Technical Computing at Intel in 2013

Accelerating Lustre* Development

Brent Gorda General Manager High Performance Data Division

(intel

From Whamcloud to Intel

Started July 16, 2010

- Brent Gorda CEO
- Eric Barton CTO

whamcloud

- Founded Whamcloud to keep Lustre* in play and vendor-neutral for HPC
 - Recognized by OpenSFS and EOFS as the maintainer of open source repositories
- Acquired by Intel in July 2012
- Becomes the High Performance Data Division
- Same team, same mission, more resources

(inl

Development of a Vibrant Ecosystem

Moving Lustre Forward

Continue to focus on traditional HPC requirements...

- Drive open and collaborative development
- Mange the open source tree on behalf of the community
- Rigorously tested to ensure high quality
- Member of EOFS and OpenSFS Board of Directors

Work to penetrate the enterprise and Big Data' markets

Provide support services to both Lustre communities

- Open source releases on a regular cadence
- Worldwide, multi-vendor support for any user

"Intel bought Whamcloud to be Whamcloud..."

- Boyd Davis, VP and General Manager, Datacenter Software Division

Lustre* Partner and Solution Ecosystem

(inl

COMMUNITY LUSTRE*

(inl

Community Lustre* Roadmap

íntel.

(inl

Increasing Community Participation

el internal statistics related to the lines of approved code per contributor per release. es and brands may be claimed as the property of others.

(int

Notable New Features and Enhancements

- Multiple performance enhancements
 - SMP Scaling
 - Multiple MDS support via Distributed Namespace (DNE)
- Object Storage Device API
- Hierarchical Storage Management API
- Distributed, automated test infrastructure maloo.whamcloud.com
- URL to Community Development details:
 - wiki.whamcloud.com/display/PUB/Lustre+Community+Development+in+Progress

Metadata Server Performance

- CPU Partition (CPT)
 - Similar to cpuset in Linux
 - Easily used by kernel thread
- Partitioned LNET (LND)
 - LND thread-pool for each CPT
 - Core LNet has partition data
- Partitioned ptlrpc service
 - Ptlrpc service thread-pool for each CPT
 - Request-queue & wait-queue for each CPT

(int

Improved Metadata Server Performance

4X improvement in file creation performance

• 15k-20k \rightarrow 60k-80k

4X improvement in file stat performance • 50K → 200K

itel internal performance modeling. es and brands may be claimed as the property of others.

(inl

Distributed Namespace

- Distributes namespace by remote directory
- Supports active/active failover use
 - Allows multiple MDT to be exported from one MDS
 - Supports active/active failover for metadata and data
- Linear performance improvements seen
- Root command to mkdir on secondary MDS
- Additional features targeted for upcoming releases

(int

Scalable Metadata Performance (DNE)

(inl

Object Storage Device API

- An abstraction layer between the storage 'file system' and Lustre usage
- Allows Lustre to support other file systems types as backing store
- Start with ZFS integration
- Potential future use with btrfs
- _ustre 2.4 can leverage many ZFS features
- Mature and robust file system
- Scales beyond current file system limits
 - Object count and size
 - File system size
- Easier management of many disks, commodity JBODs without RAID hardware
- Integrated with flash storage cache (L2ARC read cache)

Hierarchical Storage Management

- Important feature for traditional and commercial HPC
 - Move data between tiered storage to meet performance, capacity and availability
 - Classes of storage can include SSD, disk and tape
- Uses Robin Hood policy engine developed by CEA
 - Leverages ChangeLog for minimal impact on performance
- Client-side implemented in Lustre 2.4
 - Layout lock, copytools API, RPC protocol
- Server changes currently under development, targeted for 2.5
- Infrastructure for Intel proposed data migration and replication features

Project Maloo – Distributed test infrastructure

- Foundation for consistent, repeatable testing
- Improved quality assurance
- Easily review coverage
- Supports upgrade/downgrade and interoperability testing
- Key to ensuring stability and predictable releases
- Go to maloo.whamcloud.com for more details

