Abstract

The US DOE Office of Science and National Nuclear Security Administration
Exascale activities leading to Exascale class computing in the next decade
involves a number of initiatives including the Fast Forward industry technology
concepts funding activity. The current Exascale activities and coordination
mechanisms for those activities will be explained including the Fast Forward
initiative. Also, the Storage and |0 Fast Forward project will be described,
including schedules, project management, and technical aspects.

i [— VAT~
cience

DOE Fast Forward
Storage and 10 Project

» Los Alamos
NATIONAL LABORATORY
EST.1943

Gary Grider Los Alamos National
Laboratory

04/2013
LA-UR-13-22139

@cierey o0 0 NIYSE
cience
Notionel Myciesr Secwity Adwtrsfradon

DOE Exascale Computing

* Perform research, development and integration required to
deploy Exascale computers in 2020+

* Partnership involving:
— Government
— Computer industry
— DOE laboratories
— Academia

* Target System Characteristics

— 1,000 times more performance than a Petaflops system

— 1 Billion degrees of concurrency

— 20 MW Power requirement

— 200 cabinets

— Development and execution time productivity improvements

 The Exascale timeframe will vary with funding profiles

@ EiicRay 2o NYSS
cience

Current DOE Exascale Coordination

*DOE National Nuclear Security Administration NNSA/ASC program — LANL, LLNL, Sandia
*DOE Office of Science SC/ASCR program — PNNL, ORNL, LBNL, ANL

Fast Forward 1/0 and Storage ‘ ‘E‘ﬁ'ﬁ'ﬁ&'v (s)ff_ice of
cience

DOE Exascale Computing Timeline

(Anticipated)

2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 | 2020

2021

2022

@ EnERGY 2o
cience

Exascale Computing Initiative Timeline

Performance
(FLOPS)

System Perspective

‘ >

Exascale

500 — 1,000 PF

100/- 300 PF

System

30 - 50 PF Acquisition
st
Buffer

Integration Research,
Design Forviard | Development
and Engipcering Phage

4 —

Fast Forward Path Forward Phase

Potential EXA Funding

System
Acquisition

Prototype Build Phase

System

Acquisition

Exascale

Exasgcale Software Techhology: Programming E#ivironment, OS & Runtimes

— —

2015 | 2016

2017

2012 | 2013 | 2014

2018 | 2019

2020

2021

2022

2023

Fast Forward 1/0 and Storage

U.S DEFARTMENT OF

Office of

EN ERGY Science

NS

Apsewrofl Ny iosw Soc vty Adwrerinfresony

B

Data Management Notional Strategy
Storage and 1I/O Timeline

Leadership Platform FY14 FY15 FY16 FY17 FY18
Monitoring/Characterize

Targeted R&D
Underlying Tech
Dev/Support

Shorter Evolutionary

Longer Revolutionary

Commercialization

Storage Fast Forward

Storage Path Forward

Communication
Coordination Support

Coordination with Machine
Deployments

Cross Area Communications
and Portfolio Mgmt

Community Workshops

Testbed Deployment

cience
Nosonel Nyciesr Secw oy Aderérs frasion

Fast Forward Challenge

FastForward RFP provided US Government funding for
Exascale research and development

Sponsored by 7 leading US national labs

Aims to solve the currently intractable problems of Exascale
to meet the 2020 goal of an Exascale machine

RFP elements were Processor, Memory and Storage
IBM, Intel, AMD, and nVidia won Memory/Storage elements

Whamcloud won the Storage (filesystem) component
* HDF Group — HDF5 modifications and extensions
* EMC — Burst Buffer manager and 1/O Dispatcher
* Cray - Test

Contract renegotiated on Intel acquisition of Whamcloud
* Intel - Arbitrary Connected Graph Computation
* DDN - Versioning OSD

T g e NISA
cience

FF Storage Team and
Uber-High Level Requirements

Constant failures expected at exascale

Storage System must guarantee data and metadata
consistency

 Metadata at one level of abstraction is data to the level below

Storage System must guarantee data integrity
e Required end-to-end

Storage System must always be available

Balanced recovery strategies
Transactional models for fast cleanup on failure
Scrubbing for repair / resource recovery ok to take days-weeks

