation, and quality-of-service
(QoS) support for prioritized objects are some examples of
possible optimizations using the object-based interface.

We have developed an OSSD prototype and performed
several experiments utilizing object properties. For fast pro-
totyping and ease of debugging, we have taken an approach
to implementing an OSSD firmware stack on the top of a
special SSD hardware which exposes native flash interface.
The firmware is executed on an ARM-based embedded storage
device connected to the host machine via the iSCSI protocol.
Our evaluation results with various scenarios show that SSDs
with the object-based interface can improve performance in
many aspects.
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Fig. 1. The general architecture of an SSD.

The rest of this paper is organized as follows. Section II
gives a brief overview of SSDs, NAND flash memory, and
FTL. Section III discusses several approaches to interfacing
SSDs with the host system. In Section IV, we describe the
motivation of our work. Section V and Section VI present the
implementation details and the performance evaluation results
of our OSSD prototype with various scenarios, respectively. In
Section VII, we conclude the paper.

II. BACKGROUND

A. Solid State Drives (SSDs)

Figure 1 illustrates the general architecture of an SSD
which consists of an array of NAND flash memory, DRAM,
and an SSD controller. NAND flash memory is used as perma-
nent storage for user data and DRAM is used to temporarily
save user data and management data for NAND flash memory.

The internal architecture of an SSD controller is com-
posed of flash controllers, a DRAM controller, one or more
embedded CPUs, and a host interface controller. The host
interface controller’s main function is to support a specific
bus interface protocol such as SATA, SAS, and PCIe. A
DRAM controller and flash controllers are responsible for data
transfer between DRAM and NAND flash memory using DMA
control logic and guaranteeing data integrity based on ECC
(Error Correction Code) algorithms such as Reed-Solomon
(RS) and BCH. Finally, the embedded CPU(s) together with
SRAM provide the execution environment for running flash
management firmware called flash translation layer (FTL).
FTL parses host commands and translates associated logical
block addresses (LBAs) to physical addresses on NAND flash
memory based on a mapping table which will be explained in
Section II-C.

In order to maximize SSD performance, the multi-channel
interleaving is used with multiple flash controllers [34]. Each
flash controller executes I/O operations for NAND flash mem-
ory chips with independent I/O bus (also called channel) and
control signals. The flash controller also utilizes the multi-
way interleaving over multiple NAND flash chips on a shared
I/O bus using multiple chip enable signals [1]. The multi-
channel and multi-way interleaving of NAND flash memory
chips have been deployed as main techniques to improve not
only sequential read and write performance but also random
read and write performance.

TABLE I. OPERATIONAL PARAMETERS OF SAMSUNG 2G X 8BIT MLC
NAND FLASH MEMORY (K9GAG08U0M) [32]

Type MLC (2-bit/memory cell)
Number of planes 2
Number of blocks / plane 2048
Number of pages / block 128
Page size 4224 bytes (4KB data + 128B spare)
Page read (tR) 60 µs (max)
Page program (tPROG) 0.8 ms (typical)
Block erase (tBERS ) 1.5 ms (typical)

B. NAND Flash Memory

To better understand the challenges facing development of
SSDs, it is essential to understand the inherent characteristics
of NAND flash memory. A NAND flash memory chip is
packaged with multiple dies. A die has 1, 2, 4, or 8 planes and
each plane has the same number of blocks or erase blocks1.
Each erase block in turn consists of 64 or 128 pages. In
addition to the data area whose typical size is either 4KB
or 8KB, each page is provided with extra space called spare
area that can be used for storing ECC and other bookkeeping
information.

There are three major operations supported in NAND flash
memory: read, write (or program), and erase. The read and
program operations are performed on a per-page basis. To
reduce the program disturb phenomenon [29], NAND flash
manufacturers recommend programming each page only once
and in sequential order within an erase block. Once a page is
programmed, the page can be overwritten only after erasing the
entire erase block to which the page belongs. Note that a set
of pages (or erase blocks) from different planes can be read or
programmed (or erased) simultaneously, effectively increasing
data throughput. Unlike other semiconductor devices such as
SRAM and DRAM, NAND flash memory has asymmetric
operational latencies; page program or block erase operation is
slower than page read operation by over an order of magnitude.
NAND flash memory also has the limitation that each erase
block can tolerate a limited number of program/erase cycles.

NAND flash memory comes in two flavors: SLC (Single-
Level Cell) and MLC (Multi-Level Cell). SLC NAND flash
memory stores only 1 bit per memory cell, while the newer
MLC NAND flash memory represents two bits per cell allow-
ing for higher density with lower cost. However, since MLC
NAND flash memory manages four different states within a
single memory cell, it takes longer to read or program a page,
and incurs more bit errors as compared to SLC NAND. In
addition, each erase block in MLC NAND can tolerate only 5K
∼ 10K program/erase cycles, which is shorter than the limit
(typically, 10K ∼ 100K) in SLC NAND. For these reasons,
SLC NAND is mostly used for industrial and enterprise stor-
age, while MLC NAND for consumer and embedded storage.
Table I summarizes operational parameters of Samsung 2GB
MLC NAND flash memory [32], which is used in our OSSD
prototype described in Section V.

C. Flash Translation Layer (FTL)

The main role of the FTL is to conceal the peculiarities of
NAND flash memory and to provide the traditional block-level

1To avoid confusion, we use the term ‘erase block’ to refer to the erase
unit in NAND flash memory.



interface to upper layers, while enhancing performance and
reliability of SSDs. As we see in Section II-B, there are several
obstacles in emulating the block-level interface on NAND flash
memory: (1) in-place update is not allowed, (2) the entire pages
within an erase block should be erased in bulk, and (3) block
erase takes a relatively long time.

To overcome these difficulties, most FTLs employ an
address mapping scheme which decouples the logical block
address (LBA) used in the upper software layer from the
physical page address where the actual data is stored in flash
memory. Although there are many different address mapping
schemes, the common technique is to reserve a set of erase
blocks, or update blocks, in advance, and then use these
update blocks to absorb incoming write requests from the
host. While a new data is written into the update block, the
previous version of the data is simply marked obsolete. When a
certain amount of update blocks is exhausted, a process known
as garbage collection is invoked to reclaim obsolete pages.
Garbage collection is performed in three steps: (1) a victim
erase block is selected based on a policy such as greedy [31]
or cost-benefit [5], (2) valid pages in the victim erase block,
if any, are copied into the current update block or another
temporary erase block, and (3) the victim erase block is erased
and then converted into a new update block.

