
Cache, Cache Everywhere, Does The Miss Rate Ever Shrink
Cache, Cache Everywhere, Flushing All Hits Down The Sink

Raja Appuswamy, David C. van Moolenbroek,
Andew S. Tanenbaum

Vrije Univeristeit, Amsterdam

 Assumptions
 Memory is always volatile
 |RAM| << |Flash|
▪ Cost/GB (RAM) >> Cost/GB (Flash)
▪ Cheaper to provision more flash

 Design Decision
 Independently managed layers
 Inclusive caching hierarchy (RAM/SSD)

 DRAM price free fall (2011)
 Tablet love, Windows Peak, Recession…
 STEC ZEUSIOPS 200GB 2.5IN SAS MLC = $1,260.591

 192GB using 16 GB DDR3 SDRAM = $1,3002

 Multi-core & more memory
 32-core, 100 GB servers now common place
 RAMCloud, memcached widely used

 Volatility is subjective
 Storage servers equipped with redundant PSUs
 Enough residual power to checkpoint/restart

 Promise of Storage Class Memories
 Scale, nonvolatile storage with performance ~ RAM

[1] http://www.kernelsoftware.com/products/catalog/stec.html , [2] www.newegg.com

Presenter
Presentation Notes
http://www.kernelsoftware.com/products/catalog/stec.html

http://www.kernelsoftware.com/products/catalog/stec.html [2�

 Revisiting Assumptions
Memory is always volatile
Density (Flash) >> Density (RAM)

 Properties of next-generation caches
 Multilevel and physical collocated
 All levels are persistent
 All levels of comparable density

 Inclusive caching reduces cache
effectiveness
 Same data cached in both RAM and SSD

 Well known problem in distributed caching
 Redundancy between client/server caches

 Admission only into client cache on miss
 Inclusive allocates in both server/client

 Admission into server cache on client

eviction a.k.a “Demotions”

 Data removed from server on L2 hit
 Inclusive caching classifies data as MRU

 However, maybe hard to realize
 Need to unify management of physically

distributed caches

 Client = RAM, Server = SSD
 Easy to implement centralized caching

 Demotions are cheap (no network)
▪ But not free as each demotion = SSD write

 Second level is flash based
▪ SSD write endurance must be addressed

 All levels are persistent
▪ How do we build an exclusive read/write cache?

T1

T2

B1

B2

T1

T2

B1

B2

 Inclusive

M
R

U
 T

1

M
R

U
 T

2

LR
U

 T
1

LR
U

 T
2

B1

B2

 Exclusive

 Trace-driven simulator
 Block-level, ARC simulation
▪ Supports Inclusive (IARC), and Exclusive ARC

(UARC)

 Measures hit rate at each level, execution time
Virtual Execution Time = |SSD read hits|×TSSDR+

|SSD demotions|×TSSDW+
|read misses|×THDD+

|flushes|×THDD

Trace
I/O

(Millions)
Read
(%)

Write
(%)

R-WSS
(GB)

RW-WSS
(GB)

Financial1 36 15 85 1.11 3.66

Financial2 18 78 22 0.82 1.17

proj0 40 6 94 1.76 3.16

src10 406 47 53 120.76 121.26

src22 17 36 64 20.31 20.31

ts0 4 26 74 0.5 0.91

wdev0 3 27 73 0.2 0.53

web3 0.5 60 40 0.22 0.59

0
0.5

1
1.5

2
2.5

3
3.5

4

1%
2%
4%
8%
16%
32%
64%

Exclusive caching improves cache effectiveness

Inclusive caching wins

Exclusive caching wins

0
0.2
0.4
0.6
0.8

1
1.2

1%
2%
4%
8%
16%
32%
64%

Exclusive caching wins

Inclusive caching wins

Exclusive caching improves performance

0
500

1000
1500
2000
2500
3000
3500

La
te

nc
y

(u
se

c)

1%
2%
4%
8%
16%
32%
64%

Exclusive caching enables cost/performance/lifetime tradeoffs

Trace 1% 2% 4% 8% 16% 32% 64%

Financial1 - - - - - - -

Financial2 - - 10% (1.031) 10% (1.0216) 10% (1.0404) 20% (1.0543) 20% (1.0311)

hm0 - 20% (1.0132) - - - - -

proj0 10% (1.0144) 10% (1.0113) - - - - 30% (1.0378)

src10 - - - - - - -

src22 - - - - - - -

web3 - - - - - 10% (1.0111) 40% (1.0189)

 In most cases, UARC is always better
 “-” entries in the table

Exclusive caching is effective even at low RAM/SSD ratios

 Exclusive caching is worth the effort
 Improves performance
 Can reduce CAPEX by using cheap SSDs
 Is beneficial across most RAM/SSD size ratios

 But
 How do we deal with dirty data?
 How do we deal with poor lifetime of cheap

SSDs?

