

TIGER: Thermal-Aware File Assignment in Storage Centers

Ajit Chavan

SAMUEL GINN
COLLEGE OF ENGINEERING

Outline

- Motivation
- Models
- TIGER
- Experimental Results
- Conclusion
- Future Work

Motivation

Power and Cooling Expenses as a Percentage of New Server spend

Source: IDC, 2009

Motivation (Contd.)

• Power Distribution:

Source: Power Management in the CISCO Unified Computing System.

Models

- Heat Recirculation Model
 - $A_{N\times N}$: Cross-interference matrix
 - $\alpha_{i,j}$: Cross-interference coefficient

Models

Cooling Cost Model

$$COP(T_{sup}) = 0.0068 T_{sup}^2 + 0.0008 T_{sup} + 0.458$$

TIGER

Problem statement

Assigning *m* files to *D* disks residing in *N* nodes in order <u>to minimize the cooling cost</u> of the storage clusters by reducing heat recirculation in the data center, where file attributes like service time and arrival rates are known a priory.

TIGER

• Statution $\mathcal{L}_{i=1}^{N}$ $\mathcal{L}_{i=1}^{N}$ $\mathcal{L}_{i=1}^{N}$ $\mathcal{L}_{i=1}^{N}$ $\mathcal{L}_{i=1}^{N}$ $\mathcal{L}_{i=1}^{N}$

 u_k $f \leq s, \lambda > \sum_{u_k} u_k$ $s = s e r \underbrace{\text{viee}}_{\lambda = \text{arrival rate in requests/s}} u = s \times \lambda \text{ (workload of file)}$

$$S_{avg} = \frac{1}{N} = 0.20$$

TIGER

Experimental Results

Test bed

Number of nodes (N)	50
Number of disks in each node	24
Total number of disks (D)	1200

• Zipf distribution of file service time and arrival rate.

Experimental Results

Case 1: Energy conservation algorithm (like PRE-BUD) is used to turn down the idle disks.

Conclusion

- We proposed file assignment algorithm to reduce cooling cost of the data centers.
- We use cross-interference matrix to characterize the heat recirculation in data center.
- TIGER calculates threshold on disk utilization based on the contribution of the node in the heat recirculation.
- Based on the threshold, TIGER assigns the files to the disks.
- TIGER offers about 10 to 15 percent cooling energy saving.

THANK YOU?

QUESTIONS?