Depending on the address mapping granularity, FTLs are
classified into page mapping, block mapping, and hybrid
mapping. In page-mapping FTLs [6], [9], [23], each logical
page can be freely mapped to any location on flash memory
at the expense of consuming more memory to keep track of
page-level mapping information. In spite of the larger memory
footprint, the recent trend in SSDs is to shift towards the
use of page-mapping FTL, especially in order to increase the
random write performance. On the contrary, block-mapping
FTLs maintain only the erase block-level mapping information
by imposing a restriction that a set of consecutive logical pages
should be stored in the same erase block. Hybrid-mapping
FTLs [15], [21], [22] attempt to achieve higher performance
than block-mapping FTLs through the selective use of page-
level mapping only for a small number of update blocks.

FTLs should also ensure the reliability and integrity of
SSDs. FTLs maintain a list of bad erase blocks and a new
bad erase block is remapped at runtime to one of free erase
blocks reserved for this purpose. To cope with the limited
program/erase cycles, FTLs also perform wear-leveling which
distributes erase operations evenly across the entire flash
memory erase blocks. Finally, all the FTL metadata should
be able to recover from sudden power failure.

III. RELATED WORK

In this section, we briefly discuss several approaches to
interfacing flash-based solid state storage with the host system.

A. Using the Native Flash Interface

Flash-based storage can expose the naive NAND flash
memory interface to the host, namely PAGE READ, PAGE

PROGRAM, and BLOCK ERASE operations. Actually, this ar-
chitecture is being widely used in embedded systems, where
bare NAND chips are glued onto printed circuit boards with a

simple NAND controller. The host may use the existing block-
based file systems as long as the operating system implements
a device driver which is responsible for FTL functionalities.
As an alternative, the host system may use flash-aware file
systems such as JFFS2 [40], YAFFS2 [3], and UBIFS [12]
which manage the flash storage directly using the native flash
interface.

Josephson et al. have recently pursued a similar ap-
proach [14]. They propose a simplified file system called
DFS (Direct File System) based on the virtualized storage
abstraction layer. The virtualized storage abstraction layer
provides a very large, virtualized block address space on top of
PCIe-based flash storage which exposes direct access to flash
memory chips.

Using the native interface, the file system can manage
the underlying NAND flash memory efficiently since it may
leverage higher-level semantics, while taking into account the
characteristics of the underlying flash storage. However, it is
difficult to optimize flash file systems or flash device drivers
for various NAND flash memory configurations. For example,
UBIFS requires rewriting read/write codes for NAND flash
chips whose page size is larger than 4KB, since it uses a single
kernel page for I/O.

B. Introducing a New, Simplified Interface

The NVMHCI (Non-Volatile Memory Host Controller In-
terface) Work Group has standardized the register-level in-
terface for platform non-volatile memory solutions called the
NVM Express (NVMe) [27]. In fact, NVM Express is largely
targeted to PCIe-based SSDs. Since they are directly attached
to the host system via PCIe channels, they have no reason
to use ATA/SCSI commands, leading to the development of a
new interface standard. Although the host can indicate several
attributes for ranges of NVM pages via the optional data
management command, the main limitation of NVMe is that
it still works at the block level.

C. Modifying the Existing Block-level Interface

Recently, the TRIM command is standardized as part of
the ATA interface standard [36]. When a file is deleted, the
TRIM command explicitly informs the underlying SSD which
sectors are no longer in use. This information can drastically
improve the efficiency of garbage collection, as otherwise
the actual data of the deleted file needs to be copied during
garbage collection until the corresponding sectors are reused
for another file [35]. Apparently, this is only an interim solution
based on the block-level interface for maintaining backward
compatibility. To implement a more intelligent storage device,
more higher-level semantics such as file access pattern, file
size, and file attributes are required to transfer.

Mesnier et al. [24] introduced an I/O classification ar-
chitecture to transfer higher-level semantics to the storage
system. They suggested new schemes for classifying data in
the ext3 file system and delivering such information to the
storage device via the SCSI Group Number field in the SCSI
commands. The predefined data classes are based on data
usage (e.g., metadata, journal, or directory) and file size, and
the storage system utilizes such data classes to improve its
performance. However, they had to set the predefined data



class number for every request. In addition, the SCSI Group
Number field is insufficient to represent all of the higher-level
semantics.

D. Using the Object-based Interface

Rajimwale et al. [30] suggested OSD as an improved
interface for SSDs since the current block-level interface
cannot satisfy new requirements intrinsic to SSDs. Unlike
rotational and mechanical HDDs, OSD-enabled SSDs can
manage space based on the internal architecture of SSDs. In
addition, object attributes can be utilized to support quality-of-
service (QoS) for prioritized objects (e.g., multimedia files).
They claimed that a richer interface, OSD, is well-matched
with SSDs. However, quantitative analysis with a matching
storage software stack has not been investigated over diverse
use case scenarios.

Kang et al. [17] presented the object-based storage model
for SCM (Storage Class Memory) and revealed many advanced
features of object-based SCM. They used metadata separation
for data placement policy to reduce cleaning overhead. In addi-
tion, they showed the effect of object-level reliability to detect
and correct more errors. Although many concepts are similar
to our work, we focus on how to improve the performance of
storage system by object-aware data placement, hot/cold data
separation, and QoS support for prioritized requests. We also
introduce the full architecture for OSSDs and implement the
overall storage stack in a realistic environment with an iSCSI-
based embedded storage device.

IV. OBJECT-BASED SOLID STATE DRIVES (OSSDS)

A. Object-based Storage Devices (OSDs)

In OSDs, objects are used to abstract physical storage
management and attributes to convey and interpret application-
level semantics. An object is a variable-sized entity that can
store any kind of data including text, images, audio/video,
and database tables [26]. Objects are grouped into partitions
and each object is uniquely identified by an object identifier
(OID), which consists of a 64-bit PARTITION ID and a 64-bit
USER OBJECT ID.

