
Cache, Cache Everywhere, Does The Miss Rate Ever Shrink
Cache, Cache Everywhere, Flushing All Hits Down The Sink

Raja Appuswamy, David C. van Moolenbroek,
Andew S. Tanenbaum

Vrije Univeristeit, Amsterdam

 Assumptions
 Memory is always volatile
 |RAM| << |Flash|
▪ Cost/GB (RAM) >> Cost/GB (Flash)
▪ Cheaper to provision more flash

 Design Decision
 Independently managed layers
 Inclusive caching hierarchy (RAM/SSD)

 DRAM price free fall (2011)
 Tablet love, Windows Peak, Recession…
 STEC ZEUSIOPS 200GB 2.5IN SAS MLC = $1,260.591

 192GB using 16 GB DDR3 SDRAM = $1,3002

 Multi-core & more memory
 32-core, 100 GB servers now common place
 RAMCloud, memcached widely used

 Volatility is subjective
 Storage servers equipped with redundant PSUs
 Enough residual power to checkpoint/restart

 Promise of Storage Class Memories
 Scale, nonvolatile storage with performance ~ RAM

[1] http://www.kernelsoftware.com/products/catalog/stec.html , [2] www.newegg.com

Presenter
Presentation Notes
http://www.kernelsoftware.com/products/catalog/stec.html

http://www.kernelsoftware.com/products/catalog/stec.html [2�

 Revisiting Assumptions
Memory is always volatile
Density (Flash) >> Density (RAM)

 Properties of next-generation caches
 Multilevel and physical collocated
 All levels are persistent
 All levels of comparable density

 Inclusive caching reduces cache
effectiveness
 Same data cached in both RAM and SSD

 Well known problem in distributed caching
 Redundancy between client/server caches

 Admission only into client cache on miss
 Inclusive allocates in both server/client

 Admission into server cache on client

eviction a.k.a “Demotions”

 Data removed from server on L2 hit
 Inclusive caching classifies data as MRU

 However, maybe hard to realize
 Need to unify management of physically

distributed caches

 Client = RAM, Server = SSD
 Easy to implement centralized caching

 Demotions are cheap (no network)
▪ But not free as each demotion = SSD write

 Second level is flash based
▪ SSD write endurance must be addressed

 All levels are persistent
▪ How do we build an exclusive read/write cache?

T1

T2

B1

B2

T1

T2

B1

B2

 Inclusive

M
R

U
 T

1

M
R

U
 T

2

LR
U

 T
1

LR
U

 T
2

B1

B2

 Exclusive

 Trace-driven simulator
 Block-level, ARC simulation
▪ Supports Inclusive (IARC), and Exclusive ARC

(UARC)

 Measures hit rate at each level, execution time
Virtual Execution Time = |SSD read hits|×TSSDR+

|SSD demotions|×TSSDW+
|read misses|×THDD+

|flushes|×THDD

Trace
I/O

(Millions)
Read
(%)

Write
(%)

R-WSS
(GB)

RW-WSS
(GB)

Financial1 36 15 85 1.11 3.66

Financial2 18 78 22 0.82 1.17

proj0 40 6 94 1.76 3.16

src10 406 47 53 120.76 121.26

src22 17 36 64 20.31 20.31

ts0 4 26 74 0.5 0.91

wdev0 3 27 73 0.2 0.53

web3 0.5 60 40 0.22 0.59

0
0.5

1
1.5

2
2.5

3
3.5

4

1%
2%
4%
8%
16%
32%
64%

Exclusive caching improves cache effectiveness

Inclusive caching wins

Exclusive caching wins

0
0.2
0.4
0.6
0.8

1
1.2

1%
2%
4%
8%
16%
32%
64%

Exclusive caching wins

Inclusive caching wins

Exclusive caching improves performance

0
500

1000
1500
2000
2500
3000
3500

La
te

nc
y

(u
se

c)

1%
2%
4%
8%
16%
32%
64%

Exclusive caching enables cost/performance/lifetime tradeoffs

Trace 1% 2% 4% 8% 16% 32% 64%

Financial1 - - - - - - -

Financial2 - - 10% (1.031) 10% (1.0216) 10% (1.0404) 20% (1.0543) 20% (1.0311)

hm0 - 20% (1.0132) - - - - -

proj0 10% (1.0144) 10% (1.0113) - - - - 30% (1.0378)

src10 - - - - - - -

src22 - - - - - - -

web3 - - - - - 10% (1.0111) 40% (1.0189)

 In most cases, UARC is always better
 “-” entries in the table

Exclusive caching is effective even at low RAM/SSD ratios

 Exclusive caching is worth the effort
 Improves performance
 Can reduce CAPEX by using cheap SSDs
 Is beneficial across most RAM/SSD size ratios

 But
 How do we deal with dirty data?
 How do we deal with poor lifetime of cheap

SSDs?