(inl

Project Maloo Dashboard

results	

queues

user admin

Chris Gearing [settings | logou

ate report for lustre-release - master

reports & stats

on–lustre test	sets															
	2.3.62 87ee788 2013-03-06	2.3.61 2c6702b 2013-02-10	2.3.59 7677269 2013-01-19	2.3.58 1 f 77320 2012-12-31	2.3.56 e72ffc3 2012-11-19	2.3.54 241615b 2012-10-29	2.3.53 5f9e428 2012-10-08	2.2.93 861105f 2012-08-16	2.2.92 fee5548 2012-07-30	2.2.91 cae478c 2012-07-19	2.2.90 1934a98 2012-07-10	2.2.59 84a414b 2012-07-02	2.2.57 b3b8bc5 2012-06-19	2.2.56 68eb992 2012-06-18	2.2.55 4ae3e06 2012-06-14	2.2 240 201
t_upgrade										⊕ 1/1						
_upgrade										⊕ 1/1						
/	⊕ 2/4	⊕ 1/1	⊕ 2/5	⊕ <mark>3/8</mark>	⊕ 1/3	⊕ 1/1		⊕ <mark>6/6</mark>	⊕ 9/10	⊕ 4/6	⊕ 10/10	⊕ <mark>6/6</mark>	⊕ <mark>6/6</mark>	⊕ <mark>3/3</mark>	⊕ 4/4	⊕ ;
	⊕ 4/4	⊕ 1/1	⊕ 3/5	⊕ 7 /7	⊕ 3/3	⊕ 1/1		⊕ <mark>6/6</mark>	⊕ 10/10	⊕ 6/6	⊕ 10/10	⊕ <mark>6/6</mark>	⊕ <mark>6/6</mark>	⊕ <mark>3/3</mark>	⊕ 0/4	⊕ 7
Э	⊕ 4/4	⊕ 1/1	⊕ 3/5	⊕ 7/7	⊕ <mark>3/3</mark>	⊕ 1/1		⊕ <mark>6/6</mark>	⊕ 6/9	⊕ 4/6	⊕ 10/10	⊕ <mark>6/6</mark>	⊕ <mark>6/6</mark>	⊕ <mark>3/</mark> 3	⊕ 3/4	⊕ (
	⊕ <mark>3/4</mark>	⊕ 0/1	⊕ 5/5	⊕ 7/8	⊕ 2/3	⊕ 0/1		⊕ 2/6	⊕ 2/10	⊕ 2/6	⊕ <mark>3/10</mark>	⊕ 4/6	⊕ 1 <i>/</i> 6	⊕ 1/3	⊕ 0/4	⊕ :
st	⊕ 3/4	⊕ 1/1	⊕ 5/5	⊕ 7/7	⊕ 3/3	⊕ 1/1		⊕ 6/6	⊕ 6/9	⊕ 5/6	⊕ 10/10	⊕ 6/6	⊕ 6/6	⊕ <mark>3/</mark> 3	⊕ 3/4	⊕ (
c-test	⊕ 3/4	⊕ 1/1	⊕ 3/5	⊕ 6/7	⊕ <mark>2/3</mark>	⊕ 1/1		⊕ 5/5	⊕ <mark>6/</mark> 9	⊕ 4/5	⊕ 7/8	⊕ 5/5	⊕ 5/5	⊕ <mark>2/2</mark>	⊕ 3/4	⊕ ;
У	⊕ 3/3	⊕ 1/1	⊕ 5/5	⊕ 7/7	⊕ <mark>3/3</mark>	⊕ 1/1		⊕ 5/5	⊕ 3/7	⊕ 3/4	⊕ 7/7	⊕ 4/ 4	⊕ 4/4	⊕ <mark>2/2</mark>	• 2/3	⊕ 2
updates	⊕ 4/4	⊕ 1/1	⊕ <mark>3/5</mark>	⊕ 7/7	⊕ <mark>2/3</mark>	⊕ 1/1		⊕ 6/6	⊕ 10/10	⊕ 5/6	⊕ 10/10	⊕ <mark>6/6</mark>	⊕ <mark>6/6</mark>	⊕ <mark>3/3</mark>	⊕ 3/4	⊕ 7
	⊕ 4/4	⊕ 1/1	⊕ 3/6	⊕ 7/9	⊕ <mark>3/3</mark>	⊕ 1/1		⊕ 6/6	⊕ 7/10	⊕ 5/8	⊕ 10/14	⊕ <mark>6/8</mark>	⊕ 6/7	⊕ <mark>3/3</mark>	⊕ 4/5	⊕ 7
urvey	⊕ 4/4	⊕ 1/1	⊕ <mark>3/5</mark>	⊕ 7/7	⊕ <mark>2/3</mark>	⊕ 1/1		⊕ 1 <i>/</i> 6	⊕ 6/ 9	⊕ 5/6	⊕ 10/10	⊕ <mark>6/6</mark>	⊕ <mark>6/6</mark>	⊕ <mark>3/3</mark>	⊕ 3/4	⊕ (