A number of attributes can be associated with an object,
which are used to describe specific characteristics of the object.
Several predefined attributes including the object size and
the object timestamps are maintained by the device. Other
attributes can be used freely by applications to specify various
application-specific semantics such as quality-of-service (QoS)
requirements.

The OSD standard defines a fine-grained, per-object secu-
rity mechanism. Each object is accessed by a cryptographically
signed capability which specifies the object and allowable
operations. This ensures that only trusted clients can access
the objects, allowing an OSD to be directly connected to a
public network.

The interface to object-based storage is very similar to that
of a file system. Objects are explicitly created, deleted, read,
or written using CREATE, DELETE, READ, and WRITE com-
mands, respectively. Attributes can be specified or queried by
SET ATTR and GET ATTR commands. In its simplest form, a
file can be mapped to a single object. It is also possible to stripe
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Fig. 2. The overall system architecture of OSSDs.

a large file across multiple objects to improve performance and
reliability, or to map several small files into an object to reduce
metadata overhead [26]. In any case, allocating storage space
to an object or managing free space is now handled by the
storage device itself, freeing the file system from performing
low-level block management.

OSDs enable a scalable and secure data sharing in a large-
scale networked environment, as exemplified by Lustre [38]
and Ceph [39]. These distributed file systems consist of a
metadata server (MDS) and a set of OSDs, which are simul-
taneously accessed by a large number of clients. In this case,
delegating space management to OSDs improve scalability as
the MDS no longer needs to coordinate metadata updates.
Also, objects can be directly transferred from multiple OSDs
to a client in parallel and in a secure fashion.

Another benefit is that the use of the object-based interface
can improve the intelligence of storage devices. In this paper,
we focus on this aspect of OSDs, especially in the context of
SSDs.

B. Overall Architecture of OSSDs

Figure 2 illustrates the overall system architecture of
object-based SSDs (OSSDs). The object-based file system
accepts file system operations from applications and translates
them into object operations which involve objects and object
attributes. Since the low-level block management is done in the
OSSD, the object-based file system is far simpler than block-
based file systems. To merge and schedule a set of object
operations, an object-aware I/O scheduler is needed because
the current I/O schedulers work only at the block level.

Objects and object attributes delivered via the object-based
interface are managed in the OSSD firmware. The OSSD
firmware also controls the underlying NAND flash memory
with various functions such as data placement, garbage col-
lection, bad erase block management, and wear-leveling. The
OSSD firmware has knowledge of object properties delivered
by the object-based interface. Moreover, since OSSDs already
know the characteristics of NAND flash memory, they can
manage NAND flash memory efficiently, thus enhancing the
performance and reliability of the storage system.



C. Why Object-based SSDs?

The object-based interface offers great potential for SSDs.
Compared to HDDs, SSDs perform a significantly more
amount work related to space management due to the nature
of NAND flash memory. The performance and reliability of
SSDs can be improved when we move from the block-level
interface to the object-based interface and it is relatively easy
to add the object management layer on top of the existing
FTL in SSDs. The block-level interface is also a feasible
solution to transfer higher-level semantics if it is modified
or expanded. However, the object-based interface provides a
general abstraction layer to manage objects and can deliver
a number of object properties easily. In this section, we
examine the potential benefits of the proposed object-based
SSDs (OSSDs).

Simplified Host File System Since the introduction
of NAND flash-based SSDs, there have been many efforts to
optimize the traditional block-based file systems [35] and I/O
schedulers [20] for SSDs. Unfortunately, the host-side SSD-
aware optimizations are hard to achieve. This is because the
performance of an SSD is dictated by many parameters such
as SSD page size, the degree of multi-channel and/or multi-
way interleaving, DRAM buffer size, the amount of over-
provisioning (i.e., the percentage of erase blocks reserved for
bad erase blocks and update blocks), address mapping scheme,
garbage collection and wear-leveling policies, etc. Although
some of these parameters can be extracted by a carefully
designed methodology [19], many of them are still difficult
to acquire and vary widely from SSD to SSD.

Because only the SSD knows exactly about its internal
architecture and tuning parameters, it is desirable to delegate
most of space management to the SSD. This can greatly
simplify the host file system. Previously, the pathname is
mapped to an inode and the <inode, offset> pair is mapped
to a logical block address which is mapped again to a physical
page address by the SSD. In OSSDs, this access path can be
shortened; the pathname is now mapped to an object id (OID)
and the OSSD directly maps <OID, offset> pair to a physical
location in NAND flash memory. Therefore, with OSSDs, the
file system is only responsible for pathname-to-object mapping
and access control.

Utilizing Liveness Information The block-level liveness
information can be utilized for optimizing on-disk layout,
smarter caching, intelligent prefetching, etc., leading to the
development of smart storage systems [37]. For OSSDs, it
also helps to identify flash pages that hold obsolete data,
thereby improving the garbage collection performance and the
device lifetime. OSSDs have complete knowledge of whether
a given data block contains valid data or not by the object-
based interface. The block-based storage system relies on the
TRIM command to gather the block-level liveness information.
However, a single TRIM command can specify only a range of
logically consecutive sectors. When a large, highly-fragmented
file is deleted, the file system may produce an excessive
number of TRIM commands [33].

Metadata Management It is also easy for OSSDs
to classify data blocks according to their usages. As the
file system metadata is small but updated frequently, FTL

designers have long sought a way to separate metadata writes
from normal data writes to handle them differently [17], [41].
However, it turns out to be very difficult without guessing the
file system layout. Mesnier et al. show that selective caching of
metadata, journal, directories, and the first 256KB of each file
in an SSD results in the speedup of up to 173% in their hybrid
storage system [24]. Such optimizations are all possible in
OSSDs without incurring significant overhead since the storage
device manages metadata by itself.

In addition, the block-based file system must deliver the
file system metadata such as data block bitmaps and inode
bitmaps to the storage device for the layout management. In
OSSDs, the file system does not have to transfer the metadata
for storage layout management, because the layout is managed
inside of the storage device.