 Three approaches in designing a r/w cache
 No special handling of dirty data
 Partition cache into separate clean/dirty regions
 Make demand-based algorithms write aware

 Default UARC
 Clean and dirty managed data together

 P-UARC
 Two independent, statically-sized UARC partitions

 Cost-Aware UARC (CA-UARC)
 Adapting ARC algorithm to be cost aware

0
0.2
0.4
0.6
0.8

1
1.2

1%
2%
4%
8%
16%
32%
64%

Exclusion offers substantial benefits in a read-write cache

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6

1%
2%
4%
8%
16%
32%
64%

Partitioning the cache into read/write regions offers no improvement

 Classify blocks based on I/O cost
 Need an oracle to predict next access

Level Status Next Access I/O Cost

RAM Clean R
 2 (1 SSD W + 1

HDD/SSD R)

RAM Clean W 1 (1 SSD W)

RAM Dirty R
 2 (1 SSD W + 1

HDD/SSD R)

RAM Dirty W 1 (1 SSD W)

SSD Clean R 1 (1 HDD R)

SSD Clean W 0

SSD Dirty R 2 (1 HDD W + 1 HDD R)

SSD Dirty W 1 (1 HDD W)

 Always evict block with least I/O cost
 ARC picks the target list (T1 or T2)
 I/O cost determines the target block

 Performance dependent on predictor
 Exec. time drops (27%) with ideal predictor
 No improvement with online predictors
▪ Poor prediction => evicting “hot” but low-cost data

 Exclusively caching dirty data improves
performance

 Cost-aware demand-based algorithms win
 Partitioning fails to improve performance

 Sieving accesses to improve lifetime
 Per-block access count tracking
 SSD allocation iff access count > sieve threshold

 Simulated both SE-IARC and SE-UARC
 What is the worst-case performance impact?
 Does SE-UARC improve lifetime over SE-IARC?
 How does sieving interact with cost awareness?

(details in the paper)

0
0.5

1
1.5

2
2.5

3
3.5

1%
2%
4%
6%
16%
32%
64%

In several cases, sieving improves lifetime with negligible perf. impact

0.0000001
0.000001

0.00001
0.0001

0.001
0.01

0.1
1

1%
2%
4%
8%
16%
32%
64%

Exclusivity improves SSD lifetime by several orders of magnitude

 Sieving SSD allocations is useful
 Even a highly selective admission policy has

only little performance impact

 Exclusive caching improves SSD lifetime
 Hot data cached in RAM not allocated in SSD

 Persistent, terabyte-sized, multilevel,
direct-attached caches
 Exclusion MUST be a first-class design factor

 Exclusion in the storage stack
 Can we extend FS-block level interface?
 Do we implement new file systems?

EOF

	On Exclusivity in Multilevel, Hybrid Caches
	Traditional Flash Cache
	Changes in the �Hardware Landscape (1)
	Changes in the �Hardware Landscape (2)
	Traditional Caching With Modern Hardware
	Exclusive Caching: Primer
	Exclusivity in �Direct-attached Caches
	Inclusive vs Exclusive: Boundaries
	Simulation Environment
	Traces
	Is Exclusive Caching Beneficial?� Normalized (wrt IARC) UARC Hit Rate
	Is Exclusive Caching Beneficial?�Normalized UARC Execution Time
	SSD Performance/Cost Tradeoff�SSD Write Performance Impact
	RAM/SSD Size Sensitivity
	Summary
	Dealing With Dirty Data
	Default-UARC R/W Cache�Normalized Execution Time
	P-UARC R/W Cache�Normalized Execution Time
	CA-UARC (1)
	CA-UARC (2)
	Summary
	Dealing With Lifetime
	Performance Impact Of Sieving�Normalized Exec. Time At Highest Threshold
	SE-UARC vs SE-IARC�Normalized SE-UARC Allocation Count
	Summary
	Conclusion
	Slide Number 32