 Three approaches in designing a r/w cache
 No special handling of dirty data
 Partition cache into separate clean/dirty regions
 Make demand-based algorithms write aware

 Default UARC
 Clean and dirty managed data together

 P-UARC
 Two independent, statically-sized UARC partitions

 Cost-Aware UARC (CA-UARC)
 Adapting ARC algorithm to be cost aware

0
0.2
0.4
0.6
0.8

1
1.2

1%
2%
4%
8%
16%
32%
64%

Exclusion offers substantial benefits in a read-write cache

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6

1%
2%
4%
8%
16%
32%
64%

Partitioning the cache into read/write regions offers no improvement

 Classify blocks based on I/O cost
 Need an oracle to predict next access

Level Status Next Access I/O Cost

RAM Clean R
 2 (1 SSD W + 1

HDD/SSD R)

RAM Clean W 1 (1 SSD W)

RAM Dirty R
 2 (1 SSD W + 1

HDD/SSD R)

RAM Dirty W 1 (1 SSD W)

SSD Clean R 1 (1 HDD R)

SSD Clean W 0

SSD Dirty R 2 (1 HDD W + 1 HDD R)

SSD Dirty W 1 (1 HDD W)

 Always evict block with least I/O cost
 ARC picks the target list (T1 or T2)
 I/O cost determines the target block

 Performance dependent on predictor
 Exec. time drops (27%) with ideal predictor
 No improvement with online predictors
▪ Poor prediction => evicting “hot” but low-cost data

 Exclusively caching dirty data improves
performance

 Cost-aware demand-based algorithms win
 Partitioning fails to improve performance

 Sieving accesses to improve lifetime
 Per-block access count tracking
 SSD allocation iff access count > sieve threshold

 Simulated both SE-IARC and SE-UARC
 What is the worst-case performance impact?
 Does SE-UARC improve lifetime over SE-IARC?
 How does sieving interact with cost awareness?

(details in the paper)

0
0.5

1
1.5

2
2.5

3
3.5

1%
2%
4%
6%
16%
32%
64%

In several cases, sieving improves lifetime with negligible perf. impact

0.0000001
0.000001

0.00001
0.0001

0.001
0.01

0.1
1

1%
2%
4%
8%
16%
32%
64%

Exclusivity improves SSD lifetime by several orders of magnitude

 Sieving SSD allocations is useful
 Even a highly selective admission policy has

only little performance impact

 Exclusive caching improves SSD lifetime
 Hot data cached in RAM not allocated in SSD

 Persistent, terabyte-sized, multilevel,
direct-attached caches
 Exclusion MUST be a first-class design factor

 Exclusion in the storage stack
 Can we extend FS-block level interface?
 Do we implement new file systems?

EOF

	On Exclusivity in Multilevel, Hybrid Caches
	Traditional Flash Cache
	Changes in the �Hardware Landscape (1)
	Changes in the �Hardware Landscape (2)
	Traditional Caching With Modern Hardware
	Exclusive Caching: Primer
	Exclusivity in �Direct-attached Caches
	Inclusive vs Exclusive: Boundaries
	Simulation Environment
	Traces
	Is Exclusive Caching Beneficial?� Normalized (wrt IARC) UARC Hit Rate
	Is Exclusive Caching Beneficial?�Normalized UARC Execution Time
	SSD Performance/Cost Tradeoff�SSD Write Performance Impact
	RAM/SSD Size Sensitivity
	Summary
	Dealing With Dirty Data
	Default-UARC R/W Cache�Normalized Execution Time
	P-UARC R/W Cache�Normalized Execution Time
	CA-UARC (1)
	CA-UARC (2)
	Summary
	Dealing With Lifetime
	Performance Impact Of Sieving�Normalized Exec. Time At Highest Threshold
	SE-UARC vs SE-IARC�Normalized SE-UARC Allocation Count
	Summary
	Conclusion
	Slide Number 32