Object-aware Data Placement Another advantage is that
OSSDs know which data blocks are originated from the same
object. This information can be used to rearrange all the data
blocks from an object in optimal locations that can maximize
the sequential read bandwidth to the object. OSSDs also can
reduce the garbage collection overhead by placing the data
from the same object into the same update block. When the
object is deleted, a large number of consecutive pages becomes
invalid at once, hence minimizing storage fragmentation. Sim-
ilarly, OSSDs can group semantically-related objects together.
For example, objects accessed during the boot process may be
grouped together to ease prefetching.

Hot/Cold Data Separation In SSDs, separating hot
data from cold data is known to be very important to reduce
the amount of valid pages in the victim erase block, which
directly affects the efficiency of garbage collection and wear-
leveling [6]. Therefore, the expected access pattern on a spe-
cific object, such as update frequency, sequentiality in object
access requests, average request size, and object lifetime, can
be used effectively by OSSDs to manage their flash storage.
For example, if the object is frequently accessed, it generates
many invalidated pages on flash memory. In this case, OSSDs
can reduce the amount of valid page copies during garbage
collection by dedicating an update block for the frequently
updated object.

The block-based storage can also gather such access pat-
terns, but it has significant overheads due to the lack of
accurate information on the semantics among the data. If it
manages access counts to identify the access pattern of the
data in a fine-grained unit (e.g., sectors), it requires a large
memory space in the firmware. When using a coarse-grained
unit (e.g., a set of consecutive sectors), it cannot distinguish the
data that has different access patterns. However, OSSDs can
handle this information on an object basis with low overhead.

QoS Support for Prioritized Objects Object attributes
may be used to specify quality-of-service (QoS) requirements.
For example, audio/video players, digital camcorders, or PVRs
(personal video recorders) have certain levels of bandwidth
and latency requirement for real-time playback or recording.
OSSDs can use this information to schedule its internal
resources. Since garbage collection is usually performed in
the background, a real-time read request should be able to
preempt an ongoing garbage collection task. Real-time write
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requests are more difficult to handle, as they will periodically
invoke garbage collection to make new erase blocks. Some
special polices such as reserving a number of update blocks
or dedicating one or more update blocks to a real-time object
may be used to make real-time requests to meet their deadline.

V. OSSD PROTOTYPE IMPLEMENTATION

A. OSSD Prototype Architecture

We have developed a prototype to quantitatively assess the
benefits of the proposed OSSD architecture. For accurate ex-
periments including the data and command transfer overheads,
we use two machines connected via the iSCSI protocol over
the network. The prototype covers the entire storage software
stack encompassing our own object-based file system (OFS),
the object-aware I/O scheduler (OAQ) in the host machine, and
the OSSD firmware in the target machine as well as the actual
SSD hardware. For fast prototyping and ease of debugging,
the OSSD target is implemented as a kernel module on the
ARM-based embedded storage device originally designed for
Network-Attached Storage (NAS). Figure 3 depicts the overall
architecture of our OSSD prototype.

On the host machine, we have implemented an object-
based file system to provide the standard POSIX file system
interface on top of the OSSD prototype. The object-aware I/O
scheduler processes I/O requests from OFS at object-level to
merge I/O requests to the same object and to handle prioritized
requests. By merging requests, OAQ can reduce the number
of I/O operations and increase the bandwidth of the OSSD
prototype. OAQ also expedites the handling of requests for an
important object by using prioritized requests.

In the OSSD target, there are three layers for storage
management. The Object Management Layer (OML) maintains
various data structures, such as object mapping information
and attributes, needed to manage a large number of objects.
The physical storage space on NAND flash memory used by
OML is managed by the Flash Management Layer (FML). In
fact, the role of FML is similar to that of FTL in a conventional
SSD except that address mapping is now done in OML. Hence,
FML is only responsible for flash storage management such as

page allocation, garbage collection, and wear-leveling. Flash
operations from the FML are converted to actual flash I/O
operations and sent to the hardware flash controller by the
Flash Abstraction Layer (FAL).

We have developed a special SSD hardware platform called
RawSSD. Unlike the conventional SSDs, we simplify the
RawSSD’s firmware so that it is only responsible for bad erase
block management, exposing the native flash operations such
as READ, WRITE, and ERASE to FAL. The actual unit of read
and write operation in RawSSD is 16KB since two dies, both
enabled with the two-plane mode, are combined together. To
maximize parallelism during sequential reads/writes, we also
form a virtual erase block by combining the total four erase
blocks, each from a different channel. Therefore, a region of
8MB (16x erase block size) is erased at once by a single erase
operation (cf. Section V-H).

In the following subsections, we describe the implementa-
tion details of each layer in turn from OFS to RawSSD.

B. OFS: Object-based File System

OFS is based on the EXOFS file system [11], the only
object-based file system implementation in the Linux kernel
since version 2.6.30. As in EXOFS, OFS maps each file to
a single object. The object id (OID) is acquired statically by
adding a user-object id offset (0x10000) to the inode number
of the file. A directory is mapped to an object as well, which
contains filename-to-OID mappings. The object for the root
directory is allocated and initialized when the file system is
created.

File metadata such as size, ownership, and timestamps
are stored in the object attributes. OFS reconstructs inodes
in memory by referring to these attributes. File operations
are converted into the corresponding object operations called
object I/O instances (OIO’s) and they are submitted to the
underlying object-aware I/O scheduler.

The current implementations of OFS and EXOFS do not
support metadata reliability. Although our implementation does
not have a metadata journaling mechanism, journaling support
can be implemented efficiently with an attribute indicating
transactional object and log-style NAND flash write behav-
ior [28].

C. OAQ: Object-aware I/O Scheduler

OAQ implements the object-aware I/O scheduling layer
in the OSSD prototype architecture. The page collector in
EXOFS performs a very primitive object-aware I/O scheduling.
It simply queues the sequential requests for an object. If
there is a non-sequential request or a request to the other
object, the queued requests are flushed. This impairs the
I/O performance badly especially when multiple objects are
accessed simultaneously. On the contrary, OAQ allows I/O
requests to multiple objects to be queued in the scheduler.

Basically, OAQ merges object I/O instances (OIO’s) pro-
duced by OFS into object requests (OREQ’s). As shown in
Figure 3, OAQ uses a priority queue of OREQ’s, where OREQ’s
with the same OID are linked together and summarized into
a per-object I/O context. For fast lookup, the I/O contexts are
indexed by OID through the hash table with 16 buckets.



