Cache, Cache Everywhere, Does The Miss Rate Ever Shrink
Cache, Cache Everywhere, Flushing All Hits Down The Sink

On Exclusivity in Multilevel,
Hybrid Caches

Raja Appuswamy, David C. van Moolenbroek,
Andew S. Tanenbaum

Vrije Univeristeit, Amsterdam



Traditional Flash Cache

= Assumptions

= Memory is always volatile

= |IRAM| << |Flash|
= Cost/GB (RAM) >> Cost/GB (Flash)
= Cheaper to provision more flash

= Design Decision
= Independently managed layers
= [nclusive caching hierarchy (RAM/SSD)



) Changes in the
Hardware Landscape (1)

= DRAM price free fall (2011)
= Tablet love, Windows Peak, Recession...
= STEC ZEUSIOPS 200GB 2.5IN SAS MLC = $1,260.591
= 192GB using 16 GB DDR3 SDRAM = $1,3002

= Multi-core & more memory
= 32-core, 100 GB servers now common place
= RAMCloud, memcached widely used

= Volatility is subjective
= Storage servers equipped with redundant PSUs
= Enough residual power to checkpoint/restart

= Promise of Storage Class Memories
= Scale, nonvolatile storage with performance ~ RAM

[1] , [2] www.newegg.com


Presenter
Presentation Notes
http://www.kernelsoftware.com/products/catalog/stec.html

http://www.kernelsoftware.com/products/catalog/stec.html [2�

Changes in the
Hardware Landscape (2)

= Revisiting Assumptions

= Properties of next-generation caches
= Multilevel and physical collocated
= All levels are persistent
= All levels of comparable density




Traditional Caching With
Modern Hardware

= Inclusive caching reduces cache
effectiveness

= Same data cached in both RAM and SSD

= Well known problem in distributed caching
= Redundancy between client/server caches



Exclusive Caching: Primer

= Admission only into client cache on miss
= Inclusive allocates in both server/client

= Admission into server cache on client
eviction a.k.a “Demotions”

= Data removed from server on L2 hit
= |nclusive caching classifies data as MRU

= However, maybe hard to realize

= Need to unify management of physically
distributed caches



Exclusivity in
Direct-attached Caches

= Client = RAM, Server = SSD
= Easy to implement centralized caching

= Demotions are cheap (no network)
= But not free as each demotion = SSD write

= Second level is flash based
= SSD write endurance must be addressed

= All levels are persistent
= How do we build an exclusive read/write cache?



Inclusive vs Exclusive: Boundaries

Inclusive Exclusive

MRU T1
MRU T2

LRUT1
LRU T2

Bl
B2




Simulation Environment

= Trace-driven simulator

= Block-level, ARC simulation

= Supports Inclusive (IARC), and Exclusive ARC
(UARC)

= Measures hit rate at each level, execution time
Virtual Execution Time = |SSD read hits|X Tt
|ISSD demotions|X Tt

lread misses|xT..+t
Iflushes|XT...



Financiall

Financial2

projo

srcl0

src22
tsO

wdev0

web3




Is Exclusive Caching Beneficial?
Normalized (wrt IARC) UARC Hit Rate

© Ecisvecading e " 1%
2.5 -

i m 205
1.5 - I I
1 _E-III__I llll Il . -l M0 = N

m 4%
0 “ M CANNAAR CDARRAR LLRRER “ " 'I “
N

9 Q ‘| Q
\ %
SHFORFCE

o
o1
|

e @ NS <<>
& «®

Exclusive caching improves cache effectiveness



Is Exclusive Caching Beneficial?
Normalized UARC Execution Time

1.2

AL

0.8 +

0.6 +

0.4 +

0.2 +

0 - .
L N 4 & & & N 9
\O\ © K& X9 60 éo (:){b (:){b
Q %) %) QD N\ .(\(OQ ‘Q(bo

2 2

Exclusive caching improves performance



SSD Performance/Cost Tradeoff
SSD Write Performance Impact

3500
~3000
3 2500 = 1%
5’;2000 m 20
2 1500 m 4%
% 1000 ‘ é m 8%
— 500 e Ih |.—| =i " 16%
O -jlummens i T 3004
. \) Q ‘b N 0
Q\O\ éc,'\ é&‘b 2 @604 © (0(\0{3 (000{3% " 64%
<& s

Exclusive caching enables cost/performance/lifetime tradeoffs



RAM/SSD Size Sensitivity

Financiall

Financial2 - - 10% (1.031)  10% (1.0216) 10% (1.0404) 20% (1.0543) 20% (1.0311)

hmo - 20% (1.0132)

projo 10% (1.0144) 10% (1.0113) - - - - 30% (1.0378)
srcl0

src22

web3 - - - - - 10% (1.0111)  40% (1.0189)

= In most cases, UARC Is always better
= “-” entries Iin the table

Exclusive caching is effective even at low RAM/SSD ratios



Summary

= Exclusive caching is worth the effort
= [mproves performance
= Can reduce CAPEX by using cheap SSDs
= |s beneficial across most RAM/SSD size ratios

= But
= How do we deal with dirty data?

