

Optimizing a hybrid SSD/HDD HPC storage system

based on file size distributions

Brent Welch, Geoffrey Noer

Panasas, Inc.

Sunnyvale, USA

{welch,gnoer}@panasas.com

Abstract - We studied file size distributions from 65 customer

installations and a total of nearly 600 million files. We found that

between 25% and 90% of all files are 64 Kbytes or less in size,

yet these files account for less than 3% of the capacity in most

cases. In extreme cases 5% to 15% of capacity is occupied by

small files. We used this information to size the ratio of SSD to

HDD capacity on our latest HPC storage system. Our goal is to

automatically allocate all of the block-level and file-level

metadata, and all of the small files onto SSD, and use the much

cheaper HDD storage for large file extents. The unique storage

blade architecture of the Panasas system that couples SSD, HDD,

processor, memory, and networking into a scalable building

block makes this approach very effective. Response time

measured by metadata intensive benchmarks is several times

better in our systems that couple SSD and HDD. The paper

describes the measurement methodology, the results from our

customer survey, and the performance benefits of our approach.

Keywords - file systems; OSD; SSD; parallel file system; HPC.

I. INTRODUCTION

Several years ago we developed a simple tool, fsstats, that
walks a file system and creates histograms of file size and file
age information[6]. This has been publically available for
some time, and we have been asking some of our larger
customers to use the tool to characterize their file systems.
Using the information we sought to optimize current and future
products. In this study we present data from 13 customers and
65 different file systems. The customers include national labs
that have traditional HPC workloads such as physics
simulations, Biotech companies that have large amounts of
genomic sequencing data and derived data, financial
institutions that have historical stock trading data and derived
results, and seismic data processing companies that have large
amounts of seismic data. While there are differences among
the file size distributions, the overall rule of thumb holds across
these customers: most files are small, but most capacity is
occupied by large files. To reconcile this, it is helpful to
remember that a 1GB file is 1 million times larger than a 1 KB
file. Indeed, some of our customers had individual files that
were many TB in capacity.

The Panasas system has a novel per-file data protection
scheme that we call Object RAID[11]. In this system, files are
broken up into component objects, and the objects contain both
file data and parity information that protects those objects from
loss or damage. By dispersing the parity groups for a file
across a large pool of Object Storage Devices (OSD), and

using a cluster of metadata servers to drive reconstruction, we
have very fast recovery from failed OSD. The system uses an
adaptive RAID scheme where small files (64KB or less) are
mirrored in two component objects on different OSD, and
larger files use a RAID5 striping pattern that reduces the
capacity overhead from the redundant data. Because mirroring
has an obviously higher capacity overhead, we wanted to
understand just how much overhead this would be. As we
introduced SSD into our OSD, we wanted to be sure that we
could have a cost effective solution that could place small files
onto the SSD region of the OSD, and utilize HDD for the
larger component objects.

Using the data from our customers, we found that even
with the overhead of mirroring small files, and the metadata
overhead associated with each component object, that a system
with about 1.5% SSD to HDD capacity could comfortably fit
all the small files and metadata onto the SSD. Specifically, we
used a 120 GB SSD and two 4 TB HDD inside each OSD for
this 1.5% ratio. However, we found some customers with
relatively more small files, and some with a very large
proportion of small files. Using a 300 GB SSD and two 4 TB
HDD we get about 3% SSD to HDD. Using a 480 GB SSD
and two 2 TB HDD we get about 10% SSD to HDD. The
system gracefully handles the scenario where the SSD is
completely full by overflowing into HDD storage.

Our OSD are housed in a blade chassis that has 10 OSD
blades and one metadata service blade. Up to 100 chassis can
be combined into a single system. Thus the minimum capacity
is 1TB SSD and 80 TB HDD, and the maximum capacity is
300 TB SSD and 8PB HDD. The physical system can be
logically divided into different file systems that share the OSD
with a dynamic and soft partitioning scheme that is part of the
OSD standard.

II. RELATED WORK

There have been a few studies of Unix file size
distributions dating back to the 1980’s[7][8]. These studies
reveal an obvious change in file systems that are now storing
much, much larger files. While in the early studies a 1MB file
was “large”, and the average size was around 1KB, today a
large file is measured in GB and even TB in capacity. Of
course, the change in file sizes reflects the staggering change in
technology over the last 30 years since those initial studies.

Some studies were done to create models of file size
distributions that could be used in simulation and design of

future systems[4]. Reference [5] highlights the existence of
modes (i.e, “bumps”) in file size distributions caused by large
audio, image, and video files. These studies indicate that there
are lots of small files, but most capacity is occupied by larger
files.

Baker et. al. presented dynamic measurements of file
system operations that look at access patterns and the
effectiveness of the Sprite caching model[2]. This work also
compares its results with the 1984 study of Unix file
systems[8], and notes the growth of average and maximum file
sizes. While they did not study the static distribution of file
sizes, they found that most accesses during their study period
were to small files (10 KB or less), but most of the bytes
transferred (90%) were to relatively large files of 1MB or
larger.

Tanenbaum studied file size distributions in the university
setting and found that most files are small, but most of the
space is occupied by large files[10]. In this 2005 study the
files were pretty small - 2K average size, with 99% of the files
being 1MB or smaller. The largest files in their study was 2
GB, and there were about 1.7 million files in the study. They
relate their data to a similar study from 1984[7], and they
investigate the effect of having different file system block sizes
(e.g., 1KB, 2KB, 4KB, 8KB or 16KB) on capacity.