As OFS submits an OIO, OAQ looks up the corresponding
OREQ that is destined to the same OID and has the same
priority with the OIO. If the OREQ is contiguous to the current
OID and the request size is less than 256 sectors2, the OIO is
merged with the OREQ. If not, a new OREQ is added to the
queue.

OFS allows to set the priority of an object using the
ioctl() system call. OAQ puts an OREQ in a different
queue according to this priority. The OREQ in the head of the
highest priority queue is dispatched by the underlying object
management layer (OML).

D. Host-Target Connection

Every request from OAQ are translated into a proper set of
OSD commands and are delivered to the OSSD target using
the iSCSI protocol over the IP-based network. We use open-
osd [10] and Open-iSCSI [2] kernel modules to generate and
deliver OSD commands in the host machine. In the target
device, tgt [8] user daemon receives requests from the host
machine. After parsing the OSD command, requests are passed
to OML in the kernel via the ioctl() system call.

E. OML: Object Management Layer

In the object management layer (OML), there are two data
that have to be managed. One is object attributes which contain
object metadata such as size, access time, and other inode
information. The other is the object mapping information of
the object data from <OID, logical offset> to the physical
position on RawSSD. These data structures are indexed with
µ-Tree [16] for fast lookup and flexible management. µ-Tree is
an efficient index structure to manage complex data on native
flash media. µ-Tree is a tree-based data structure similar to
B+-tree, but it produces only one page write for inserting a
single record while the original B+-tree requires many page
writes due to cascaded node updates.

In our prototype, an object descriptor contains object
information similar to the inode of file system. It also contains
attributes of an object. Each object attribute is represented as a
<attribute id, value length, attribute value> tuple. These tuples
are placed in the attribute section of the object descriptor. The
size of each object descriptor is 256 bytes for now. A more
flexible representation of the object attributes is left as future
work. Since the unit of read/write operation of RawSSD is
larger (16KB) than the descriptor size, several descriptors are
coalesced in the descriptor buffer. The indexing from the OID

to the physical location of the descriptor is stored in a µ-Tree.

The index structure also contains the mapping information
to find the physical location of the object data. We use an extent
mapping scheme, which represents the region of physical flash
pages mapped to the region of an object as a single entry such
as: <OID, logical offset> → <flash page number, size>. This
mapping information is also stored in the µ-Tree.

Before assigning a physical location of each object data,
the data is stored in the object data buffer. The object data
buffer absorbs repeated accesses to the same location as in the
typical storage system. In addition, the object data buffer aligns

2This is the max request size imposed by our prototype hardware, RawSSD.

the incoming requests so that they can be processed efficiently
in RawSSD. Many requests from the host machine may be
smaller than RawSSD’s write unit (16KB), not to mention that
they are rarely aligned to the 16KB boundary. In these cases,
a lot of read-modify-write operations are incurred to handle
small and misaligned requests. The object data buffer remedies
this problem, and according to our measurement, it improves
the bandwidth of sequential write by 46.8%.

It is impractical to keep the entire object descriptors in
memory, since there will be a huge number of objects in an
OSSD and OML should be able to run in a device with scarce
resources. For these reasons, OML keeps only a portion of
object descriptors in memory using the LRU policy. By default,
OML and µ-Tree use up to 8MB of memory for caching object
descriptors and µ-Tree nodes. The object data buffer uses up
to 2MB of memory by default and it is managed with the
FIFO replacement policy. When OML receives the FLUSH
command which is generated by sync() in the file system,
it flushes all the modified data in the µ-Tree cache, the object
descriptor buffer, and the object data buffer.

F. FML: Flash Management Layer

To service space management, the Flash Management
Layer (FML) maintains a bitmap which indicates whether a
certain page has valid data or not (cf. Figure 3). When OML
requests for a free page, FML allocates one and marks it as
being used. If OML notifies that the page is no longer in use,
the page is marked as invalid and reclaimed later.

As separating object metadata from object data results in
a better storage utilization [17], [41], FML maintains three
update blocks for object descriptors, µ-Tree nodes, and object
data. Furthermore, FML can utilize intelligent data placement
policies using various object properties as described in Sec-
tion IV-C.

In our prototype, the FML has two data allocation policies.
To place data from the same object consecutively in the
physical location, FML dedicates an update block to each
object. In this case, a big chunk of flash pages can be
invalidated if the object is deleted, improving the performance
of garbage collection. Since this policy is effective when the
large data is written sequentially, we apply the policy when
the object size is larger than 8MB which is identical to the
virtual erase block size of RawSSD. For small-sized objects,
FML preserves two update blocks to separate hot/cold data.
FML records the write access count in each object descriptor,
and then if the access count of an object is greater than τ , the
next write for the object is assigned to the dedicated update
block for absorbing hot accesses. We set the threshold value τ
as 2× (object size/write unit size) since the write accesses
are counted by the unit of the write operation (16KB). If the
write access count of an object is smaller than τ , FML allocates
a new flash page from the other update block. FML decreases
the write access count if any of the flash pages of the object is
copied during garbage collection. The object can be regarded
as being updated infrequently if some of its flash pages are
not updated until the corresponding erase block is selected as
a victim by the garbage collection procedure.

As the number of free erased blocks falls below the low wa-
termark (10, by default), FML triggers garbage collection. The



background garbage collection continues to reclaim invalid
pages until the number of free erased blocks reaches the high
watermark. Unlike the low watermark, the high watermark
value dynamically varies depending on the I/O idleness. FML
uses the presence of requests in the object data buffer as an
indicator of I/O idleness. If there is at least one request in the
buffer, the high watermark is set to minimum (11, by default)
so as not to hurt the foreground I/O performance. Otherwise,
the high watermark is set to maximum (15, by default) to
fully utilize idle cycles. FML uses a greedy policy [31],
i.e., the erase block containing the largest number of invalid
pages is chosen as the victim block to reclaim. Note that a
higher-priority request can be serviced between two successive
valid page copies while garbage collection is in progress for
guaranteeing QoS.

