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 Assumptions 
 Memory is always volatile 
 |RAM| << |Flash| 
▪ Cost/GB (RAM) >> Cost/GB (Flash) 
▪ Cheaper to provision more flash 
 

 Design Decision 
 Independently managed layers 
 Inclusive caching hierarchy (RAM/SSD) 

 
 



 DRAM price free fall (2011) 
 Tablet love, Windows Peak, Recession… 
 STEC ZEUSIOPS 200GB 2.5IN SAS MLC = $1,260.591 

 192GB using 16 GB DDR3 SDRAM = $1,3002  
 

 Multi-core & more memory 
 32-core, 100 GB servers now common place 
 RAMCloud, memcached widely used 

 
 Volatility is subjective 
 Storage servers equipped with redundant PSUs 
 Enough residual power to checkpoint/restart 
 

 Promise of Storage Class Memories 
 Scale, nonvolatile storage with performance ~ RAM 

[1] http://www.kernelsoftware.com/products/catalog/stec.html , [2] www.newegg.com 
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 Revisiting Assumptions 
Memory is always volatile 
Density (Flash) >> Density (RAM) 
 

 Properties of next-generation caches 
 Multilevel and physical collocated 
 All levels are persistent 
 All levels of comparable density 



 Inclusive caching reduces cache 
effectiveness 
 Same data cached in both RAM and SSD 
 

 Well known problem in distributed caching 
 Redundancy between client/server caches 



 Admission only into client cache on miss 
 Inclusive allocates in both server/client 

 
 Admission into server cache on client 

eviction a.k.a “Demotions” 
 

 Data removed from server on L2 hit 
 Inclusive caching classifies data as MRU 
 

 However, maybe hard to realize 
 Need to unify management of physically 

distributed caches 
 



 Client = RAM, Server = SSD 
 Easy to implement centralized caching 

 
 Demotions are cheap (no network) 
▪ But not free as each demotion = SSD write 
 

 Second level is flash based 
▪ SSD write endurance must be addressed 
 

 All levels are persistent 
▪ How do we build an exclusive read/write cache? 
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 Trace-driven simulator 
 Block-level, ARC simulation 
▪ Supports Inclusive (IARC), and Exclusive ARC 

(UARC) 
 

 Measures hit rate at each level, execution time 
Virtual Execution Time = |SSD read hits|×TSSDR+ 

|SSD demotions|×TSSDW+  
|read misses|×THDD+ 

|flushes|×THDD 



Trace 
I/O 

(Millions) 
Read  
(%) 

Write  
(%) 

R-WSS 
(GB) 

RW-WSS 
(GB) 

Financial1 36 15 85 1.11 3.66 

Financial2 18 78 22 0.82 1.17 

proj0 40 6 94 1.76 3.16 

src10 406 47 53 120.76 121.26 

src22 17 36 64 20.31 20.31 

ts0 4 26 74 0.5 0.91 

wdev0 3 27 73 0.2 0.53 

web3 0.5 60 40 0.22 0.59 
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Exclusive caching improves cache effectiveness 

Inclusive caching wins 

Exclusive caching wins 
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Exclusive caching wins 

Inclusive caching wins 

Exclusive caching improves performance 
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Exclusive caching enables cost/performance/lifetime tradeoffs 



Trace 1% 2% 4% 8% 16% 32% 64% 

Financial1   -   -   -   -   -   -   - 

Financial2   -   -   10% (1.031)   10% (1.0216)   10% (1.0404)   20% (1.0543)   20% (1.0311) 

hm0   -   20% (1.0132)   -   -   -   -   - 

proj0   10% (1.0144)   10% (1.0113)   -   -   -   -   30% (1.0378) 

src10   -   -   -   -   -   -   - 

src22   -   -   -   -   -   -   - 

web3   -   -   -   -   -   10% (1.0111)   40% (1.0189) 

 In most cases, UARC is always better  
 “-” entries in the table 

Exclusive caching is effective even at low RAM/SSD ratios 



 Exclusive caching is worth the effort 
 Improves performance 
 Can reduce CAPEX by using cheap SSDs 
 Is beneficial across most RAM/SSD size ratios 
 

 But 
 How do we deal with dirty data? 
 How do we deal with poor lifetime of cheap 

SSDs? 



 Three approaches in designing a r/w cache 
 No special handling of dirty data 
 Partition cache into separate clean/dirty regions 
 Make demand-based algorithms write aware 

 
 Default UARC 
 Clean and dirty managed data together 

 
 P-UARC 
 Two independent, statically-sized UARC partitions 

 
 Cost-Aware UARC (CA-UARC) 
 Adapting ARC algorithm to be cost aware 
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Exclusion offers substantial benefits in a read-write cache 
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Partitioning the cache into read/write regions offers no improvement 



 Classify blocks based on I/O cost 
 Need an oracle to predict next access 

Level Status Next Access I/O Cost 

RAM   Clean   R  
 2 (1 SSD W + 1 

HDD/SSD R)  

RAM   Clean   W   1 (1 SSD W)  

RAM   Dirty   R  
 2 (1 SSD W + 1 

HDD/SSD R)  

RAM   Dirty   W   1 (1 SSD W)  

SSD   Clean   R   1 (1 HDD R)  

SSD   Clean   W  0 

SSD   Dirty   R   2 (1 HDD W + 1 HDD R)  

SSD   Dirty   W   1 (1 HDD W)  



 Always evict block with least I/O cost 
 ARC picks the target list (T1 or T2) 
  I/O cost determines the target block 
 

 Performance dependent on predictor 
 Exec. time drops (27%) with ideal predictor 
 No improvement with online predictors 
▪ Poor prediction => evicting “hot” but low-cost data 



 Exclusively caching dirty data improves 
performance 

 
 Cost-aware demand-based algorithms win 
 Partitioning fails to improve performance 

 



 Sieving accesses to improve lifetime 
 Per-block access count tracking 
 SSD allocation iff access count > sieve threshold 

 
 Simulated both SE-IARC and SE-UARC 
 What is the worst-case performance impact? 
 Does SE-UARC improve lifetime over SE-IARC? 
 How does sieving interact with cost awareness? 

(details in the paper) 
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In several cases, sieving improves lifetime with negligible perf. impact 
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Exclusivity improves SSD lifetime by several orders of magnitude 



 Sieving SSD allocations is useful 
 Even a highly selective admission policy has 

only little performance impact 
 

 Exclusive caching improves SSD lifetime 
 Hot data cached in RAM not allocated in SSD 



 Persistent, terabyte-sized, multilevel, 
direct-attached caches 
 Exclusion MUST be a first-class design factor 

 
 Exclusion in the storage stack 
 Can we extend FS-block level interface? 
 Do we implement new file systems? 
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