Argawal et. al studied thousands of user file systems at
Microsoft over a 5 year period (2000-2004)[1]. They also
found large numbers of relatively small files, with most of the
capacity occupied by large files. They suggest techniques such
as variable block sizes and co-locating small files with
metadata to make small file storage more efficient. They also
study file ages and types, and the shape of the directory
structure. The file sizes are smaller in general than our study,
with 99% of their files being just 16MB or less in capacity.
However, image, blobs, and databases become evident in the
last years of their study as files with sizes ranging from 1GB to
as much as 64GB, and these larger files occupy about 10% of
the system in their latest year of study.

The primary difference with our study is that we study
large HPC installations with many millions of files and
distributions that include files up to TB in size. This is a very
different user scenario than the personal workstations or web
servers that are involved in most of these other studies. None
the less, it is interesting to note that the general results hold.
There are still relatively large numbers of relatively small files,
yet most of the capacity is occupied by relatively large files.

III. FILE SIZE VS. FILE CAPACITY

Before we analyze the results of our customer surveys, we
need to dig into the details about how a file system uses
capacity to store files. File systems allocate in blocks; our
system uses a 16KB allocation unit. File systems have
overhead from allocation maps, B-tree indexes, and object
descriptors (i.e., inodes). When a small file is stored, this
block-level metadata overhead will dominate the capacity used
by the file. In addition, the Panasas system uses Object RAID
for data protection, so a file is divided into multiple component
objects that store the data and parity for the file. The parity

information is another source of overhead, especially in our
system that uses mirroring to protect small files.

We define small files as 64KB or less. This is a special
threshold in the Panasas system because files 64K or smaller
are mirrored into two component objects. Larger files start
using a RAID-5 pattern up to a full stripe width of between 8
and 11 component objects. The stripe width is chosen
automatically by the system based on the overall number of
OSD that are available. If a file grows beyond 2000 stripes,
another set of component objects is allocated (if possible) for a
new parity group. Once all possible OSD are used, the existing
component objects just grow to accommodate more stripes.

In our system, each component object has an object
descriptor that occupies a full file system block. This is
different than many Unix file systems that only devote 128 or
256 bytes to an inode, and pack several inodes into a file
system block. Because our snapshot facility is block-oriented,
it is simpler if an object descriptor occupies a full block so that
different snapshots of an object have copies of the object
descriptor in different blocks. A 16KB block means a zero-
length file occupies 32KB from the two object descriptors on
two different OSD. A 1 byte file would occupy 64KB - two
object descriptors and two data blocks that mirror the object.
You can see that a larger block size has an obvious drawback
for the storage of small files.

The first and obvious optimization we did was to pack
small file data into the object descriptor. We devote the first
4K of the object descriptor to metadata, and pack the first 12K
of the object data into that same block. If objects have more
than 4K of metadata, additional full blocks are allocated to
store it. In the common case, a zero-length file and a 12K file
occupy the same space: 32 K from the replicated object on two
OSD. Our data indicates there are quite a large number of very
small files below 12K, so this is a simple optimization that is
very effective at reducing the capacity overhead for small files.

There is additional overhead from the B-Tree that we use to
index object descriptors, and the direct block pointers that we
use to track data blocks. However, the object B-Tree occupies
less than 1% of the space of the object descriptors (one leaf
node references up to 256 object descriptors), and the direct
blocks also occupy less than 1% of the data block storage (one
direct block references up to 2048 blocks). So, we ignore these
effects in the rest of our study. We did comparisons between
our projected capacity utilization and the real capacity
utilization in our systems, and they were within a few percent.

The second complexity in measuring the capacity used by
files comes from the use of mirroring or RAID to protect file
data. Files 64K or smaller are mirrored, and larger files use
RAID-5. (Newer Panasas systems can use triplication and
RAID-6, but the data we studied came from systems that used
the classic RAID-1/5 system that is either mirroring or RAID-
5.) Thus the overhead for small files is greater than 100%, but
becomes much smaller for larger files. In a RAID pattern with
8 data stripe units and 1 parity stripe unit, the overhead is
12.5%. fsstats measures this overhead as the difference
between Total User Data and Total Capacity, which is typically
about 15% for PanFS file systems.

Fig. 1. Capacity used for a file as a function of its size, highlighting smaller files. The red line is the percent overhead (capacity vs size).

Fig. 1 and Fig. 2 plot the capacity used in a PanFS file
system as a function of file size, and the overhead of that
capacity compared with the file size. The irregular shape of
the curves is from the allocation of additional blocks and
additional objects with their object descriptor. This data was
generated by creating files sized in increments of 4KB plus or
minus 1KB, to highlight the stepwise increase in capacity from
the 16KB block allocation and the packing of the initial 12KB
into the object descriptor. For example, files of 0 bytes to

12KB occupy 32KB because it is mirrored in two objects, and
all the data is packed into the object descriptors. After 64KB
the system switches from RAID-1 and mirroring to RAID-5, so
the steps change from 32KB to a single 16KB block. The
anomalies in the steps around 64KB, 128KB, etc. stem from
the initial 12KB allocation and the use of a 64KB RAID stripe
unit. Fig. 2 shows the data for larger files, and the bumps in
the graph occur as a new RAID stripe is added to the file and
an extra 64KB is allocated for the parity unit in the new stripe.