	⊕ 4/4	⊕ 0/1	⊕ 3/5	⊕ 3/7	⊕ 1/3	⊕ 1/1		⊕ 0/6	⊕ 9/10	⊕ 5/6	⊕ 10/10	⊕ <mark>6/6</mark>	⊕ <mark>6/6</mark>	⊕ <mark>3/3</mark>	⊕ 3/4	⊕ 7
ale	⊕ 4/4	⊕ 1/1	⊕ 2/5	⊕ 4/7	⊕ 2/3	⊕ 1/1		⊕ 5/6	⊕ 6/10	⊕ 4/6	⊕ 7/10	⊕ 6/6	⊕ 5/6	⊕ <mark>3/</mark> 3	⊕ 3/4	•
ale-nfsv3	⊕ 4/4	⊕ 1/1	⊕ 1/5	⊕ 7 /7	⊕ 1/3	⊕ 0/1		⊕ 4/5	⊕ 0/8	⊕ 2/5	⊕ 6/ 9	⊕ 4/5	⊕ 4/5	⊕ 2/3	⊕ 2/3	⊕ !
ale-nfsv4	⊕ 1/4	⊕ 0/1	⊕ 2/5	⊕ 7/7	⊕ 2/2	⊕ 1/1		⊕ 5/5	⊕ 0/7	⊕ 1/4	⊕ 7/9	⊕ 0/5	⊕ 1/5	⊕ 1/3	⊕ 0/3	•
ce-sanity	⊕ 4/4	⊕ 1/1	⊕ 2/5	⊕ 6/ 7	⊕ 3/3	⊕ 1/1		⊕ <mark>6/6</mark>	⊕ 7/10	⊕ 4/6	⊕ 9/10	⊕ 6/6	⊕ 6/6	⊕ <mark>3/</mark> 3	⊕ 4 /4	• (
	⊕ 1/4	⊕ 0/1	⊕ 3/5	⊕ 5/7	⊕ 0/2	⊕ 1/1		⊕ 3/4	⊕ 2/ 6	⊕ 0/3	⊕ 0/7	⊕ 0/4				
																÷

es and brands may be claimed as the property of others.

(int

Accelerating Hadoop Workloads

- Bringing Hadoop analytics to HPC
- Initial work demonstrates the advantaged of shared storage
 - Exploit the superior performance, scalability and management simplicity of shared storage
 - Scale storage and compute nodes separately
- On track to deliver the combined benefits of Lustre* with Intel® Distribution of Apache Hadoop*

Intel[®] Manager for Lustre* Software

- Experience the benefits of Lustre* powered workloads faster and easier
- Simplifies installation, configuration, monitoring and management
- Extensible and easy to integrate using plug-in architecture and REST interface
- Management Console
- Provides graphical and command-line interfaces for file system management
- Central repository of file system details and statistics
- **Storage Servers**
 - Intelligent management software layered over object server nodes

(int

Exascale File System

Integrated I/O Stack

- Epoch transaction model
- Non-blocking scalable object I/O
- HDF5/other schema
- High level application object I/O model
- I/O forwarding
- I/O Dispatcher
- Burst Buffer management
- Impedance match application I/O performance to storage system capabilities
- DAOS
- Conventional namespace
- DAOS container files for transactional, scalable, object I/O