= How do we deal with poor lifetime of cheap
SSDs?



Dealing With Dirty Data

= Three approaches in designing a r/w cache
= No special handling of dirty data
= Partition cache into separate clean/dirty regions
= Make demand-based algorithms write aware

= Default UARC
= Clean and dirty managed data together

= P-UARC
= Two independent, statically-sized UARC partitions

= Cost-Aware UARC (CA-UARC)
= Adapting ARC algorithm to be cost aware



Default-UARC R/W Cache

Normalized Execution Time

1.2
1 — | - ._.
0.8 il — - ik - = 2%
m 2%
0.6 - 8t n 10
0.4 -l B =80
0.2 + — — — - m16%
o -MNMNND FNRMIND FRRMEMD FRMM - W32%
P NEEP\UE Q‘b M 64%
foﬁ\o\(b @00\@ $ é é\ € §>@ ¥
.Q .Q
<<

Exclusion offers substantial benefits in a read-write cache



P-UARC R/W Cache

Normalized Execution Time

1.6
1.4
1.2

1
0.8
0.6
0.4
0.2

0

Partitioning the cache into read/write regions offers no improvement



CA-UARC (1)

= Classify blocks based on I/O cost
= Need an oracle to predict next access

2(1SSDW +1
HDD/SSD R)

1 (1 SSD W)
2(1SSDW+1
HDD/SSD R)
1 (1 SSD W)

1 (1 HDD R)

0

2 (1 HDD W + 1 HDD R)

1 (1 HDD W)



CA-UARC (2)

= Always evict block with least 1/O cost
= ARC picks the target list (T1 or T2)
= |/O cost determines the target block

= Performance dependent on predictor
= Exec. time drops (27%) with ideal predictor

= No iImprovement with online predictors
= Poor prediction => evicting “hot” but low-cost data



Summary

= Exclusively caching dirty data improves
performance

= Cost-aware demand-based algorithms win
= Partitioning fails to improve performance



Dealing With Lifetime

= Sieving accesses to improve lifetime
= Per-block access count tracking
= SSD allocation iff access count > sieve threshold

= Simulated both SE-IARC and SE-UARC
= What is the worst-case performance impact?
= Does SE-UARC improve lifetime over SE-IARC?

= How does sieving interact with cost awareness?
(detalls in the paper)



Performance Impact Of Sieving
Normalized Exec. Time At Highest Threshold

3.5
3
2.5 " 1%
2 m 2%
1.5 m 4%

m 6%

m16%
m32%
m64%

In several cases, sieving improves lifetime with negligible perf. impact



SE-UARC vs SE-IARC

Normalized SE-UARC Allocation Count

0.0000001

0.000001
0.00001

0.0001

0.001

0.01 -
0.1 l
1 | i

N 9 O N9 QO QO OOU9H
N LA N O W @ s 0
A
AR

" 1%
" 2%
m 4%
m 8%
m16%
m32%
® 64%

Exclusivity improves SSD lifetime by several orders of magnitude



Summary

= Sleving SSD allocations Is useful

= Even a highly selective admission policy has
only little performance impact

= Exclusive caching improves SSD lifetime
= Hot data cached in RAM not allocated in SSD



Conclusion

= Persistent, terabyte-sized, multilevel,
direct-attached caches

= Exclusion MUST be a first-class design factor

= Exclusion in the storage stack
= Can we extend FS-block level interface?
= Do we implement new file systems?



EOF



	On Exclusivity in Multilevel, Hybrid Caches
	Traditional Flash Cache
	Changes in the �Hardware Landscape (1)
	Changes in the �Hardware Landscape (2)
	Traditional Caching With Modern Hardware
	Exclusive Caching: Primer
	Exclusivity in �Direct-attached Caches
	Inclusive vs Exclusive: Boundaries
	Simulation Environment
	Traces
	Is Exclusive Caching Beneficial?� Normalized (wrt IARC) UARC Hit Rate
	Is Exclusive Caching Beneficial?�Normalized UARC Execution Time
	SSD Performance/Cost Tradeoff�SSD Write Performance Impact
	RAM/SSD Size Sensitivity
	Summary
	Dealing With Dirty Data
	Default-UARC R/W Cache�Normalized Execution Time
	P-UARC R/W Cache�Normalized Execution Time
	CA-UARC (1)
	CA-UARC (2)
	Summary
	Dealing With Lifetime
	Performance Impact Of Sieving�Normalized  Exec. Time At Highest Threshold
	SE-UARC vs SE-IARC�Normalized SE-UARC Allocation Count
	Summary
	Conclusion
	Slide Number 32