Fig. 2. File capacity used as a function of file size, highlighting files with multiple RAID stripes. The red line is the percent overhead (capacity vs size).

IV. MEASUREMENTS

The fsstats tool is a Perl script that walks a file system and
collects various information about the files and directories in
the system[6]. It examines file length, capacity used, directory
size, file age, and information about symlinks and hardlinks.
For each metric, an average, min, max, and histogram are
recorded. The histograms use powers of two buckets. The size

buckets start with files less than 2KB, 2KB up to 4KB, 4KB
up to 8KB, and so forth. A file exactly 16KB is counted in the
16KB to 32KB bucket. These are base-2 KB, so 1 KB is 1024
bytes, and 1MB is 1048576 bytes, etc. In the figures below,
we plot the percentage of files in particular buckets, using the
midpoint of the bucket as the X coordinate.

0%

100%

200%

300%

400%

500%

600%

0

128

256

384

512

640

768

0 64 128 192 256 320 384 448 512

C
ap

ac
it

y
K

B

Size KB

Capacity vs Size

CapacityKB

0%

50%

100%

150%

200%

250%

300%

0

1024

2048

3072

4096

5120

0 512 1024 1536 2048 2560 3072 3584 4096

K
B

 C
ap

ac
it

y

KB Length

Capacity vs Size

Capacity KB

TABLE I. OVERALL CHARACTERISTICS OF THE DATA WE COLLECTED, SORTED BY NUMBER OF FILES IN THE SYSTEM. (PART I)

System User Data File Cnt Avg Len KB Max Len KB
Directory

Count

Directory Entry Name

Avg Max Avg Max

Uni-5 433.60 TB 139,440,887 3,339 562,401,886 7,450,817 20 100,000 25 254

Uni-4 78.68 TB 59,550,373 1,418 908,517,159 6,780,002 10 3,188,509 26 255

Wth-1 103.73 TB 46,095,337 2,416 1,930,925,561 2,300,074 21 350,000 24 179

LANL-7 382.60 TB 43,237,353 9,501 2,798,494,990 359,023 120 349,058 11 133

LANL-5 313.11 TB 32,057,311 10,487 3,836,928,000 415,310 78 100,000 15 87

Uni-2 101.07 TB 22,324,039 4,861 183,997,492 1,279,045 19 263,622 22 207

Uni-1 64.59 TB 17,729,082 3,912 607,034,885 537,922 35 79,356 26 214

Sei-1 5.30 TB 15,664,895 363 113,736,330 1,364,076 13 64,311 15 173

LANL-6 192.79 TB 15,284,519 13,543 1,337,720,832 142,940 107 81,611 12 211

Fin-9 24.43 TB 12,565,235 2,087 55,334,804 689,640 20 191,419 24 167

Uni-3 39.44 TB 12,186,131 3,475 177,724,290 39,977 306 218,670 24 153

Fin-14 16.06 TB 11,754,641 1,466 66,018,402 94,508 134 350,000 26 49

Sei-11 1508.62 TB 10,469,009 154,729 4,799,672,727 601,450 18 62,925 20 159

User-3 820.30 GB 9,779,854 87 61,829,588 2,465,991 5 50,048 6 75

Man-1 23.22 TB 9,497,470 2,625 161,005,560 320,836 31 38,348 18 168

Bio-4 681.19 GB 9,464,391 75 12,896 10,132 935 1,713 16 24

LANL-2 286.34 TB 8,073,268 38,082 3,111,873,960 203,040 45 34,231 19 83

Fin-8 3.62 TB 7,615,883 511 27,040,766 40,947 187 46,272 26 180

Bio-5 5.49 TB 6,943,839 849 79,282,357 647,381 12 144,947 19 113

Sei-12 913.46 TB 5,742,360 170,804 7,021,072,265 144,602 41 51,154 17 121

Fin-22 24.03 TB 5,575,157 4,628 13,094,985 23,713 236 38,273 28 82

Sei-8 633.15 TB 5,361,453 126,800 21,453,090,816 18,904 285 2,342,911 19 150

LANL-9 28.35 TB 4,972,722 5,427 266,708,130 721,281 10 81,716 18 123

LANL-8 43.97 TB 4,618,230 10,222 89,600,128 296,183 16 85,585 18 133

Wth-2 15.34 TB 4,566,684 3,608 71,947,710 303,017 17 66,123 16 179

LANL-1 24.92 TB 4,403,273 6,076 298,936,790 62,430 73 30,153 16 69

Fin-19 7.69 TB 4,142,457 1,993 18,567,876 222,619 20 823 34 50

Fin-18 7.69 TB 4,135,559 1,996 1,539,463 223,746 19 872 34 50

Fin-17 7.60 TB 4,121,129 1,980 652,271 221,118 20 1,520 34 50

Fin-16 7.71 TB 4,113,341 2,012 2,462,291 222,748 19 922 34 50

User-2 932.54 GB 4,060,880 240 11,713,329 389,618 12 18,831 15 246

Fin-21 7.53 TB 4,050,959 1,997 16,994,257 220,351 19 2,925 34 50

Fin-12 7.45 TB 4,048,816 1,976 1,233,843 218,638 20 824 34 50

Fin-20 7.51 TB 4,042,590 1,993 479,283 219,610 19 1,147 34 50

Sei-5 546.95 TB 3,723,428 157,727 4,354,540,499 14,756 254 87,631 21 94

Sei-9 954.91 TB 3,619,943 283,243 5,670,650,134 30,176 121 119,528 20 202

Fin-10 28.25 TB 3,386,744 8,955 55,334,804 154,333 23 83,777 27 136

TABLE II. OVERALL CHARACTERISTICS OF THE DATA WE COLLECTED, SORTED BY NUMBER OF FILES IN THE SYSTEM (PART II)