G. FAL: Flash Abstraction Layer

The Flash Abstraction Layer (FAL) provides five low-level
operations to the backend device such as RawSSD: READ

PAGE, WRITE PAGE, ERASE BLOCK, FORMAT, and GEOME-
TRY. The first three operations correspond to the primitive
NAND flash operations. The FORMAT command initializes the
flash storage by erasing every erase block. The GEOMETRY

command obtains configuration parameters such as the number
of banks, the number of erase blocks per bank, the number of
pages per erase block, the number of sectors per page, the
number of channels, and the number of dies per channel, and
so on. These operations are translated into RawSSD-specific
ATA commands described in Section V-H.

H. RawSSD

In order to enable the development of OSSD firmware
for the sake of debugging and fast prototyping, we have
developed an SSD named RawSSD which provides a native
NAND I/O interface instead of the traditional block-level inter-
face. The interface provided by RawSSD includes commands
for READ PAGE, PROGRAM PAGE, ERASE BLOCK, FORMAT,
and GEOMETRY operations. To support these operations, we
have augmented the ATA command set with some extended
commands using 0x8C as the command ID. Since RawSSD
has hardware identical to a normal SSD and allows for a
fine-grained control over its hardware, it serves as a perfect
platform for the development of SSD firmware.

The RawSSD hardware is newly developed based on a
normal SATA SSD and its architecture is virtually same as
the one shown in Figure 1. More specifically, the ARM-
based processor with a small SRAM provides an execution
environment for the RawSSD’s firmware. RawSSD has 16
NAND chips each of which contains eight 2GB dies shown in
Table I, providing the total capacity of 256GB. These chips are
organized into eight flash memory buses. Each bus operates at
40MHz, yielding 40MB/s of transfer bandwidth for each bus.
Since we combine two flash memory channels and use two
paired flash memory dies from each channel as logically one
unit with two-plane operation, the RawSSD’s virtual page size
is 16KB and its virtual erase block size is 8MB. Our RawSSD
is connected to FAL via the SATA-2 interface.

A small DRAM buffer is used for asynchronous write
operations. We use 32 buffer entries. The size of each buffer

entry is 64KB, meaning that the data of four adjacent virtual
pages can be fit in a single buffer entry. The buffer replacement
policy should preserve the in-order program constraint of
NAND flash memory. To do so, we maintain buffers using
the FIFO replacement policy for simplicity. When an entry in
the buffer is hit by either read or write command, every entry
arrived before the hit entry is written to flash memory before
the current read or write is served. Note that a read request is
always handled in a synchronous way.

For the improved sequential throughput, we incorporate a
page-wise channel-level striping technique. Logical page num-
bers are assigned in a round-robin fashion between physical
pages in different logical channels. When a sequential read
or write is requested, it is handled in an interleaved manner
among chips, each from a different flash memory channel.
RawSSD also handles bad erase blocks, by reserving 1.5%
of the total erase blocks.

I. Legacy Stack Support

For fair comparison with the conventional storage architec-
ture based on the block-level interface, we have implemented
a simple page-mapping FTL named sFTL over RawSSD as a
kernel module on the target device. It also uses the iSCSI
protocol and tgt user program to receive requests over the
network. sFTL also uses the data buffer to absorb repeated
accesses and align incoming requests as in the OSSD proto-
type implementation. We intentionally let sFTL use the same
policies for garbage collection as those implemented in the
FML. With the help of sFTL, we can run any block-based file
system on the target device, including the ext4 file system used
in Section VI.

VI. EVALUATION

A. Methodology

We perform several experiments to verify the potential
benefits of OSSDs as described in Section IV-C. Among them,
we concentrate on object-aware data placement, hot/cold data
separation, and QoS support because the other benefits are
treated by many previous work [17], [24], [35], [41]. For
each scenario, we make appropriate benchmarks and execute
them on top of the OSSD prototype. The details of each
benchmark and the results of our experiments are described
in the following subsections.

All of our experiments are carried out on a host machine
equipped with an Intel Core2Quad Q9650 3GHz processor
and 4GB RAM running the Linux kernel 3.0.3. The target
device is based on the Linux kernel 2.6.32 with a 1.6GHz
ARM processor and 512MB RAM. These two devices are
connected via the Gigabit Ethernet. Although the total capacity
of RawSSD is about 256GB, we only use 4GB of space to
initiate garbage collection quickly.

We compare the performance of the OFS file system
with default configurations of the OSSD prototype (OFS)
with that of the ext4 file system built on top of the sFTL
(EXT4) explained in Section V-I. EXT4 with the block-level
interface is the representative case that does not deliver or
utilize higher-level semantics. We configured EXT4 to issue
the discard (TRIM) operation to the target device when a file
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Fig. 4. A comparison of the base performance.

is deleted. Without the discard operation, EXT4 showed very
low performance. Since OFS does not perform journaling, we
have redirected the journaling traffic of EXT4 to a RAM drive
for fair comparison. To investigate the impact of the object-
aware data placement policy, we also measure the performance
when all objects share a single update block (OFS-ONE).

B. Base Performance

Figure 4 illustrates the sequential performance of OFS and
EXT4 on the formatted RawSSD. We measure the throughput
of reading or writing 1GB of data using sequential requests
with 128KB I/O size. We also measure the throughput for
synchronous write using fdatasync() (Write-dsync) to an-
alyze the overheads of data transfer in detail. All experiments
issue sync() at the end to flush data in the page cache.

OFS has the overhead for read and buffered write access
since it has to generate and parse OSD commands. More
optimization of the request path including the I/O scheduler
can reduce the performance gap between OFS and EXT4.

The throughput of read operations is less than the maxi-
mum read bandwidth of RawSSD (107MB/s). Because the read
operations are handled in a synchronous manner, the actual
throughput suffers from the latency of delivering commands
over the network and the overhead to parse OSD commands.
On the other hand, since write operations can process in
an asynchronous manner in the target device firmware, it
can result in near the full bandwidth of RawSSD (53MB/s).
For synchronous write operations (Write-dsync), it has lower
performance than the buffered write case (Write-buffered) due
to the command overhead.