@ EiicRay oo NYSS
cience

A completely redesignhed 10 stack
for Exascale

* Objects instead of files
* Array objects for semantic storage of multi-dimensional data
* Blob objects for traditional sequences of bytes
* Key-value stores for smaller get/put operations
e Containers instead of directories
* Snapshots for efficient COW across sets of objects (with provenance)
* Transactions for atomic operations across sets of objects
e List 10 all the way through the stack
* Reduce trips across network
* Everything fully asynchronous with Transactions
* Reads, writes, commits, unlink, etc

* Explicit Burst Buffer management exposed to app

* Migrate, purge, pre-stage, multi-format replicas, semantic resharding

* End-to-end data integrity
* Checksums stored with data, app can detect silent data corruption

Structure preserving and Analysis Shipping for In-Transit/In-Storage processing

ENERGY I NOYSH
cience

Storage Fast Forward Timeline

* Milestones are due on a quarterly basis First Draft High Level API’s
that demonstrate progression through Available for Review
the R&D process

Project Quarter
Qi Q2 Q3 Q: Q5 Q6 Q7 Qs
July 2012 Oct 2012 Jan 2013 pril 2013 July 2013 Oct 2013 Jan 2014 April 2014

Solution

) Detailed Design
Architecture

Planning

ACG Demonstrations

HDF Demonstrations

IOD Demonstrations

DAOS Demonstrations

End-toEnd Demo
& Reporting

ENERGY oo NYSS
cience

Application 1/O: HDF5 or Other

* New Application Capabilities
— Asynchronous I/0O

* Create/modify/delete HDF5 objects
e Read/write HDF5 Dataset elements

— Transactions

* Group many HDF5 APl operations into
single transaction

e HDF5 Data Model Extensions

— Pluggable Indexing + Query * Applications and tools

Language Q hand vei
_ Pointer datatypes — Query, search and analysis
* Index maintenance

* New Storage For.mat — Data browsers, visualizers,
— Leverage |I/O Dispatcher/DAOS editors

capabilities sis shiopi
— End-to-end metadata+data integrity Analysis s 'Pp'”g
* Move I/O intensive

— Built-for-HPC storage containers operations to data

@ EiicRay 2o NYSS
cience
Nosorrel Mycios Secwty Adwrers fresor

Q
)
®
Q
n
()
n
-

/O Dispatcher

Based on PLFS (parallel log structure)
and MDHIM (parallel KVS)

|/O rate/latency/bandwidth matching
* Burst buffer / pre-fetch cache
* Absorb peak application load
e Sustain global storage performance
Layout optimization
— Application object aggregation / sharding
— Upper layers provide expected usage
Higher-level resilience models
— Exploit redundancy across storage objects
Scheduler integration
— Pre-staging / Post flushing

In-Transit Analysis processing (capable of
global communications across 10 Nodes /
BB Nodes)

@ iiicicy oo NYSE
cience
Nysewr ol Myc o Soc vty Adwmvevinfredon

Userspace

DAQOS Containers

* Distributed Application Object Storage
— Sharded transactional object storage
— Virtualizes underlying object storage
— Private object namespace / schema

* Share-nothing create/destroy, read/
write

— 10s of billions of objects
— Distributed over thousands of servers
— Accessed by millions of application

Q
()
®
Q
2
()
n
-

threads
* ACID transactions Iprojects
— Defined state on any/all combinations ILegacy JHPC /BigData

of failures /[\ /‘\

— No scanning on recovery Simulation data ——
* In-Transit/Storage Analysis Processing R

@uicicy =0 NS4
cience
Nason ol Myciosw Secw-ty Adwrers frason

Versioning OSD

e DAOS container shards
— Space accounting & quota

— Shard objects

* Transactions
— Container shard versioned by

Q
()
®
Q
n
—_
()
n
-

epoch
— Writes ordered by epoch, not time
— Commit

* Integrates writes into extent metadata
* Epoch durable once all shards commit

— Abort

* Rollback to last globally committed
container version

©ENERGY & NS
cience
S T e Ny ¥ e—

Transactions

I/O Epochs

e Consistency and Integrity

— Guarantee required on any and all failures
* Foundational component of system resilience

— Required at all levels of the 1/O stack

* Metadata at one level is data
to the level below

* No blocking protocols
— Non-blocking on each OSD
— Non-blocking across OSDs Time -

* |/O Epochs demark globally consistent snapshots
— Guarantee all updates in one epoch are atomic