Tag User Data File Cnt Avg Len KB Max Len KB Dir Cnt
Directory Entry Name

Avg Max Avg Max

Sei-10 1272.13 TB 3,028,598 451,008 8,645,563,520 137,758 23 51,016 17 129

Sei-7 622.27 TB 2,900,395 230,368 7,517,228,594 16,800 174 50,864 22 118

LANL-4 14.02 TB 2,209,335 6,811 348,372,738 490,399 7 29,736 17 95

Sei-4 786.84 TB 2,141,093 394,593 4,612,501,768 21,016 103 99,636 21 159

LANL-3 25.58 TB 1,873,912 14,659 150,802,080 144,427 13 10,269 15 80

Fin-4 1.07 TB 1,863,089 619 9,710,116 125,345 16 18,268 22 125

Fin-7 665.13 GB 1,703,488 409 2,421,407 442 3,855 15,541 19 26

Sei-6 1210.78 TB 1,678,245 774,660 5,351,220,703 56,197 31 209,769 22 161

User-1 413.19 GB 1,170,349 370 20,033,536 75,510 17 11,634 18 112

Fin-5 670.82 GB 1,163,843 604 9,713,498 75,000 17 17,589 20 119

Sei-2 471.65 TB 1,136,579 445,572 2,375,836,562 25,547 46 129,143 23 161

Fin-2 227.48 GB 1,051,603 227 3,673,885 34,074 32 20,801 15 68

Sei-14 114.42 TB 899,342 136,606 206,277,071 244 3,687 39,050 58 94

Bio-1 4.96 TB 894,546 5,953 8,667,102 2,555 351 3,849 12 43

Bio-3 7.07 TB 838,504 9,053 61,992,400 8,569 99 95,513 33 82

Sei-16 69.80 TB 791,014 94,748 17,560,600 76 10,409 40,574 59 78

Fin-13 1.73 TB 701,426 2,641 620,472 15,253 47 28,552 15 50

Fin-6 103.99 GB 697,384 156 23,190 841 830 4,375 21 26

Sei-3 781.15 TB 697,119 1,203,178 85,308,625,086 15,531 46 98,497 15 96

Fin-15 15.94 TB 348,471 49,123 5,472,113 565 618 42,682 31 62

Sei-17 90.91 TB 261,316 373,555 256,822,213 221 1,183 109,509 54 104

Sei-18 77.43 TB 154,341 538,656 152,412,961 237 652 19,968 42 104

Fin-1 2.19 TB 129,480 18,168 4,157,022 1,038 126 7,990 29 100

Fin-3 147.87 GB 70,887 2,187 3,616,690 3,413 22 10,150 25 125

Fin-11 1.20 TB 67,626 19,006 6,665,833 287 237 17,028 30 52

Sei-13 1.34 TB 33,145 43,304 146,032,041 373 90 7,991 31 104

Sei-15 6.90 TB 3,684 2,011,364 50,938,445 39 95 798 27 54

Bio-2 6.88 TB 449 16,452,237 428,096,320 29 16 24 14 26

TABLE I. and TABLE II. summarize the datasets we
collected. There are 65 datasets from 13 different customers.
These are loosely categorized into University (Uni), User files
(User), Weather forecasting (Wth), Seismic data processing
(Sei), Financial modeling (Fin), Biotech (Bio), and
Manufacturing (Man). The LANL datasets have been
previously studied[3]. The number of files counted for each
system ranged from 139 million to just a few hundred, and the
amount of data in each system ranged from over 1500 TB to
under 1TB.

A. General Observations

The seismic data sets have large files, with an average size
ranging from 43MB to over 2000MB. These systems have
very large individual files, with one system having an 85 TB
file. However, small files are still common. The Sei-1 system
had its largest file at 113 GB, but had over 6 million files in the
zero to 2K length bucket.

The rest of the systems have an average file size is in the
small number of MB in most cases. There are a few systems
with less than 1MB average file size. Ignoring the obvious
outlier in the last row (Bio-2), the averages of the non-seismic
systems range from 75 KB to 49 MB.

Nearly all systems have very large files. Only 5 systems
had a maximum file size less than 1GB. 16 systems measured
their largest file in TB, including most of the seismic systems,
a weather processing system, and some of the LANL systems.

Directories are large. While many systems have an average
directory size that is under 30 entries, several systems averaged
hundreds of files per directory. The largest directory was over
3 million files, and a maximum directory size over 100,000
was common.