In case of EXT4 with fdatasync(), it has lower per-
formance than OFS. When a program issues synchronous
operations, EXT4 requires write operations for metadata
blocks. Although EXT4 does not have to write inode with
fdatasync(), it still needs to write at least one data block
bitmap for every 128KB I/O request. The fdatasync()

function flushes data in the page cache and updates the usage
information of block bitmap for every request. Note that
journaling traffic of EXT4 is not delivered to the underlying
NAND flash memory since it is redirected to the RAM drive.
Due to these metadata writes, EXT4 has lower throughput than

 0

 10

 20

 30

 40

 50

200MBx4 100MBx8 50MBx16 25MBx32
 0

 200000

 400000

 600000

 800000

 1e+06

 1.2e+06

W
ri
te

 t
h

ro
u

g
h

p
u

t 
(M

B
/s

)

#
 o

f 
v
a

lid
 c

o
p

ie
s
 (

p
a

g
e

s
)

Filesize, # of threads

EXT4
OFS-ONE

OFS

EXT4 valid copies
OFS-ONE valid copies

OFS valid copies

(a) Multi-threaded write benchmark.

 0

 5

 10

 15

 20

 25

 30

 35

 40

2 4 8
 0

 200000

 400000

 600000

 800000

 1e+06

 1.2e+06

 1.4e+06

 1.6e+06

W
ri
te

 t
h

ro
u

g
h

p
u

t 
(M

B
/s

)

#
 o

f 
v
a

lid
 c

o
p

ie
s
 (

p
a

g
e

s
)

# of downloading files

EXT4
OFS-ONE

OFS

EXT4 valid copies
OFS-ONE valid copies

OFS valid copies

(b) Torrent benchmark.

Fig. 5. Results of multi-stream benchmarks.

OFS in the case of Write-dsync. However, OFS does not have
to write this information since block allocation is done in the
OSSD firmware internally. Using the object-based interface,
the metadata write operations needed for space management
are unnecessary.

C. Object-aware Data Placement

In this subsection, we evaluate the improvement under the
proposed object-aware data placement policy. We prepare two
multi-stream write benchmarks to investigate the performance
results of object-aware data placement when several objects
are written simultaneously.

The first benchmark is a multi-threaded write benchmark.
Before measuring any results, this benchmark creates a number
of files with the predefined size until all files occupy 3.2GB
of space. Then the benchmark deletes a total of 800MB by
selecting files randomly. Next, the fixed number of threads
writes to a file dedicated to each thread. The amount of total
space written at this phase is also 800MB. The benchmark
repeats deleting and writing phases until the total amount of
write becomes larger than 24GB, which generates a lot of
garbage collections. The file size is varied from 25MB to



200MB and the number of threads from 4 to 32, as shown
in Figure 5(a).

The other benchmark replays traces collected by using a
Windows version of µTorrent [4] to evaluate the performance
in a realistic scenario. The traces are captured while down-
loading 2, 4, and 8 files concurrently with the average size
of 400MB in the µTorrent program. Whenever the disk usage
exceeds 3.2GB and downloading of a file completes, we delete
a file randomly selected from the already downloaded files.
Then, we download another file again to keep the number
of downloaded files constant. We also repeat deleting and
downloading phases until the total amount of write becomes
larger than 24GB as in the multi-threaded write benchmark.

Figure 5 shows the performance results of object-aware
data placement over two multi-stream write benchmarks. The
throughput results are represented in the bar graphs with the
left axis and the number of valid page copies during garbage
collection corresponds to the line graphs with the right axis.

In the Figure 5(a), OFS outperforms OFS-ONE and EXT4
in all cases. This is because OFS reduces the number of
valid copies during garbage collection due to the per-object
allocation policy in the FML. Although the multi-threaded
write benchmark makes write operations on several objects
concurrently, OFS can place data from the same object in the
physically contiguous area on flash memory. Therefore, OFS

can find a big chunk of invalidated flash pages easily if a file is
deleted, which significantly reduces the number of valid page
copies during garbage collection. We note that the number of
valid copies of OFS in the multi-threaded write benchmark
records zero. OFS-ONE shows slightly better performance than
EXT4 because of the reduced metadata write overhead as
mentioned in Section VI-B.

OFS also exhibits better throughput than OFS-ONE and
EXT4 in Figure 5(b) which depicts the results of the torrent
benchmark. In this case, we note that the number of valid
copies for OFS is not zero. Before downloading a file, the
µTorrent program preserves the space required by the target
file by writing dummy data sequentially to minimize file
fragmentation. Thus, when downloading the file, an average
space of 3.4GB already has valid data, making OFS use only
600MB of space as the free space to service write requests.
On the other hand, the multi-threaded write benchmark can
utilize 1.2GB of free space on average since it invalidates
800MB space in the deleting phase before starting the writing
phase. Due to the small free space for absorbing write requests,
OFS incurs garbage collection more frequently in the torrent
benchmark. Nevertheless, EXT4 also has the same problem,
and OFS has a very low number of valid copies in this
benchmark.

D. Hot/Cold Data Separation

We create a hot/cold benchmark to analyze the effective-
ness of the hot/cold data management in our OSSD prototype.
With the total 8,000 files with 128KB file size at the beginning,
the benchmark selects 10% of files with the probability of 90%
and rewrites the whole file on each transaction. The remaining
90% of files has the probability of 10% of being rewritten. We
obtain the results after the amount of write becomes larger than
8GB to generate a sufficient number of garbage collections.
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Fig. 6. Results of the hot/cold benchmark.

Figure 6 illustrates the results of the hot/cold benchmark.
The bar graphs associated with the left axis show the through-
put results while the line graph with the right axis depicts the
number of valid page copies during garbage collection. OFS

also outperforms OFS-ONE and EXT4 while the results have
the similar tendency with those of Figure 5.

However, the performance gain is small in comparison with
Figure 5. This problem is related to the efficiency in the multi-
channel architecture of RawSSD. When only one update block
is used in OFS-ONE and EXT4, all the incoming write requests
are placed in the update block sequentially, maximizing the
write throughput by interleaving them over multiple channels
in RawSSD. However, OFS redirects the incoming writes to
one of several update blocks, which degrades the interleaving
efficiency. Especially, small writes for directory data disturb
utilizing multiple channels. In spite of this problem, OFS

improves the write throughput since the profit of hot/cold
data separation is greater than the slight loss of multi-channel
efficiency.