— Recovery == roll back to last globally persistent epoch

* Roll forward using client replay logs for transparent fault
handling

— Cull old epochs when next epoch persistent on all
OSDs

@uicicy =0 NOSA
cience
Nason ol Myciosw Secw-ty Adwrers frason

Server Collectives

* Gossip protocols
— Fault tolerant O(log n) global state distribution la
— Peer Discovery

* Tree overlay networks

— Fault tolerant

* Collective completes wit
on quorum change

— Scalable server commur.
* DAOS transaction collect |
* Collective client eviction
 Distributed client health Fﬁomnitéring

U.S DEPFARTMENT OF ~ \("-‘

Fast Forward I/O and Storage a ENERGY (S)ffnt,(e of N \ | E;“f’.
cience A 4
Nysewr ol Myc o Soc vty Adwveviefreson

Fast Forward 1/O Architecture

Tree

Based
Server-
Server
g Comms
)™ for HA

Compute HPC Fabric |/0 Nodes SAN Fabric Storage
Nodes MPI / Portals Burst Buffer OFED Servers

Application I/O Forwarding Server \
HDES MPI-I10 I/O Dispatcher
VOL
NVRAM

|/O Forwarding Client

cience
Nasonal Myciosw Secw-ty Adwrerds fravon

AMR

L1

L2

L3

Fast Forward 1/0 and Storage

HDF5 File
/ N\
Time 1l || Time 2
Group Group
L1

\

L2

H

/\3

HDF5 (the current example of a high
level API to this new IO stack)

H5TRBegin-a (transl, reql)
H5Create-file-a (... trans, req2))
H5Creaet-group-a(... trans, req3)
H5TRCommit-a (trans1)

Go do other work

H5TRCheck/wait (trans1) or HTReqCheck/
wait(reqN)

H5TRBegin-a(trans2,req4)

H5Dwrite (object/array,trans2,rew5) (write all
you want)

H5TRCommit (trans2)

Go do other work,

You can even start a new transaction to do

metadata or data ops with trans3++ and overlap
as much 10 and computation, including abort.

You cant be sure anything made it to storage
until H5TRCheck/wait say that transaction is
secure.

You can control structure, async behavior,
rollback, etc.

PARTMENT Office of ‘S
ENERGY Science A =

Aysewr ol Myc o Sov vty Acfwrer

u

OBJECT FUNCTIONS

iod_obj create, create_list, open, close

iod_array_write, array_write_list, blob_write, blob_write_list

iod_obj open_read read_list, blob_read, blob_read_list, array_read, array_readlist
iod_array_extend, query

iod_obj_set_layout and get layout

iod_obj_unlink and unlink_[istiod_obj_unlink_list

iod_obj_set_scratch, get_scratch

DATA CONSISTENCY _ o _
iod_trans_query, trans_start, trans_slip, trans_finish, trans_persist, trans purge,
trans_fetch, trans_replica, trans_snapshot

Key Value functions
iod_kv_set, set_list, get_num, get_list, list_key, get_value, unlink_keys

EVENT FUNCTIONS
iod_eq_create, destroy, poll, abort, query, init, finish

ENERGY |2 NAYSE
cience '
Nysewrof Myc o Soc vty Adwrevintres, oy

Event Queue Mgmt

daos_eq_create, destroy, poll, query, init, finish, next, abort

DAOQOS Storage Layout Mgmt
daos_sys_open cage/rack/node/target, close, listen, query

Container Structure Mgmt
daos_container_ope, unlink, snapshot, query, listen

Collective operation APIs
daos_local2global and global2local

Shard API
daos_shard_add, disable, query, flush

Object API
daos_object_open, close, read, write, flush, punch

Epoch & Epoch functions
daos_epoch_scope_close, catchup, commit

U.S DEFARTMENT OF ~ ' \("-l
Fast Forward 1/0 and Storage ‘ ENERGY Cs)ff_ncle of NA S‘_‘O,;
cience
Nysewr ol Myc o Soc vty Adwveviefreson

Finish
The remaining part of the draft api set that hasn’t been
added yet is analysis/function shipping.

We do want people to look at our API’s and even designs
which are on the open web as we pay for them
http://wiki.whamcloud.com

We are interested in a variety of uses, library call, function/
analysis shipping, HDF5, DSL, structured, AMR, etc. We can

set up a limited set of direct interaction with the subsystem
owners

Later when we have prototype libs/system, a limited set of
app developers may want to do some simple trials

Remember, this is a prototyping activity and ends in FY14.

@ EiicRay oo NYSS
cience