Systems with mostly small files are relatively small in total
capacity. While most systems in our study were many TB in
total capacity, those dominated by small files were usually less
than 1TB in size. In most cases, a customer that had a file
system like this also had file systems dominated by large files.
The User-1, User-2, and User-3 systems were from a seismic
customer, for example. This suggests that sharing OSD among
these different kinds of systems (small files vs. large files)
would allow averaging out the metadata workload associated
with having large numbers of files in a file system. This kind
of sharing is commonly used in PanFS systems where a large
physical pool of OSD is shared among different file systems.

There is one system (Bio-2) that has a small number of
very large files (16GB average, 428 GB maximum). This
system has only 449 files and occupies almost 7 TB. We
assume this system is used as a backup target and stores large
tarfile images.

The averages and maximums in Table 1 hide the nuances
and differences among the systems. One fact seems clear:
there are many different file size distributions among HPC
users. The remaining sections look at the file size distributions
in more detail.

B. Small Files

Small files post challenges to file systems. The ratio of
metadata to data is high. Allocation strategies for small files
may be different than for large files to increase storage
efficiency and eliminate seeks. We are particularly interested
in files 64KB and smaller because of our RAID striping
strategy. Unfortunately, the fsstats histograms lump 64KB

files with files up to 128KB, so we cannot directly measure
how much capacity is occupied by 64KB and smaller files.

 Fig. 3 shows the percentage of files less than 64KB for
each of the systems we measured. The percentage ranges from
about 25% to over 90%, although there are a few systems that
had almost no small files. For example, Bio-1, had 65% of its
files in the 1-4 MB buckets, and less than 1% of its files in the
smallest buckets. It is associated with a genomic sequencing
instrument.

The primary reason there are lots of small files is that it is
just easy for users to have every thread in a parallel job open its
one file (or files) and generate its data. While there are special
libraries like HDF5 and netCDF that allow sophisticated shared
output files so a parallel job can generate just a single file,
these are not always widely used even in very mature HPC
environments. For example, in the DOE tri-lab community of
LLNL, Sandia, and LANL, only the LANL applications are big
users of shared output files. The other communities have
developed a usage model of having many files per job.
Genomic sequencing information has a similar pattern. The
instruments generate a large stream of relatively small files that
each represent relative small data sample. It is common to see
each genomic run create a single directory with large numbers
of small files in it.

The fsstats program records the capacity used attribute (i.e.,
“ls -s”). In the case of PanFS, this attribute counts blocks used
for object descriptors and for redundant objects, which means
mirroring for these small files. Fig. 4 shows the capacity
occupied by files that use less than 256KB. Because a file that
is 64KB in length occupies 160KB in our system, we must use
this bucket to approximate the capacity used by our small files.
The results are an overestimation. These systems were
measured before the introduction of our latest version that
packs 12KB of data into the block used for the object
descriptor. In other words, the cumulative capacity up to
128KB would underestimate the capacity of files less than
64KB, and the cumulative capacity up to 256KB overestimates
the capacity used by files with length 64KB or smaller.

Fig. 3. The percentage of files of files less than 64KB.

0.0%

20.0%

40.0%

60.0%

80.0%

100.0%

Fi
n

-2
3

U
se

r-
3

U
se

r-
1

Se
i-

1

U
se

r-
2

U
n

i-
3

U
n

i-
5

W
th

-2

W
th

-1

Fi
n

-4

Fi
n

-2

B
io

-5

Fi
n

-1
6

U
n

i-
1

LA
N

L-
4

U
n

i-
4

Fi
n

-3

Fi
n

-8

Se
i-

1
3

LA
N

L-
9

Fi
n

-6

Se
i-

4

M
an

-1

Fi
n

-1
4

LA
N

L-
6

Se
i-

5

Fi
n

-1
0

B
io

-3

U
n

i-
2

Fi
n

-7

Se
i-

1
0

B
io

-4

LA
N

L-
3

Se
i-

7

Fi
n

-1
2

Fi
n

-1
1

LA
N

L-
5

LA
N

L-
1

Se
i-

1
1

Fi
n

-1
8

LA
N

L-
2

Fi
n

-1
5

LA
N

L-
7

Fi
n

-1

B
io

-2

Se
i-

8

Se
i-

1
8

Se
i-

1
4

Se
i-

1
7

B
io

-1

Se
i-

1
6

% of Files < 64KB

Fig. 4. The Capacity used by files of length less than 256KB. These measures include overhead from block and object allocation. The Bio-4 value is 75%.

Most systems have less than 2-3% of their capacity
occupied by small files. The system with the largest
percentage of capacity devoted to small files (75%) is Bio-4.
This is a relatively small file system (681 GB) in terms of
capacity, but it has over 9 million files. It also has the smallest
average file size (75KB), and the smallest maximum file size
(12MB). User-3 is used for log files, User-2 is home
directories, and User-3 is shared binaries. They are relatively
small, each being less than 1TB in capacity. Fin-6 is very
small. Sei-1 has a different profile. It is larger with over 5TB
in capacity, with some large files, but a large number (6
million) of tiny files, which are likely to be small job log files.

There is a cluster of systems in the finance sector with
between 3% and 8% of their capacity in small files. These
systems have “tick data” that represent fine grain resolutions of
stock trade activity in individual files. This information comes
from data feeds and is just stored in raw format in the file
system.

