IEEE MSST 2013

FSMAC: A File System Metadata
Accelerator with Non-Volatile Memory

Jianxi Chen , Qingsong Wei, Cheng Chen , Lingkun Wu
Data Storage Institute, A*STAR, Singapore

May 10, 2013

A*STAR

Agenda

1 Introduction

d FSMAC: Design of A File System Metadata

Accelerator using NVM
d System Implementation
d Evaluation

(1 Conclusion

A*STAR

1. Introduction

¢ File system metadata

¢ Popular: which is about
60%-80% of 1/0 accesses.

Varmail

15 85

Webserver 44 56

+* Small and random

[Application

[Metadata (80%)][Data (20%)

~

* Metadata and data are
stored /accessed in block.
» Metadata and data share

Memory Bus ‘v and compete for 1/0
resource.
DRAM Buffer .
& ** Lots of fetch and flush
/ \
/OBus \ between DRAM buffer and
k - | .
. Superbl dlSk.
Disk ock
Metadata Data blocks
blocks DS|

A*STAR

1. Introduction

OPS Non-Volatile Memory could bridge the gap
A
- Processor
1,000,000,000’s éw‘;ﬁ? % Non-volatile
DRAM ’:0 Byte Addressa.ble |
memory +%* Short access time (DRAM like)
+* Low power consumption
+ Candidates include STT-
100,000,000’ MRAM, RRAM, ...
@ Next generation
s . Non-volatile memory
""" (NVM)
100,000’s
Hard
Disk
100’s
> Latency

Picoseconds Nanoseconds Microseconds Milliseconds a

A*STAR

1. Introduction

NVM System Integration

a, Current system

Slow 10 bus

Long data path

NVM as Block Device

NVM
DRAM

~

_

J

b, Replace disk

(
NVM CPU
—
Jisk | DRAM
\——

~

J

c, Hybrid disk

A*STAR

1. Introduction

NVM System Integration

NVM as Memory Device

DRAM

NVM

(Capacity is not
as large as disk;

\

_/

1, Entire NVRAM FS

kHigh price y

NVM

\

G

2, Hybrid FS

A*STAR

1. Introduction

Current Solutions on Target System

_ » NVM as persistent storage:
"5\ Data and metadata are separated,
data on disk, metadata on NVM
1 incompatible, difficult to porting FS data

e

DRAM NVM

s
]

_ /L » NVM as buffer or non-volatile buffer:
replaced frequently = lots disk I/Os
buffer pollution 2 low performance

A*STAR

1. Introduction

Our solution——NVM as Metadata Accelerator

* NVM is used as both persistent storage and
buffer for file system metadata

— As storage for metadata, no necessary to write
dirty block to disk at runtime, but keep original
version on disk, compatible and portable

— As buffer: in-memory computing, updating in-
place, byte-addressable, but no replacement
except deleting.

Compatible and portable,

Avoid frequent small random metadata IO a

A*STAR

DSI

2. Design of FSMAC

Applications
File System Metadata -
Management Architecture:
! °]
— (1)NVM management
Memory NVM
Management Management (2) Metadata ma nagement
1)
DRAM t (] NVM

3)Consistency mechanism
000 'oog Opwe & y

0000 '0oO] BMendtn & metadata Sync.

* |
(3)] | Block
: 1Ir Interface

Secondary Storage

A*STAR

2. Design of FSMAC

Fixed entrance

NVM & metadata

DMA Zone DMA3I2 Fone Normal Zone .

NVM Zone

management

(1)A dedicated NVM

1
System ES | FS metadata space
Index Index |
7 7
¥
L
Status FS status woeeap] Flilesystem 2 fveiap
Locker

Dirty metadata = == —
i
FSNum 3
Metadata head

FS Pointer

Sy

Sy

[] Clean metadata =

[Dirty metadata

2

Zone only for FSMAC

(2)Fixed entrance to

reach all metadata

”
System Index File system 1 ‘ | _ (3) Status for recove ry
FS metadata

A*STAR

2. Design of FSMAC

Maintain data L [T

By] G20
- il RS e
consistency %ﬁ’ﬂg p B
Aq B
1 2 c. |3
\l, B; basic version | -
~ committing version |,
Commutt- updating version
ing Trans.
D B e

» Block is divided into fine-granularity sub-block
» Sub-block is duplicated on the first update

» Updating on committing sub-block, additional copy is
reserved ﬂ DS

A*STAR

2. Design of FSMAC

Applications

16

File System FSMAC
.IL &
i (3)
1 .
DRAM o v NWVM
|
|
data . | _
metadata i (2) l{ 4)

Secondary Storage

Decouple metadata
and data path:

