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Traditional Flash Cache

= Assumptions

= Memory is always volatile

= |IRAM| << |Flash|
= Cost/GB (RAM) >> Cost/GB (Flash)
= Cheaper to provision more flash

= Design Decision
= Independently managed layers
= [nclusive caching hierarchy (RAM/SSD)



) Changes in the
Hardware Landscape (1)

= DRAM price free fall (2011)
= Tablet love, Windows Peak, Recession...
= STEC ZEUSIOPS 200GB 2.5IN SAS MLC = $1,260.591
= 192GB using 16 GB DDR3 SDRAM = $1,3002

= Multi-core & more memory
= 32-core, 100 GB servers now common place
= RAMCloud, memcached widely used

= Volatility is subjective
= Storage servers equipped with redundant PSUs
= Enough residual power to checkpoint/restart

= Promise of Storage Class Memories
= Scale, nonvolatile storage with performance ~ RAM

[1] , [2] www.newegg.com


Presenter
Presentation Notes
http://www.kernelsoftware.com/products/catalog/stec.html

http://www.kernelsoftware.com/products/catalog/stec.html [2�

Changes in the
Hardware Landscape (2)

= Revisiting Assumptions

= Properties of next-generation caches
= Multilevel and physical collocated
= All levels are persistent
= All levels of comparable density




Traditional Caching With
Modern Hardware

= Inclusive caching reduces cache
effectiveness

= Same data cached in both RAM and SSD

= Well known problem in distributed caching
= Redundancy between client/server caches



Exclusive Caching: Primer

= Admission only into client cache on miss
= Inclusive allocates in both server/client

= Admission into server cache on client
eviction a.k.a “Demotions”

= Data removed from server on L2 hit
= |nclusive caching classifies data as MRU

= However, maybe hard to realize

= Need to unify management of physically
distributed caches



Exclusivity in
Direct-attached Caches

= Client = RAM, Server = SSD
= Easy to implement centralized caching

= Demotions are cheap (no network)
= But not free as each demotion = SSD write

= Second level is flash based
= SSD write endurance must be addressed

= All levels are persistent
= How do we build an exclusive read/write cache?



Inclusive vs Exclusive: Boundaries
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Simulation Environment

= Trace-driven simulator

= Block-level, ARC simulation

= Supports Inclusive (IARC), and Exclusive ARC
(UARC)

= Measures hit rate at each level, execution time
Virtual Execution Time = |SSD read hits|X Tt
|ISSD demotions|X Tt

lread misses|xT..+t
Iflushes|XT...
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Is Exclusive Caching Beneficial?
Normalized (wrt IARC) UARC Hit Rate
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Exclusive caching improves cache effectiveness



Is Exclusive Caching Beneficial?
Normalized UARC Execution Time
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Exclusive caching improves performance



SSD Performance/Cost Tradeoff
SSD Write Performance Impact
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Exclusive caching enables cost/performance/lifetime tradeoffs



RAM/SSD Size Sensitivity

Financiall

Financial2 - - 10% (1.031)  10% (1.0216) 10% (1.0404) 20% (1.0543) 20% (1.0311)

hmo - 20% (1.0132)

projo 10% (1.0144) 10% (1.0113) - - - - 30% (1.0378)
srcl0

src22

web3 - - - - - 10% (1.0111)  40% (1.0189)

= In most cases, UARC Is always better
= “-” entries Iin the table

Exclusive caching is effective even at low RAM/SSD ratios



Summary

= Exclusive caching is worth the effort
= [mproves performance
= Can reduce CAPEX by using cheap SSDs
= |s beneficial across most RAM/SSD size ratios

= But
= How do we deal with dirty data?

= How do we deal with poor lifetime of cheap
SSDs?



Dealing With Dirty Data

= Three approaches in designing a r/w cache
= No special handling of dirty data
= Partition cache into separate clean/dirty regions
= Make demand-based algorithms write aware

= Default UARC
= Clean and dirty managed data together

= P-UARC
= Two independent, statically-sized UARC partitions

= Cost-Aware UARC (CA-UARC)
= Adapting ARC algorithm to be cost aware



Default-UARC R/W Cache

Normalized Execution Time
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Exclusion offers substantial benefits in a read-write cache



P-UARC R/W Cache

Normalized Execution Time
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Partitioning the cache into read/write regions offers no improvement



CA-UARC (1)

= Classify blocks based on I/O cost
= Need an oracle to predict next access

2(1SSDW +1
HDD/SSD R)

1 (1 SSD W)
2(1SSDW+1
HDD/SSD R)
1 (1 SSD W)

1 (1 HDD R)

0

2 (1 HDD W + 1 HDD R)

1 (1 HDD W)



CA-UARC (2)

= Always evict block with least 1/O cost
= ARC picks the target list (T1 or T2)
= |/O cost determines the target block

= Performance dependent on predictor
= Exec. time drops (27%) with ideal predictor

= No iImprovement with online predictors
= Poor prediction => evicting “hot” but low-cost data



Summary

= Exclusively caching dirty data improves
performance

= Cost-aware demand-based algorithms win
= Partitioning fails to improve performance



Dealing With Lifetime

= Sieving accesses to improve lifetime
= Per-block access count tracking
= SSD allocation iff access count > sieve threshold

= Simulated both SE-IARC and SE-UARC
= What is the worst-case performance impact?
= Does SE-UARC improve lifetime over SE-IARC?

= How does sieving interact with cost awareness?
(detalls in the paper)



Performance Impact Of Sieving
Normalized Exec. Time At Highest Threshold
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In several cases, sieving improves lifetime with negligible perf. impact



SE-UARC vs SE-IARC

Normalized SE-UARC Allocation Count
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Exclusivity improves SSD lifetime by several orders of magnitude



Summary

= Sleving SSD allocations Is useful

= Even a highly selective admission policy has
only little performance impact

= Exclusive caching improves SSD lifetime
= Hot data cached in RAM not allocated in SSD



Conclusion

= Persistent, terabyte-sized, multilevel,
direct-attached caches

= Exclusion MUST be a first-class design factor

= Exclusion in the storage stack
= Can we extend FS-block level interface?
= Do we implement new file systems?
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