C. File Size Distributions

The best insights come from plots of file size distributions.
In this section we plot the file counts as a percentage of total
for each histogram bucket, and file capacity as a cumulative
percentage of total for each histogram bucket. In all graphs,
we plot the midpoint of the histogram on the X axis. Smooth
curves are used as a reminder that we don’t have precise file
sizes. The first two figures have four curves from each of two
datasets (Fin-7 and LANL-7):

 File Count indicates how many files fell into this
histogram bucket for file size. This comes from the file
size histogram of fsstats.

 File Capacity indicates how much capacity was used by
the files in this histogram bucket of file capacity. This
comes from the file capacity histogram of fsstats.

 File Count Cumulative indicates how many files were
this size or smaller.

 File Capacity Cumulative indicates how much capacity
was used by files with this capacity or smaller.

It is important to note that the X axis is logarithmic. The
sizes and capacity of the files toward the right of the graphs are
a million times bigger, or more, than those on the left side of
the graphs.

Fig. 5 plots data from a customer in the Finance sector
(Fin-7 dataset) that had about 1.7 million files. The blue curve
shows the counts of files at various sizes. The first point at 1K
counts files between 0 bytes and 2K, and 20% of all files fall
into this bucket. The red curve shows the capacity used by
files in the various buckets. This curve starts at 24K, which is
the mid-point of the 16K to 32K bucket. The smallest files
land in this bucket due to block, object and parity overhead.
The curve grows gradually to a hump around 1MB and shows
another bump beyond 1GB. The green curve shows the
cumulative file count; 60% of the files are 64K or less.
However, the purple cumulative capacity curve indicates that
these files occupy about 7% of the capacity. These capacity
curves take into account the overhead illustrated in Figure 1
and 2. The cumulative capacity ramps up around the 1MB to
4MB file size, with 75% of the capacity occupied by files
16MB or less. The bump at the 1GB to 4GB file size range
comes from less than 100 files in this capacity range, and they
account for over 10% of the capacity.

Fig. 6 plots the same family of curves for the LANL-7
dataset. This is the largest LANL system with over 43 million
files. There are interesting modes at 64KB,1MB, 4MB, 1GB,
and 1TB which represent collections of similar sized files.
While most files are less than 1MB, the capacity is dominated
by files 1GB and larger. The modes (i.e., “bumps”) result from
applications that generate large numbers of similar sized files.
This becomes more evident when looking at all the file size
distributions.

Fig. 7 through Fig. 16 show the file size and cumulative
capacity curves for all the datasets. The curves are grouped
into roughly similar datasets. The non-cumulative file count
figures highlight the modes of files in different size bands. The

0.00%

5.00%

10.00%

15.00%

20.00%

25.00%

30.00%
B

io
-4

U
se

r-
3

U
se

r-
2

Fi
n

-6

Se
i-

1

U
se

r-
1

Fi
n

-1
5

Fi
n

-7

Fi
n

-8

Fi
n

-2

Fi
n

-5

Fi
n

-4

B
io

-5

Fi
n

-1
0

U
n

i-
4

M
an

-1

U
n

i-
2

Fi
n

-1
8

U
n

i-
3

W
th

-1

Fi
n

-3

Fi
n

-2
3

U
n

i-
1

Fi
n

-1
4

U
n

i-
5

Fi
n

-1
1

LA
N

L-
9

LA
N

L-
4

W
th

-2

LA
N

L-
6

LA
N

L-
7

LA
N

L-
3

LA
N

L-
5

LA
N

L-
1

B
io

-3

Fi
n

-1
2

LA
N

L-
8

Fi
n

-1

Fi
n

-1
6

LA
N

L-
2

Se
i-

1
3

Se
i-

5

Se
i-

7

Se
i-

9

Se
i-

1
1

Se
i-

8

Se
i-

1
0

Se
i-

4

B
io

-1

Se
i-

1
8

B
io

-2

% Capacity used by files < 256KB

cumulative capacity figures highlight how large files dominate the capacity used in these systems.

Fig. 5. Cumulative file counts and capacity for the Fin-7 dataset from a customer in the Finance sector.

Fig. 6. Cumulative file counts and capacity for the largest LANL dataset, LANL-7.

Fig. 7. File Counts for the Finance datasets.

0.0%

10.0%

20.0%

30.0%

40.0%

50.0%

60.0%

70.0%

80.0%

90.0%

100.0%

1 32 1,024 32,768 1,048,576

Fin-7 Counts and Capacity

File Count

File Capacity

File Count Cumulative

File Capacity Cumulative

0.0%

10.0%

20.0%

30.0%

40.0%

50.0%

60.0%

70.0%

80.0%

90.0%

100.0%

1 32 1,024 32,768 1,048,576 33,554,432 1,073,741,824

LANL-7 Counts and Capacity
File Count

File Capacity

Cumulative File Count

Cumulative File Capacity

0.0%

5.0%

10.0%

15.0%

20.0%

25.0%

30.0%

35.0%

40.0%

45.0%

50.0%

1 32 1,024 32,768 1,048,576 33,554,432

File Count % by Size KB (Finance)

Fin-1

Fin-2

Fin-4

Fin-5

Fin-6

Fin-7

Fin-8

Fig. 8. Cumulative capacity for the Finance datasets.

Fig. 9. File counts for the second set of Finance datasets. Fin-15 through Fin-21 have almost identical distributions.

Fig. 10. Cumulative capacity for the second set of Finance datasets. Fin-15 through Fin-21 have almost identical distributions.