(1)Request reaches and is
processed normally

(2)Load metadata to
NVM, never write back
till unmount

(3)Flush out at unmount
time with options

Data operation path is not

changed

A*STAR

3. System Implementation

_____________ VFS
ip&ggbuff&r | NVM page buffer
:I'ﬂE.ﬂE.gEI'ﬂEﬂt i management :
{ i 5| > Two modules are added:
'NVMmetadata | i & | £ NVM management
'management ! e = b
FS Sl e 4 = X = = NVM page buffer management
| Consistency | = = g
| maintain || @ © = » Two modules are
Block 1/O I % modified:
=
Generic Block Layer metadata management
_____________________________ consistency maintain
'O Bus Memory Bus
Block Storage Device M ﬁﬁ“ﬁ’ X

A*STAR

4. Evaluation

Evaluation Setup:

> Intel duo-core CPU

»DRAM simulated as NVDIMM (NVM)

> Intel 64GB SSD with SATA Interface
»160GB HDD with PATA Interface

» Linux kernel version 2.6.34

> extd V.S. ext4 with accelerator (ext4-fsmac)

A*STAR

Mumber of ops per sec

Number of I/0s (10°)

4. Evaluation

Filebench
H extd-ssd = extd-fsmac-ssd
= extd-hdd z extd-fsmac-hdd 7
u
N .
\ ﬁ HHH HH
- . #HEN\\—7] BN
file create file append varmail webserver
Workloads
B extd & extd-fsmac
file create file append vamail webserver

Workloads

\/
0’0

N/
0‘0

\/
0‘0

FS on SSD and HDD are
evaluated

On SSD, performance
improved from 5.4% to
147.4% in different
workloads

On SSD, performance
improved from 10.9%
to0 621.7%

Disk 10 reduced (see

second plot)

A*STAR

4. Evaluation
(2) PostMark

oo

mextd mextd-fsmac

i

(=1000)
o = P L s LA Y =l
| |

ik

N\

Number of ops per sec

(/////ﬁ

transaction create read append delete
Operations

** 1.67x performance speedup achieved

A*STAR

4. Evaluation

(3) FFSB
200
2
“E'-‘ i5p | Fextd Sextdfsmac
£
T 100 4
=
e
E 50
2 N | AN

reac wnoe

¢ Ext4-FSMAC improves read performance
by 82% and writes performance by 35%

A*STAR

Time consumed (Ws)

Time consumed (100 Wws)

(4)

350
300

250 ~

200
150

100 -

50
0

60

Micro-benchmark (FS

4. Evaluation

Hextd & extd-fsmac

52 53 54 55 56

Operation mode

(a) Time for creation

Fextd &Hextd-fsmac

54 55

53 56

Operation mode

(c) Time forfsync

350

)

[¥5}
o
o

250
200
150
100

Time consumed (Us

Ln
]

4

L)

®

Mark)

A

.

Hextd M extd-fsmac

FHE

2

50

51

52 53 54 55
Operation mode

(b) Time forwrite

56

» Fcreate and fsync are

improved significantly

A*STAR

DSI

Performance {ops/s)

4. Evaluation

(5) Effect of Synchronization Frequency

12000 1.4

&— extd-fsmac —=— extd - . P o
10000 4 &— =T é 1.2 - ext extd-tsmac ;,
— = i
BDDD | .-.-""\-..___ = & f | E l
i S = 0.8
6000 - . @ u
e @ 06)
4000 - o S o4 s
| - L -
2000 i 2 02 =—=a =
T k ik ik ik ik k A
0 0 T
512 7256 128] 37 16 8 512 256 128 64 32 16 8
Interval ops between fsyncs Interval ops between fsyncs
(a) Write operations per second by varying interval (b) Write response time by varying interval operations
operations between 2 fsyncs. between 2 fsyncs.

*» frequent file synchronizations degrade Ext4 file
system performance significantly but do not
affect ext4-fsmac so much

4. Evaluation

(6) Overhead of Consistency Maintain

g - Aextd-fsmac no Eextd-fsmac

= 150 - mextd no B extd A

% 100 ﬁ
varmall ffsh-read ffsh-write

** Overhead is much smaller than journal in ext4

A*STAR

4. Evaluation
(7) For Different File Systems (FFSB)

_E F original = FSMAC

File system

*» The metadata accelerator works better on ext4
than on ext2 and ext3 file system

A*STAR

5. Conclusion

A file system metadata accelerator is designed by
using NVM to accelerate metadata accessing

**Metadata and data accesses is decoupled.

»Metadata is stored in NVM and accessed in byte-
addressable through memory bus

» Data is stored in Disk and accessed in block manner
through 1/0 path.

**A method combined fine-grained metadata versioning
and transaction mechanism is introduced to overcome
the problem of consistency

It accelerates ext4 file system
**Up to 7.22 times for asynchronous I/0O
**Up to 49 for synchronous I/O a DS|

A*STAR

THANKS!

For further query, please contact:
WEI_Qingsong@dsi.a-star.eddu.sg

A*STAR