E. Handling Prioritized Requests

This section examines how well the prioritized requests are
handled in the presence of background garbage collection. For
the scenario of processing prioritized read requests, we play
music video of 200 seconds long with 30 frames per second.
We also run the multi-threaded write benchmark described in
Section VI-C in the background to generate garbage collec-
tions. The object corresponding to the music video file has the
higher priority than any other objects used in the background
job.

Figure 7 shows the variation in the actual frames per
second (FPS) while playing the music video along with the
background job. EXT4 (prioritized) denotes the results of the
EXT4 configuration where the video player informs the Linux
kernel of its higher priority through the ioprio_set()

system call. For OFS (prioritized), the requests to the music
video file (object) are given the higher priority. There is no
support for handling prioritized requests in the case of EXT4
(normal) and OFS (normal). Figure 8 illustrates the cumulative
distribution of read latencies for the music video file.

OFS plays the music video stably at 30 FPS which is
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the same value as the music video file. However, the FPS
results of other configurations are fluctuated severely since
they cannot service prioritized read requests while running
garbage collections. Actually, we can see frequently that the
music video is paused for a moment while playing.

Figure 8 also depicts that other configurations suffer from
the delay caused by garbage collections. For OFS, read requests
from the player have just small delay to wait for one valid
copy or one erase operation. However, in other configurations,
they have to wait until garbage collection makes one free
block by performing many valid page copies followed by an
erase operation. Therefore, they have long latencies if garbage
collection is already in progress while processing the incoming
read requests.

For the scenario of prioritized write requests, we write
2MB files 1,000 times with the higher priority while running
the same background job with the scenario of prioritized read
requests. Note that the FML in OFS is aware of the request
priority as the information is delivered through the object-
based interface. However, this information is not carried by
the block-level interface, making sFTL unable to differentiate
prioritized requests despite of the ioprio_set() system
call in EXT4.
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Figure 9 depicts the number of written files per second in
the prioritized write requests scenario. Figure 10 also illustrates
the cumulative distribution of write latencies for writing one
2MB file.

Again, OFS exhibits stable results with about 6 written files
per second. Although EXT4 shows higher values of written
files per second if the request does not collide with garbage
collection, many results scored very low values since they have
to wait for the completion of on-going garbage collection.
Actually, in OFS (prioritized), the benchmark is finished in
164 seconds with stable latency results while the benchmark
is finished in 230 seconds in EXT4 (prioritized) due to the
waiting time for garbage collection. Figure 10 also indicates
the same consequence. In comparison with EXT4, OFS has
consistent latencies.

The consistent latency while processing prioritized write
requests is important in many systems. In case of a video
recorder such as digital camcorder, the recorder can write a
video stream steadily only if the underlying storage device ser-
vices write requests with stable performance. Moreover, many
recent smartphones and digital cameras are also providing the
continuous shot functionality. With the support for prioritized
requests, this operation can save images stably while taking
pictures even if the other processes generate write operations
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and incur garbage collections.

From these results, we can see that it is indeed possible
to provide differentiated storage services in OSSDs with very
little effort.

F. File System Benchmarks

We run PostMark [18] and Filebench [7] benchmarks to
measure the overall file system performance after aging the
disk layout. In the first configuration of PostMark (POST1),
the benchmark creates 2,000 files with the random size from
16KB to 256KB, and run 20,000 transactions with 16KB I/O
size. During each transaction, the POST1 benchmark performs
one of four operations: creating a new file, deleting a file,
reading the entire contents of a file, and appending a file
with a random amount of data up to 16KB. In the second
configuration (POST2), we increase the file size to 256KB-
512KB to evaluate the performance with large file size. We set
the create bias to -1 to reduce small write requests originated
from accessing directory files.

We also run the Filebench benchmark to measure the
performance of the multi-threaded writes with massive I/O
operations (FILEB). We use the modified version of the
videoserver workload in the Filebench base workloads to run
the benchmark in our device setting. The workload creates
64 files with 32MB file size. Then, four threads delete a
randomly chosen file and create another file which has the
same file size as the previously deleted file. Again, we call
fsync() immediately after a file is deleted to deliver the
delete operation to the target device.

Before we run these benchmarks, the device is aged by
running the hot/cold benchmark shown in Section VI-D. To
generate garbage collections during the benchmark run, the
total 85% of the disk space (3.4GB) has been filled.

Figure 11 compares the write throughput results of each file
system benchmark configuration. OFS outperforms OFS-ONE

for each benchmark by 9.9%, 16.2%, and 27.9%, respectively.
This is because it has the smallest number of valid copies
by separating update blocks according to object properties. By
the object-aware data placement policy, OFS can place the data
from the same object in the same update block. If the object

is deleted afterwards, OFS can reduce the fragmentation of
free pages. In addition, hot/cold data separation while aging
the device is also helpful to reduce the garbage collection
overhead.

In case of the POST1 benchmark, EXT4 has very low per-
formance than OFS-ONE. Since there are many write operations
on small-sized directory files in the POST1 benchmark, EXT4
requires many read-modify-write operations due to external
fragmentation. When the incoming write request updates the
file which has smaller size than one flash page size, EXT4
needs the read-modify-write operation for the entire flash page
because sFTL does not know the file size. However, since OFS-
ONE knows the exact object size, OFS-ONE does not have to
perform the read-modify-write operation if the write request
updates all data of the object in the single flash page.

For OFS and OFS-ONE, the results of the POST2 benchmark
are smaller than the POST1 benchmark. This is because the
POST2 benchmark generates just the write requests of up to
16KB in appending transactions. On the other hand, the POST1
benchmark results in better throughput as it produces large
requests when creating files.

VII. CONCLUSION

This paper presents the design and prototype implemen-
tation of the object-based SSDs (OSSDs). We have proposed
the general system architecture and the storage software stack
needed to support OSSDs, clarifying the role and responsibility
of each layer. We confirmed that the object-based interface
offers great potential for SSDs using the various evaluations
with our OSSD prototype constructed on an iSCSI-based
embedded storage device.

There are still many issues left to be explored. As future
work, a more comprehensive analysis on various object prop-
erties is required. Second, since both EXOFS and OFS do not
have any mechanism for ensuring metadata reliability, we are
going to add the journaling support in our OFS. Finally, our
object-aware I/O scheduler, OAQ, also requires improvement
as it has overhead while processing I/O requests.
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