0.0%

10.0%

20.0%

30.0%

40.0%

50.0%

60.0%

70.0%

80.0%

90.0%

100.0%

1 32 1,024 32,768 1,048,576 33,554,432

Cumulative % Capacity by KB (Finance)

Fin-1

Fin-2

Fin-4

Fin-5

Fin-6

Fin-7

Fin-8

0.0%

10.0%

20.0%

30.0%

40.0%

50.0%

60.0%

70.0%

80.0%

1 32 1,024 32,768 1,048,576 33,554,432

File Count % by Size KB (Finance2) Fin-9

Fin-10

Fin-11

Fin-12

Fin-13

Fin-14

Fin-15

Fin-16

Fin-17

Fin-18

Fin-19

Fin-20

Fin-21

Fin-22

0.0%

10.0%

20.0%

30.0%

40.0%

50.0%

60.0%

70.0%

80.0%

90.0%

100.0%

1 32 1,024 32,768 1,048,576 33,554,432

Cumulative % Capacity by KB (Finance2)
Fin-9
Fin-10
Fin-11
Fin-12
Fin-13
Fin-14
Fin-15
Fin-16
Fin-17
Fin-18
Fin-19
Fin-20
Fin-21
Fin-22

Fig. 11. File counts for the University, Bio, Weather, and User datasets.

Fig. 12. Cumulative capacity for the University, Bio, Weather, and User datasets.

Fig. 13. File counts for the LANL datasets.

0.0%

10.0%

20.0%

30.0%

40.0%

50.0%

60.0%

70.0%

80.0%

1 32 1,024 32,768 1,048,576 33,554,432 1,073,741,824

File Count % by Size KB (Bio, Uni, Wth, User) Man-1
Bio-1
Bio-2
Bio-3
Bio-4
Bio-5
Uni-1
Uni-2
Uni-3
Uni-4
Uni-5
Wth-1
Wth-2
User-1
User-2
User-3

0.0%

10.0%

20.0%

30.0%

40.0%

50.0%

60.0%

70.0%

80.0%

90.0%

100.0%

1 32 1,024 32,768 1,048,576 33,554,432 1,073,741,824

Cumulative Capacity % by File Size KB (Bio, Uni, Wth, User)Man-1
Bio-1
Bio-2
Bio-3
Bio-4
Bio-5
Uni-1
Uni-2
Uni-3
Uni-4
Uni-5
Wth-1
Wth-2
User-1
User-2
User-3

0.0%

5.0%

10.0%

15.0%

20.0%

25.0%

30.0%

35.0%

40.0%

45.0%

1 32 1,024 32,768 1,048,576 33,554,432 1,073,741,824

File Count % by Size KB (LANL)
LANL-1

LANL-2

LANL-3

LANL-4

LANL-5

LANL-6

LANL-7

LANL-8

LANL-9

Fig. 14. Cumulative capacity for the LANL datasets.

Fig. 15. File counts for the Seismic datasets.

Fig. 16. Cumulative capacity for the Seismic datasets.

Even though the distributions vary, nearly every system has
a significant number of files in the smallest size bucket. The
smallest size bucket accounted for 15% to 50% of the files in
most cases. However, there are also distinct peaks at other

capacity points, which indicate that these systems are
dominated by applications with specific file sizes. These peaks
often account for 50% or more of the files within the entire file
system.

0.0%

10.0%

20.0%

30.0%

40.0%

50.0%

60.0%

70.0%

80.0%

90.0%

100.0%

1 32 1,024 32,768 1,048,576 33,554,432 1,073,741,824

Cumulative Capacity % by File Size (KB) LANLLANL-1

LANL-2

LANL-3

LANL-4

LANL-5

LANL-6

LANL-7

LANL-8

LANL-9

0.0%

5.0%

10.0%

15.0%

20.0%

25.0%

30.0%

35.0%

40.0%

45.0%

50.0%

1 32 1,024 32,768 1,048,576 33,554,432 1,073,741,824 34,359,738,368

File Count % by Size KB (Seismic)
Sei-1

Sei-2

Sei-3

Sei-4

Sei-5

Sei-6

Sei-7

Sei-8

Sei-9

Sei-10

Sei-11

Sei-12

Sei-13

Sei-14

Sei-15

Sei-16

Sei-17

Sei-18

0.0%

10.0%

20.0%

30.0%

40.0%

50.0%

60.0%

70.0%

80.0%

90.0%

100.0%

1 32 1,024 32,768 1,048,576 33,554,432 1,073,741,824 34,359,738,368

File Capacity % by Size KB (Seismic)Sei-1
Sei-2
Sei-3
Sei-4
Sei-5
Sei-6
Sei-7
Sei-8
Sei-9
Sei-10
Sei-11
Sei-12
Sei-13
Sei-14
Sei-15
Sei-16
Sei-17
Sei-18

Capacity is dominated by large files. Only a few systems
had a significant percentage of their capacity in files below 1
MB, and these were relatively small systems (under 1TB total
capacity).

V. PERFORMANCE

We used the amount of small files and metadata to size the
SSDs in our AS-14 hybrid storage blade. This OSD has 8 GB
DRAM, a 120 GB SSD and two 4TB SATA drives to create an
OSD that has 1.5% of its capacity in SSD storage. A model
with a 300 GB SSD has 3% SSD. For extreme performance the
AS-14T has 16GB DRAM, a 480 GB SSD and two 2TB
SATA drives, so 10% of the capacity is SSD. We compare the
performance of these blades to the AS-12 that has 8GB DRAM
and two 2 TB SATA drives. These ratios of 1.5%, 3%, and
10% cover most of the different file capacity distributions for
small files that we observed in our survey.

We used metadata intensive benchmarks to evaluate the
performance of adding SSD to the OSD; the performance of
large file bandwidth is very similar between the two
configurations. Our blade chassis with 10 OSD storage blades
and dual 10GE uplinks delivers sustained bandwidth from disk
to a collection of clients at about 1600 MB/sec, or 160
MB/sec/OSD. Table II gives a brief summary of the
performance impact of adding SSD to the OSD.

TABLE III. PERFORMANCE IMPACT OF ADDING SSD TO THE AS-14

STORAGE BLADE.

Benchmark AS-12 AS-14T Speed Up

SFS 2008
9739 ops/s
9.3 ms RT

20745 ops/s
7.6 ms RT

2.1

20M FSRC 29336 sec 3638 sec 8.1

ls -l 1M 1236 sec 366 sec 3.4

60K reads 1129 ops/sec 8882 ops/sec 7.9

SpecFS 2008 is the industry standard benchmark[9].
Higher ops/sec and lower response time is better, and the
performance more than doubles. The FSRC benchmark is an
offline file system check of a volume with 20 million files, and
this runs 8 times faster because it is a pure metadata workload.
The listing of a million file directory is more than 3 times
faster. We use prefetching of object attributes to gain some
parallelism out of a serial workload. The read workload is a
cold-cache workload that reads small files, and it is nearly 8
times faster. Except for SFS, which has a cache warming
phase, these benchmarks were run with a cold cache to force
disk or SSD accesses.

VI. CONCLUSION

This paper has looked at file size distributions in HPC
systems measured with the fsstats tool. Unlike earlier studies
that focused on personal workstations, we have measured very
large HPC systems that feature individual files over 1TB in
size. The 65 systems we surveyed are each different. The
modes in file size distribution reflect the different applications
run against the systems. There were extremes such as more
than 9 million files all less than 12 MB and a total capacity less
that 1TB, and a system with less than 500 files and almost 8TB
in total capacity with an average file size of 16 GB. In most

cases, however, average file sizes were a few MB, and
maximum file sizes were measured in GB. The LANL and
seismic systems had maximum file sizes in the TB, and
average sizes in the 100’s of MB.

We found the traditional pattern of lots of small files, with
the capacity dominated by very large files. Based on these
measurements, we sized the ratio of SSD to HDD in our latest
OSD storage blade. SSD is used to optimize small files and
metadata storage. We introduced data packing to put small file
data into object descriptors so we optimize the use of SSD.
Our measurements indicate that most systems can easily afford
to put every object descriptor, index, allocation maps, and all
small files onto the SSD with a configuration that has 1.5% to
3% of its capacity in SSD. These configurations allow us to
add SSD in a cost effective manner, and yield significant
performance results for metadata intensive workloads.

VII. REFERENCES

[1] Agrawal, N., Bolosky, W. J., Douceur, J. R., & Lorch, J. R. (2007). A

five-year study of file-system metadata. ACM Transactions on Storage
(TOS), 3(3), 9.

[2] Baker, M. G., Hartman, J. H., Kupfer, M. D., Shirriff, K. W., &

Ousterhout, J. K. (1991, September). Measurements of a distributed file
system. In ACM SIGOPS Operating Systems Review (Vol. 25, No. 5,

pp. 198-212). ACM.

[3] Dayal, S. (2008). Characterizing HEC storage systems at rest. Parallel
Data Lab, Carnegie Mellon University, Pittsburgh, PA, USA. CMU-

PDL-08-109

[4] Downey, A. B. (2001). The structural cause of file size distributions.

InModeling, Analysis and Simulation of Computer and
Telecommunication Systems, 2001. Proceedings. Ninth International

Symposium on (pp. 361-370). IEEE.

[5] Evans, K. M., & Kuenning, G. H. (2002, July). A study of irregularities
in file-size distributions. In Proceedings of the 2002 International

Symposium on Performance Evaluation of Computer and
Telecommunication Systems (SPECTS).

[6] fsstats, http://www.pdsi-scidac.org/fsstats/

[7] Mullender, S. J., & Tanenbaum, A. S. (1984). Immediate files. Software:

Practice and Experience, 14(4), 365-368.

[8] Ousterhout, J. K., Da Costa, H., Harrison, D., Kunze, J. A., Kupfer, M.,
& Thompson, J. G. (1985). A trace-driven analysis of the UNIX 4.2

BSD file system (Vol. 19, No. 5, pp. 15-24). ACM.

[9] SFS2008. www.spec.org/sfs2008/

[10] Tanenbaum, A. S., Herder, J. N., & Bos, H. (2006). File size distribution

on unix systems-then and now. Operating systems review, 40(1), 100.

[11] Welch, B., Unangst, M., Abbasi, Z., Gibson, G., Mueller, B., Small, J.,
... & Zhou, B. (2008, February). Scalable performance of the Panasas

parallel file system. In FAST (Vol. 8, pp. 1-17).

